English
新闻公告
More

文章编号: 1594367899571-1028452251  

文献标识码: A

综述

用于光催化分解硫化氢制氢的金属硫化物

展开
  • 1. 西南石油大学油气藏地质及开发工程国家重点实验室 成都 610500
  • 2. 西南石油大学新能源与材料学院 成都 610500

收稿日期:2019-12-13

  要求修回日期:2020-01-17

  网络出版日期:2020-07-10

基金资助

国家自然科学基金项目(U1862111)

中国科学院“西部之光”计划、四川省国际科技合作与交流项目(2017HH0030)

西南石油大学研究生科研创新基金项目(2019cxzd009)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide

Expand
  • 1. China State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
  • 2. School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China
** e-mail:

Received:13 Dec. 2019

  rev-requestrev-request:17 Jan. 2020

  Online:10 Jul. 2020

Fund

National Natural Science Foundation of China(U1862111)

Chinese Academic of Science “Light of West China” Program, the Sichuan Provincial International Cooperation Project(2017HH0030)

Graduate Student Scientific Research Innovative Project of SWPU(2019cxzd009)

Copyright

Copyright reserved © 2020.

摘要

硫化氢(H2S)作为一种剧毒、恶臭的强腐蚀性气体,广泛来源于人类活动和自然界,对动植物生存和环境都具有较大的危害。光催化分解H2S制氢是一种理想的H2S处理技术,可以同时实现H2S的转移和清洁能源氢气的产生。近年来,金属硫化物由于其优异的可见光响应、恰当的能带结构和对H2S有高的稳定性,因此被广泛地应用于光催化分解H2S制氢。本文对近年来国内外金属硫化物驱动H2S资源化利用制氢领域取得的重要进展进行了概述和总结,探讨了不同反应媒介下光催化分解H2S制氢机制;特别关注了一些为实现高效稳定光催化H2S资源化利用制氢的优异调控策略;最后,对H2S资源化利用的挑战和前景进行了展望。

关键词: 金属硫化物 ; 光催化 ; 硫化氢 ; 制氢 ; 稳定性

中图分类号: O643.3;O649;O627 ()  

本文引用格式

淡猛 , 蔡晴 , 向将来 , 李筠连 , 于姗 , 周莹 . 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020 , 32(7) : 917 -926 . DOI: 10.7536/PC191209

Meng Dan , Qing Cai , Jianglai Xiang , Junlian Li , Shan Yu , Ying Zhou . Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide[J]. Progress in Chemistry, 2020 , 32(7) : 917 -926 . DOI: 10.7536/PC191209

Abstract

Hydrogen sulfide(H2S), owing to the extremely toxic, malodorous and corrosive nature, is a detrimental and undesirable environmental pollutant widely generated in the petrochemical industry. How to handle H2S effectively and convert it into highly-valued products is vital. Photocatalysis is one of the most ideal routes to realize the resource utilization of H2S. Recently, metal sulphides are widely used as desirable photocatalysts for H2 production from waste H2S due to their remarkable visible-light response, proper band structure and strong resistance against H2S poisoning. Here, we summarize the current status, and challenges of this field. The photocatalytic H2S splitting mechanism are overviewed in different reaction medium. Particularly, promising strategies for highly efficient photocatalytic conversion of H2S are systematically discussed, which is aimed to inspire researchers interested in this field. Finally, some challenges in the H2S splitting process and their future research directions are outlined.

Contents

1 Introduction

2 Photocatalytic H2 production from waste H2S over metal sulfides

2.1 Binary metal sulfides

2.2 Ternary and solid-solution metal sulfides

2.3 Metal sulfide composites

3 Conclusion and outlook

1 引言

硫化氢(H2S)是一种易燃、易爆、有害的剧毒气体,广泛来源于人类活动(化石燃料开采、化工生产等)和自然界(海洋深水区、火山喷发等)[1,2,3]。近年来,随着工业化进程的发展,H2S的排放量在逐年增加。据统计,全球富含H2S的酸性气田储量超过7.4 × 1013 m3,约占世界天然气总储量的40%,其中H2S含量大于10%的天然气储量超过9.9 × 1012 m3 [4]。我国酸性气藏储量丰富,主要位于四川盆地。部分酸性油气藏中H2S含量可高达60%~90%[5],例如位于四川盆地的我国最大天然气气田——普光气田,其H2S的含量达到14.1%[6, 7]。此外,海洋深水区也会伴随着大量的H2S气体生成。据统计,黑海中H2S储量约为4.6亿吨,并以每天1万吨的速率在增长[8, 9]。这些H2S的存在不但会严重影响资源的安全开发利用,而且更重要的是会对动植物生存、环境和生态系统等造成严重危害。因此,实现H2S的高效转移,对于油气资源开采、动植物生存以及生态系统都具有重要意义。目前最常使用的H2S转移策略仍为克劳斯(Claus)工艺,即通过使H2S不完全燃烧,将H2S转变为硫磺(S)和水(H2O)[10, 11]。该方法不仅需要高温(1000~1200 ℃),还会产生毒副尾气(SO x ),并且H2S中潜在的氢能(H2)全部以放热的形式转化为H2O。从有害气体H2S去除和氢能利用的角度综合考虑,开发绿色H2S分解技术至关重要。近年来,针对绿色H2S分解技术已开展了大量的工作,如电催化[12]、光催化[13,14,15,16,17,18]、光电化学[19,20,21,22]、光伏-电化学[23]等H2S分解方法已经被探索和报道。这些策略在常温下均可实现H2S去除和清洁能源H2产生。其中光催化分解H2S技术装置简单,且是以来源充足的太阳光作为催化反应的驱动力(无需消耗额外的电能),因此在能耗、环境友好和应用方面优势突出[13,14,15,16,17,18],已被证实是较为理想的H2S绿色处理方法,其可同时实现有害气体H2S的去除和清洁能源H2的获取[24,25,26,27,28,29]
光催化分解H2S机理如图1a所示,当光催化剂在能量等于或大于其能隙的光辐射下,其价带上的电子将受激发跃迁至导带,同时在价带上产生对应的空穴,产生的电子-空穴对可在内部电场作用下分离并迁移到催化剂表面,当光生电子还原电势负于H+的还原电势(0 V vs NHE),光生空穴的氧化电势正于H2S的氧化电势(0.14 V vs NHE)时,H+与S2-可分别与电子和空穴反应生成H2和S。从热力学角度考虑,分解H2S(分解热为39.4 kJ·mol-1,分解电压窗口0.14 V)制氢比分解H2O(分解热为284.7 kJ·mol-1,分解电压窗口1.23 V)制氢所需的能量更低(图1a)[30,31,32]。因此,能够光解水的光催化剂在能带结构上均可用于光解H2S。
图1 (a) 半导体光催化材料分解H2S基本原理;(b) 含硫氧化物在S-H2O体系中电位-pH变化图[33]

Fig.1 (a) Principle of photocatalytic H2S decomposition over a photocatalyst; (b) Potential-pH diagram for a S-H2O system[33]. Copyright 2019, Elsevier.

然而,光催化H2S分解制氢走向实际应用仍面临着以下挑战:(1)H2S对催化剂的毒化作用使得探究稳定的光催化剂成为一个难题;(2)H2S分解氧化产物的多样性对光催化H2S分解制氢的长效稳定性构成了严重的挑战(图1b)[33,34,35],因此,大量光催化分解H2S制氢报道的反应时间都小于5 h[18, 31, 36];(3)低的光催化H2S制氢效率,仍难满足实际应用要求。因此,探索具有高活性、高稳定性的可见光响应光催化剂是光催化分解H2S制氢研究的重点和难点。
针对光催化H2S分解存在的挑战,在探寻稳定的光催化剂方面,金属氧化物[37,38,39,40]、金属硫化物[41,42,43,44,45]作为两类重要的无机半导体光催化材料被广泛地报道应用于光催化分解H2S制氢。研究表明金属硫化物相对金属氧化物具有更好的抗H2S毒化能力、更窄的能带结构和更负的导带位置[32, 41~48](见图2),因此其作为光催化分解H2S制氢的光催化剂相对于金属氧化物拥有更多优势[32, 41~48]
图2 常见半导体光催化剂能带结构与H2S分解氧化还原电位对比图

Fig.2 Relationship between band structure of semiconductor and redox potentials of H2S decomposition

近年来,金属硫化物光催化H2S制氢效率和稳定性都得到不断的提升。本文主要对金属硫化物驱动H2S资源化利用领域取得的重要进展进行了概括和总结,并对一些高效稳定的光解H2S制氢的策略和机制进行了阐述,最后对该领域目前存在的挑战和发展前景进行了总结和展望。

2 金属硫化物光催化分解H2S制氢

金属硫化物已经被广泛用于剧毒气体H2S的资源化利用制氢(见表1),主要包括二元、三元、固溶体和复合物等金属硫化物。
表1 金属硫化物光催化分解H2S制氢性能对比

Table 1 Comparison of hydrogen evolution over reported metal sulfide photocatalysts

Photocatalysts Light source Aqueous reaction solution Cocatalysts/H2
activity(mmol·g-1·h-1)
Quantum
yield(%)
ref
CdS/Pt 300-W Xe, λ > 420 nm H2S+DEA 47.60 30% 50
CdS/TiO2 500-W Hg, λ ≥ 420 nm H2S+1 M NaOH Pt/9.80 - 31
CdIn2S4 450-W Xe, λ ≥ 420 nm H2S+0.5 M KOH 6.96 17.1%-550 nm 42
Q-CdS-glass powder 450-W Xe, λ ≥ 420 nm H2S+0.5 M KOH 3.57 17.5% 17
CdLa2S4 450-W Xe, λ ≥ 420 nm H2S+0.5 M KOH 5.10 11.6% 45
CdIn2S4 300-W Xe, λ ≥ 420 nm H2S+0.5 M KOH 6.48 - 44
ZnIn2S4 300-W Xe, λ ≥ 420 nm H2S+0.25 M KOH 10.57 - 43
Bi2S3 normal solar light H2S+0.5 M KOH 8.88 - 51
Fe-Zn-S solid solution 500-W Xe, H2S+0.5 M NaOH 5.06 - 52
Fe-Co-Zn-S solid solution 500-W Xe, H2S+0.5 M NaOH 8.39 25.0%-434 nm 53
γ-MnS 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 0.02 - 54
MnS/In2S3 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 8.34 34.5%-450 nm 32
In2S3/CuS 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 14.95 9.3%-420 nm 55
Cd x In1- x S 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 16.35 26.7%-420 nm 48
MnS/(In x Cu1- x )2S3 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 29.25 65.2%-420 nm 47
MnS/In2S3/PdS 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 22.7 34.1%-400 nm 56
MnS/In2S3-MoS2 300-W Xe, λ > 420 nm H2S+0.1 M Na2S + 0.6 M Na2SO3 49.56 72%-400 nm 57

2.1 二元金属硫化物

1982年Borgarello等[49]以CdS为光催化剂首次实现了H2S分解制氢。2008年,李灿等[50]以CdS作为模板材料,以贵金属单质、贵金属硫化物等为助催化剂在醇胺溶液中系统地研究了光催化分解H2S过程。研究结果表明,沉积贵金属可以有效地提高CdS的光催化性能,产氢速率从7.20 mmol·g-1·h-1提升到47.60 mmol·g-1·h-1(如图3所示)。增强的光催化性能主要归因于贵金属的引入显著提高了CdS载流子分离能力。此外,结合拉曼和电化学测试得出在醇胺溶液中H2S能被分解为 S n 2 和H2(式1~3)。而通过酸化处理反应后的溶液证明了醇胺作为反应介质可以实现H2S的化学计量分解。
H2S + DEA → HS- + HDEA+
2e - + 2HDEA+ → H2 + 2DEA
2(n-1)h+ + nHS- S n 2 + nH+
图3 Pt/CdS在不同醇胺溶液中可见光光催化H2S分解性能图,反应条件:反应介质:100 mL醇胺溶液;H2S浓度: 0.30 M;催化剂用量: 0.025 g;光源:300 W Xe灯(带λ > 420 nm滤光片)[50]

Fig.3 Photocatalytic H2 production over Pt/CdS(0.20 wt% Pt) in different alkanolamine solutions. Reaction conditions: volume, 100 mL; concentration of H2S, 0.30 M; catalyst, 0.025 g; light source, 300-W Xe lamp with a cutoff filter(λ > 420 nm)[50]. Copyright 2008, Elsevier

总之,该研究以CdS作为光催化剂在醇胺溶液中实现了H2S完全资源化利用。但是醇胺作为反应媒介在H2S分解反应过程中会伴随着有色 S n 2 - 生成,其存在一方面会严重影响半导体对光的吸收,另一方面会与H2生成反应形成竞争反应( S n 2 - + 2(n-1)e-nS2-,n≥2)。因此, S n 2 - 的存在会严重影响光催化H2S分解性能和长效稳定性。此外,醇胺溶液高的黏度会影响光催化产物的脱附和催化剂的回收再利用。
尽管CdS展示出良好的光催化H2S分解性能,但CdS光腐蚀现象已被广泛的证明。故其长效光稳定性一直是一个挑战。因此,近年来一系列其他非CdS二元金属硫化物半导体光催化剂也被探索和应用。Kale等[51]利用简单的水热法成功制备了Bi2S3纳米花(如图4a所示),在太阳光下展示出优异的光催化H2S制氢活性(8.88 mmol·g-1·h-1,如图4b所示)。此外,他们也对H2S在强碱溶液中(NaOH、KOH)H2S光解机理进行了研究(式4~6),证明了在强碱反应媒介中H2和S单质分别是H2S分解的还原与氧化产物。Lee等[31]通过同位素实验进一步验证了该H2S分解机制的合理性。然而,S单质的生成,其一方面会影响太阳光的吸收,另一方面会沉积到催化剂表面占据反应活性位点影响光催化长效稳定性,因此,大量以强碱溶液作为反应媒介进行光催化分解H2S制氢报道的反应时间一般小于5 h[18, 31, 36]
H2S + 2OH- → S2- + 2H2O
S2- + 2h+ → S0
2H2O + 2e- → H2 + 2OH-
图4 (a) Bi2S3 的SEM图;(b)光催化H2S分解产氢性能图[51]

Fig.4 (a) SEM images of the Bi2S3 samples; (b) Hydrogen evolution using Bi2S3 samples for H2S decomposition[51]. Copyright 2014, Royal Society of Chemistry

2017年,本课题组采用溶剂热法成功制备了具有立方结构的α-MnS和六方结构的γ-MnS。并在Na2S/Na2SO3反应媒介中,对不同晶相MnS在可见光(λ > 420 nm)和全光谱下光催化分解H2S的制氢性能进行了研究[54]。发现亚稳态γ-MnS相比于热力学稳定相α-MnS具有更好的光催化H2S制氢性能。而γ-MnS具有优异光催化性能的原因是其特殊的六方纤锌矿结构可以促进空间载流子的分离(图5a)和更加优异的太阳光响应。同时MnS展示了优异的光催化稳定性。通过对α-MnS、γ-MnS在Na2S/Na2SO3反应媒介中光催化分解H2S制氢机理(图5b)的分析(式7~13),得出在Na2S/Na2SO3反应媒介中H2和Na2S2O3为H2S分解最终的还原和氧化产物。更重要的是,金属硫化物作为光催化剂,Na2S/Na2SO3作为反应媒介很好地避免了反应过程中S和 S n 2 的生成,这为实现长效稳定的光催化H2S分解提供了可能。
Photocatalysts + hv → e - + h+
H2S + OH- ↔ HS- + H2O
2S2- + 2 h VB + S 2 2
HS- + 2 h VB + → H+ + S
S O 3 2 + S 2 2 → S2 O 3 2 + S2-
S + S O 3 2 → S2 O 3 2
S O 3 2 + S2- + 2 h VB + → S2 O 3 2
图5 (a) MnS样品在Na2S-Na2SO3 (0.1 M-0.6 M)溶液中的EIS电化学阻抗谱;(b) MnS 光解 H2S 制氢机理示意图[54]

Fig.5 (a) EIS of MnS sample in the 0.1 M Na2S and 0.6 M Na2SO3; (b) Schematic representation of the mechanism for photo-splitting H2S by MnS[54]. Copyright 2017, Journal of Inorganic Materials

2.2 三元金属硫化物与固溶体金属硫化物

三元金属硫化物光催化剂作为另一类重要的单相金属硫化物,由于其恰当的能带位置和优异的太阳光响应,引起了广泛关注。Kale等以AB2S4(如:ZnIn2S4、CdLa2S4、CdIn2S4等) 型三元金属硫化物为光催化剂对光催化分解H2S性能进行了系统的研究和探索[42, 43, 45]。2011年,他们利用溶剂调控策略成功构建了一系列不同形貌ZnIn2S4催化剂[43],并对不同形貌ZnIn2S4的生长机理和光催化H2S制氢性能进行了探索和研究(如图6所示)。得出不同形貌ZnIn2S4光催化H2S制氢活性分别为8.02(金盏花状)、8.98(鲜花-片层状)、10.57(纳米片层状) 和8.75 mmol·g-1·h-1(无序花瓣-片层状)。而纳米片层结构ZnIn2S4具有最高的可见光制氢性能,这归因于其独特的纳米片层结构和优异的太阳光响应。此外他们利用该策略也成功构建了具有不同形貌的CdLa2S4、CdIn2S4光催化剂[42, 45]并研究了其形貌与性能之间的联系。总之,AB2S4类三元金属硫化物优异的太阳光响应极大地促进了可见光光催化分解H2S制氢性能,同时,这些研究为构建不同形貌三元AB2S4金属硫化物提供了一种可选的策略。
图6 ZnIn2S4可能的生成机制图[43]

Fig.6 Schematic illustration of the possible growth mechanism of ZnIn2 S 4 [ 43 ] . Copyright 2011, Royal Society of Chemistry

固溶体金属硫化物由于其能带结构可调,已经被证明是另一类重要的可见光响应金属硫化物。Lashgari等[52]通过简单水热法成功构建了Fe-Zn-S固溶体,并对其光催化H2S分解性能进行了系统的研究。其最佳的光催化H2S产氢活性达到5.06 mmol·g-1·h-1(如图7a所示),这归因于其大的比表面积和强的质子吸附能力。为进一步提升Fe-Zn-S固溶体光催化H2S分解性能,他们将Co元素成功引入到Fe-Zn-S中,成功构建了Fe-Co-Zn-S新型固溶体[53]。其光催化制氢性能得到进一步提升(8.39 mmol·g-1·h-1)(如图7b所示)。
图7 (a) Fe-Zn-S[52];(b) Fe-Co-Zn-S[53]固溶体光解H2S制氢性能图,数据为在大气压下298K每10 min测定的,反应容器中包含0.2 g溶解于50 mL pH=11的碱性H2S溶液中的光催化

Fig.7 The volume of hydrogen gas photocatalytically produced as a function of irradiation time over (a) Fe-Zn-S[52]. Copyright 2018, Elsevier; (b) Fe-Co-Zn-S solid solutions (data were recorded every 10 min under atmospheric pressure at 298 K; the reaction chamber contained 0.2 g photocatalyst powder dispersed in a 50 mL H2S alkaline solution at pH=11)[53]. Copyright 2019, Elsevier

尽管三元(AB2S4类)和固溶体金属硫化物在强碱反应媒介中的H2S分解过程已被系统的研究,然而,这些报道并没有对光催化剂的长效稳定性进行特别关注,而长效稳定性对于催化剂在实践应用过程中具有重要的意义。此外,强碱(NaOH或KOH)反应介质中通常会伴随着S单质的产生,这会严重影响光催化剂的长效稳定性。最近,本课题组[48]通过在CdS中引入In成功制备得到了一系列Cd x In1- x S固溶体。并通过调节In的引入量实现了对能带结构的可控调控(如图8所示)。通过可见光照射下光催化H2S分解性能和稳定性测试,得出具有最高价带位置的Cd0.79In0.21S固溶体拥有最佳的活性(16.35 mmol·g-1·h-1)和稳定性(> 15 h)。而高的价带位置一方面提升了CdS自身的稳定性,抑制光腐蚀的发生,另一方面可有效提升光生空穴的氧化能力,促进反应中产生的单质S进一步氧化(2S + 6OH- + 4h+ → S2 O 3 2 + 3H2O),增加光催化分解H2S制氢的长效稳定性。因此,该研究基于“能带调控策略”在Na2S/Na2SO3作为反应媒介时不仅实现了对CdS基金属硫化物的抗光腐蚀能力的提高而且解决了催化剂表面积硫现象的产生。为解决CdS基金属硫化物光稳定性提供了一种可选的策略。
图8 Cd x In1- x S能带结构与光催化机理图[48]

Fig.8 The energy band structure and photocatalytic process of splitting H2S over Cd x In1- x S solid solutions[48]. Copyright 2019, John Wiley and Sons

总的来说,这些单相二元、三元以及固溶体金属硫化物在一定程度上可以实现高效的光催化分解H2S制氢。然而,单相金属硫化物低的载流子分离效率对于优异的光催化分解H2S制氢性能始终是个巨大的挑战,同时光催化H2S制氢的长效稳定性有待进一步提升。

2.3 金属硫化物复合物

基于上述单相金属硫化物光催化分解H2S目前存在的两大挑战,近年来,本课题组[32, 47, 48, 50, 54~61]针对H2S资源化利用进行了大量的研究和探索。以MnS基金属硫化物为模板材料,从材料的设计和反应体系的探索两个方面出发,提出了一系列新型策略用于实现高效稳定的H2S资源化利用制氢[32, 47, 48, 50, 54~57]。首先,为了提高单相MnS的光催化性能,通过简单的溶剂热法成功构建了新型Z-型MnS/In2S3复合物[32],其最高可见光光催化H2S制氢性能为8.36 mmol·g-1·h-1,相对于MnS提升了大约2090倍,相对于In2S3提升了50倍(如图9所示)。优异光催化性能归因于异质结结构的形成和Na2S/Na2SO3反应媒介的使用。该研究提供了一种新型MnS/In2S3金属硫化物复合光催化剂,并首次系统地研究了Na2S/Na2SO3作为反应媒介的H2S分解机制(式7~13),得出Na2S/Na2SO3作为反应媒介具有三重角色:(Ⅰ)作为牺牲剂,提高金属硫化物的载流子分离能力;(Ⅱ)作为掩蔽剂,消除有色氧化产物(S或 S n 2 )的生成对长效光催化性能的影响;(Ⅲ)作为吸收剂,用于吸收酸性H2S气体。因此,该研究从材料设计(MnS/In2S3异质结)和反应体系调控(Na2S/Na2SO3反应媒介)两个方面控制H2S分解进程,最终实现了光催化H2S高效稳定制氢。
图9 MnS/In2S3复合金属硫化物光解H2S制氢性能[32]

Fig.9 Comparison of the photocatalytic activity of MnS/In2S3 samples[32]. Reaction conditions: reaction solution, Na2SO3-Na2S(0.6 mol/L-0.1 mol/L) aqueous solution(50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter(λ> 420 nm). Copyright 2017, Elsevier

尽管MnS/In2S3复合物体系的研究为光催化H2S资源化利用研究提供了一条新的途径。但是,当反应时间足够长时,由于体系中S O 3 2 的消耗和催化剂表面对氧化产物S单质强的吸附作用,使得生成的S来不及被及时的转移而沉积在催化剂表面从而严重影响催化剂的长时间光催化稳定性(如图10a所示)。2018年,本课题组[55]通过简单的水热法,成功构建了In2S3/CuS复合金属硫化物。发现In2S3/CuS复合材料的形成能够实现高效的光催化H2S分解性能(14.95 mmol·g-1·h-1)和更长效的H2S分解稳定性(> 13 h)(如图10b所示)。研究表明Cu的存在不仅增加了太阳光谱的吸收(~758 nm),还促进了载流子的分离能力,更重要的是Cu的存在显著地提升了催化剂光催化H2S制氢的长时间稳定性。该研究成果为进一步提升MnS/In2S3复合物光催化分解H2S制氢活性和稳定性提供了重要的指导意义。
图10 (a) MnS/In2S3_0.7[32];(b) In2S3/CuS长时间光催化H2S循环性能,反应条件:反应介质:50 mL Na2S-Na2SO3 (0.1 M/0.6 M) 水溶液;H2S浓度:3 M;催化剂用量:2.5 mg; 光源:300 W Xe灯(带λ > 420 nm滤光片)[55]

Fig.10 (a) Long-term cycling experiments over MnS/In2S3_0.7[32]. Copyright 2017, Elsevier. (b) In2S3/CuS composite[55]. Copyright 2018, Elsevier. Reaction conditions: reaction solution, Na2S-Na2SO3 (0.1 M/0.6 M) aqueous solution (50 mL); concentration of H2S, 3 M; catalyst,2.5 mg; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)

在MnS/In2S3复合物体系中,氧化反应发生在In2S3上,还原反应发生在MnS上(图11a)[30]。导致MnS/In2S3复合物体系长效稳定性低的一个重要原因是光氧化产物S单质在催化剂表面的沉积。因此通过精准调控氧化过程使其具有优异的S脱附性能,理论上可以实现MnS/In2S3复合物的长效光催化稳定性的提高。因此,本课题组通过选择性沉积高分散的Pd到MnS/In2S3中的氧化位点(In2S3)上,研究了其对H2S分解过程的影响[56]。结果表明,Pd的引入可以同时提高MnS/In2S3光解H2S制氢速率(22.7 mmol·g-1·h-1,见图11b)和长效稳定性(见图11c)。X射线原子吸收光谱证明Pd和In2S3之间形成了有效的Pd-S-In键。Pd-S-In键的形成一方面可以稳定Pd,另一方面作为空穴传输通道,可有效地提高光生空穴的转移。此外,理论模拟计算表明Pd作为光氧化反应位点可有效促进S单质的脱附。作为结果,通过精准调控氧化过程实现了MnS/In2S3活性和长效稳定性的综合提高。总之,该研究基于金属硫化物设计,为实现金属硫化物高效稳定的光催化分解H2S制氢提供了一种贵金属精准锚定策略。
图11 (a) MnS/In2S3复合物在Na2S/Na2SO3反应媒介中光催化H2S分解机制[32]; (b) MnS/In2S3/PdS光催化H2S分解性能图;(c) 长期光催化H2S制氢测试,反应条件:Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) 水溶液(50 mL),H2S浓度 3 M,光源: 带λ > 420 nm滤光片的300 W Xe灯[56]

Fig.11 (a) Photocatalytic process of splitting H2S over MnS/In2S3 composites in Na2S/Na2SO3 reaction solution[32]. Copyright 2017, Elsevier. (b) Photocatalytic H2 production, (c)Long-team stability of over MnS/In2S3/PdS samples[56]. Copyright 2019, Elsevier. Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)

尽管Pd的引入在一定程度上确实提高了MnS/In2S3复合物的活性和稳定性,但其并没有改善MnS/In2S3复合物对太阳光的响应能力(图12a)。In2S3/CuS复合物体系中已经证明Cu的存在可以显著地提升光催化剂的太阳光响应和长效稳定性[55]。因此,我们通过“固溶-异质”策略成功地将Cu选择性沉积到MnS/In2S3复合物中的In2S3中,构建了新型MnS/(In x Cu1- x )2S3复合物[47]。其在可见光下的最大光催化H2S制氢活性可以达到29.25 mmol·g-1·h-1(图12b)、在420 nm下的表观量子效率可以达到65.2%。同时具有超长光催化H2S分解稳定性(> 25 h)(图12c)。实验和理论计算表明高的光催化活性和长效稳定性归因于两方面的原因:一方面(In x Cu1- x )2S3固溶体的形成既提高了MnS/In2S3复合物的太阳光响应(图12 d),又阻止了氧化产物S单质在催化剂表面沉积,另一方面,MnS和(In x Cu1- x )2S3之间异质界面显著地促进了载流子的分离能力。因此,该研究基于“固溶-异质”策略去精准调控氧化过程,为构建高效稳定的光催化分解H2S非贵金属硫化物复合物提供了一种可选的策略。
图12 (a) MnS/In2S3/PdS复合物紫外-可见漫反射光谱图[56];(b) MnS/(In x Cu1- x )2S3光催化H2S分解性能;(c) MnS/(In x Cu1- x )2S3光催化H2S循环测试;(d) MnS/(In x Cu1- x )2S3复合物紫外-可见漫反射光谱图[47]

Fig.12 (a) UV-vis DRS of MnS/In2S3/PdS samples[56]; (b) Photocatalytic H2 production performance; (c)Cycling test; (d) UV-vis DRS of MnS/(In x Cu1- x )2S3 samples[47]. Copyright 2019, Elsevier. Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)

最近,本课题组继续以MnS/In2S3复合材料为模板金属硫化物光催化剂材料,利用MnS/In2S3异质结还原位点(MnS)上丰富的S空位,实现了对MnS/In2S3异质结还原过程的精准调控。具体地,通过空位诱导策略将具有丰富不饱和S边缘的MoS2成功地锚定到了金属硫化物的还原位点(MnS)上,形成了有效的MnS/In2S3-MoS2双界面结构[57](如图13b所示)。该复合材料展示了优异的光催化性能(49.6 mmol·g-1·h-1),相比MnS/In2S3复合物提升了4.5倍(如图13a所示);在400 nm的光照下对应的表观量子效率为72%,这是目前可见光光催化H2S分解制氢的最高效率。实验和理论计算证明优异的光催化性能归因于三方面的原因:(Ⅰ)空位诱导策略能够获得富含不饱和硫边缘的MoS2;(Ⅱ)MoS2的存在可以实现对光生电子的精准调控,增加了载流子的分离能力;(Ⅲ)形成双界面结构有效地延长了载流子的复合距离。总的来说,该研究为锚定具有丰富反应活性位点的过渡金属硫化物助催化剂去构建高效稳定的双界面结构提供了一种可供参考的策略。
图13 (a) MnS/In2S3/MoS2光催化H2S分解性能;(b) MnS/In2S3/MoS2复合物形成机制[57]

Fig.13 (a)Photocatalytic H2 production; (b) Formation mechanism of MnS/In2S3/MoS2 composites[57]. Copyright 2019, Elsevier Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)

总的来说,本课题组以MnS/In2S3为模板材料,从材料设计的角度出发提出了从“异质结”到“固溶体”再到“异质-固溶”的调控策略,此外,从反应体系调控出发使用Na2S/Na2SO3作为H2S分解的反应媒介,最终同时实现了对影响光催化性能的三大因素(太阳光响应、载流子分离、表面反应)的综合调控(图14),使得可见光下光催化H2S分解活性从0.004 mmol·g-1·h-1提升到49.6 mmol·g-1·h-1,提升了大约12 400倍(图14)。因此,材料设计-反应体系综合调控策略对于开发其他高效稳定的分解H2S制氢金属硫化物光催化剂具有重要的指导意义。
图14 金属硫化光催化H2S制氢性能对比图(插图为高效金属硫化物的构建)

Fig.14 Photocatalytic H2 production from H2S splitting over metal sulfides(insert is the corresponding construction of metal sulfides for highly efficient photocatalytic H2 production from H2S)

3 结论与展望

金属硫化物由于其合适的能带结构、优异的太阳光响应和高的抗H2S毒化能力等特点,作为光催化剂被广泛应用于光催化H2S资源化利用过程中。近年来,针对提高光催化H2S资源化利用效率和长效稳定性的问题,从材料设计和反应体系优化两方面提出了一系列可取的策略和思路,并取得了大量的前沿成果。然而,为实现H2S资源化利用的工业化应用,一些关键问题仍需被进一步解决。
光催化H2S资源化利用可从以下几方面着手:(1)光还原进程:液相H2S分解过程会伴随着其他氢源(如,水、醇胺等),导致H2的来源具有多种可能。因此研究其H2的来源对理解液相光催化H2S分解过程至关重要;(2)光氧化进程:H2S分解通常伴随着复杂的氧化进程,生成多种氧化产物,如S、 S n 2 、S2 O 3 2 、S O 4 2 等。多种氧化产物的存在使得光催化分解H2S的氧化产物很难实现回收和再利用。因此,高附加值单一氧化产物的获得一直是实现H2S完全资源化利用的关键;(3)实际工业过程:酸性气藏开采及工业生产过程中除产生H2S外,还会伴随着其他伴生气,如CO2等。因此,未来应该更多关注酸性气藏中各种气体的同时资源化(如,H2S + CO2; H2S + CH4; H2S + CO2 + CH4)转化为高附加值化学品的相关研究,这对酸性油气藏综合资源化利用具有重要的意义。
[1]
Kimura H . Mol. Neurobiol., 2002,26(1):13. doi: 10.1385/MN:26:1:013 b5cb2979-b341-4e12-9c94-fa4dd1451e96 http://www.springerlink.com/content/m7147830766q2420/

Hydrogen sulfide (H2S) is a well-known toxic gas with the smell of rotten eggs. Since the first description of the toxicity of H2S in 1713, most studies about H2S have been devoted to its toxic effects. Recently, H2S has been proposed as a physiologically active messenger. Three groups discovered that the brain contains relatively high concentrations of endogenous H2S. This discovery accelerated the identification of an H2S-producing enzyme, cystathionine β-synthase (CBS) in the brain. In addition to the well-known regulators for CBS, S-adenosyl-L-methionine (SAM) and pyridoxal-5′-phosphate, it was recently found that Ca2+/calmodulin-mediated pathways are involved in the regulation of CBS activity. H2S is produced in response to neuronal excitation, and alters hippocampal long-term potentiation (LTP), a synaptic model for memory. can also regulate the release of corticotropin-releasing hormone (CRH) from hypothalamus. Another H2S producing enzyme, cystathionine γ-lyase (CSE), has been identified in smooth muscle, and H2S relaxes smooth muscle in synergy with nitric oxide (NO). Recent progress in the study of H2S as a novel neuromodulator/transmitter in the brain is briefly reviewed.]]>

[2]
Kabil O , Banerjee R J . Biol. Chem., 2010,285(29):21903. doi: 10.1074/jbc.R110.128363 http://www.jbc.org/lookup/doi/10.1074/jbc.R110.128363
[3]
Khan A A , Schuler M M , Prio M G , Yong S , Coppock R W , Florence L Z , Lillie L E . Toxicol. Appl. Pharm., 1990,103(3):482. doi: 10.1016/0041-008X(90)90321-K https://linkinghub.elsevier.com/retrieve/pii/0041008X9090321K
[4]
Zhang X , Tang Y , Qu S , Da J , Hao Z . ACS Catal., 2015,5(2):1053. doi: 10.1021/cs501476p https://pubs.acs.org/doi/10.1021/cs501476p
[5]
魏国齐(Wei G Q), 谢增业(Xie Z Y), 宋家荣(Song J R), 杨威(Yang W), 王志宏(Wang Z H), 李剑(Li J), 王东良(Wang D L), 李志生(Li Z S), 谢武仁(Xie W R) . 石油勘探与开发 (Petrol. Explor. Dev.), 2015,42(6):2.
[6]
于燕秋(Yu Y Q), 毛红艳(Mao H Y), 裴爱霞(Pei A X) . 天然气工业 (Nat. Gas Ind.), 2011,31(3):22. doi: 10.3787/j.issn.1000-0976.2011.03.006 3d2c8fe6-cdf7-4fbe-9d71-85738af851e6 http://www.trqgy.cn/CN/abstract/abstract11928.shtml

2S、含CO2的特点。建设处理规模120×108 m3/a的天然气净化厂,面临天然气净化难度大、硫磺储运技术和安全要求高、生产工艺及安全控制复杂等诸多技术难题。目前国内尚无百亿立方米级天然气净化以及配套硫磺成型与安全储运技术。为此,在优选评价国内外先进净化工艺的基础上,确定了适合普光气田的高含硫天然气净化工艺,并首次应用了气相固定床水解COS、中间胺液冷却、MAG-液硫脱气、特大型火炬放空、液硫湿法成型等国际先进工艺和专利技术。开发了国内首例特大型散装硫磺料仓、首例5 000 m3液硫储罐、首套硫磺流水线转运以及快速定量装车系统,实现200×104 t/a硫磺储运系统的全方位实时监控和安全运行。配套开发先进、灵活、可靠的生产过程控制与安全控制系统,确保整个净化厂处于安全、有效的受控状态。高含硫天然气净化关键技术应用于普光气田后,装置运行平稳,产品质量合格,各项安全保障到位。为其他大型高酸性气田的天然气净化提供了示范和借鉴。]]>

[7]
Ma W G , Wang H , Yu W , Wang X M , Xu Z Q , Zong X , Li C . Angew. Chem. Int. Ed., 2018,57(13):3473. doi: 10.1002/anie.201713029 http://doi.wiley.com/10.1002/anie.201713029
[8]
Reverberi A P , Klemeš J J , Varbanov P S , Fabiano B . J. Clean. Prod., 2016,136:72. doi: 10.1016/j.jclepro.2016.04.139 https://linkinghub.elsevier.com/retrieve/pii/S0959652616304280
[9]
Baykara S Z , Figen E H , Kale A , Veziroglu T N . Int. J. Hydrogen Energy, 2007,32(9):1246. doi: 10.1016/j.ijhydene.2006.07.021 https://linkinghub.elsevier.com/retrieve/pii/S0360319906003673
[10]
Lagas J A , Borsboom J , Berben P H . 1988,86(41):68.
[11]
Monnery W D , Svrcek W Y , Behie L A . Can. J. Chem. Eng., 1993,71(5):711.
[12]
Zhang M , Guan J , Tu Y C , Chen S M , Wang Y , Wang S H , Yu L , Ma C , Deng D H , Bao X H . Energy Environ. Sci., 2020,doi: 10.1039/C9EE03231B. doi: 10.1039/C2EE22486K https://www.ncbi.nlm.nih.gov/pubmed/25035710

PMID: 25035710

Reaction pathways for the acid-catalyzed conversion of furfuryl alcohol (FAL) to ethyl levulinate (EL) in ethanol were investigated using liquid chromatography-mass spectrometry (LC-MS), 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and ab initio high-level quantum chemical (G4MP2) calculations. Our combined studies show that the production of EL at high yields from FAL is not accompanied by stoichiometric production of diethyl either (DEE), indicating that ethoxymethyl furan (EMF) is not an intermediate in the major reaction pathway. Several intermediates were observed using an LC-MS system, and three of these intermediates were isolated and subjected to reaction conditions. The structures of two intermediates were elucidated using 1D and 2D NMR techniques. One of these intermediates is EMF, which forms EL and DEE in a secondary reaction pathway. The second intermediate identified is 4,5,5-triethoxypentan-2-one, which is analogous to one of the intermediates observed in the conversion of FAL to LA in water (i.e. 4,5,5-trihydroxypentan-2-one). Furthermore, conversion of this intermediate to EL again involves the formation of DEE, indicating that it is also part of a secondary pathway. The primary pathway for production of EL involves solvent-assisted transfer of a water molecule from the partially detached protonated hydroxyl group of FAL to a ring carbon, followed by intra-molecular hydrogen shift, where the apparent reaction barrier for the hydrogen shift is relatively smaller in ethanol (21.1 kcal/mol) than that in water (26.6 kcal/mol).

[13]
Bhirud A P , Sathaye S D , Waichal R P , Ambekar J D , Park C J , Kale B B . Nanoscale, 2015,7(11):5023. doi: 10.1039/c4nr06435f https://www.ncbi.nlm.nih.gov/pubmed/25697910

PMID: 25697910

Highly monodispersed nitrogen doped TiO2 nanoparticles were successfully deposited on graphene (N-TiO2/Gr) by a facile in-situ wet chemical method for the first time. N-TiO2/Gr has been further used for photocatalytic hydrogen production using a naturally occurring abundant source of energy i.e. solar light. The N-TiO2/Gr nanocomposite composition was optimized by varying the concentrations of dopant nitrogen and graphene (using various concentrations of graphene) for utmost hydrogen production. The structural, optical and morphological aspects of nanocomposites were studied using XRD, UV-DRS, Raman, XPS, FESEM, and TEM. The structural study of the nanocomposite shows existence of anatase N-TiO2. Further, the details of the components present in the composition were confirmed with Raman and XPS. The morphological study shows that very tiny, 7-10 nm sized, N-TiO2 nanoparticles are deposited on the graphene sheet. The optical study reveals a drastic change in absorption edge and consequent total absorption due to nitrogen doping and presence of graphene. Considering the extended absorption edge to the visible region, these nanocomposites were further used as a photocatalyst to transform hazardous H2S waste into eco-friendly hydrogen using solar light. The N-TiO2/Gr nanocomposite with 2% graphene exhibits enhanced photocatalytic stable hydrogen production i.e. approximately 5941 mumol h(-1) under solar light irradiation using just 0.2 gm nanocomposite, which is much higher as compared to P25, undoped TiO2 and TiO2/Gr nanocomposite. The enhancement in the photocatalytic activity is attributed to 'N' doping as well as high specific surface area and charge carrier ability of graphene. The recycling of the photocatalyst shows a good stability of the nanocomposites. This work may provide new insights to design other semiconductor deposited graphene novel nanocomposites as a visible light active photocatalyst.

[14]
Subramanian E , Baeg J O , Lee S M , Moon S J , Kong K J . Int. J. Hydrogen Energy, 2008,33(22):6586. doi: 10.1016/j.ijhydene.2008.07.016 https://linkinghub.elsevier.com/retrieve/pii/S0360319908008392
[15]
Gurunathan K , Baeg J O , Lee S M , Subramanian E , Moon S J , Kong K J . Int. J. Hydrogen Energy, 2008,33(11):2646. doi: 10.1016/j.ijhydene.2008.03.018 https://linkinghub.elsevier.com/retrieve/pii/S0360319908002942
[16]
Qureshi N M , Shinde M D , Baeg J O , Kale B B . New J. Chem., 2017,41(10):4000. doi: 10.1039/C6NJ04012H http://xlink.rsc.org/?DOI=C6NJ04012H
[17]
Kale B B , Baeg J O , Apte S K , Sonawane R S , Naik S D , Patil K R . J. Mater. Chem., 2007,17(40):4297.
[18]
Patil S S , Patil D R , Apte S K , Kulkarni M V , Ambekar J D , Park C J , Gosavi S W , Kolekar S S , Kale B B . Appl. Catal. B: Environ., 2016,190:75. doi: 10.1016/j.apcatb.2016.02.068 https://linkinghub.elsevier.com/retrieve/pii/S0926337316301655
[19]
Zong X , Han J , Seger B , Chen H , Lu G , Li C , Wang L . Angew. Chem. Int. Ed., 2014: 53(17):4399. doi: 10.1002/anie.201400571 http://doi.wiley.com/10.1002/anie.201400571
[20]
Zong X , Chen H , Seger B , Pedersen T , Dargusch M S , McFarland E W , Li C , Wang L . Energy Environ. Sci., 2014,7(10):3347. doi: 10.1039/C4EE01503G http://xlink.rsc.org/?DOI=C4EE01503G
[21]
Luo T , Bai J , L Ji , Zeng Q , Ji Y, Qiao L, Li X, Zhou. B . Environ. Sci. Technol., 2017,51(21):12965. doi: 10.1021/acs.est.7b03116 https://www.ncbi.nlm.nih.gov/pubmed/28971667

PMID: 28971667

A novel, facile self-driven photoelectrocatalytic (PEC) system was established for highly selective and efficient recovery of H2S and simultaneous electricity production. The key ideas were the self-bias function between a WO3 photoanode and a Si/PVC photocathode due to their mismatched Fermi levels and the special cyclic redox reaction mechanism of I(-)/I3(-). Under solar light, the system facilitated the separation of holes in the photoanode and electrons in the photocathode, which then generated electricity. Cyclic redox reactions were produced in the photoanode region as follows: I(-) was transformed into I3(-) by photoholes or hydroxyl radicals, H2S was oxidized to S by I3(-), and I3(-) was then reduced to I(-). Meanwhile, H(+) was efficiently converted to H2 in the photocathode region. In the system, H2S was uniquely oxidized to sulfur but not to polysulfide (Sx(n-)) because of the mild oxidation capacity of I3(-). High recovery rates for S and H2 were obtained up to approximately 1.04 mg h(-1) cm(-1) and approximately 0.75 mL h(-1) cm(-1), respectively, suggesting that H2S was completely converted into H2 and S. In addition, the output power density of the system reached approximately 0.11 mW cm(-2). The proposed PEC-H2S system provides a self-sustaining, energy-saving method for simultaneous H2S treatment and energy recovery.

[22]
Qiao L , Bai J , Luo T , Li J , Zhang Y , Xia L , Zhou T , Xu Q , Zhou B . Appl. Catal. B: Environ., 2018,238:491. doi: 10.1016/j.apcatb.2018.07.051 https://linkinghub.elsevier.com/retrieve/pii/S0926337318306593
[23]
Ma W G , Han J F , Yu W , Yang D , Wang H , Zong X , Li C . ACS Catal., 2016,6(9):6198.
[24]
Low J , Yu J , Jaroniec M , Wageh S , Al-Ghamdi A A . Adv. Mater., 2017,29(20):1601694. doi: 10.1002/adma.v29.20 http://doi.wiley.com/10.1002/adma.v29.20
[25]
Li X , Yu J , Jaroniec M . Chem. Soc. Rev., 2016,45(9):2603. doi: 10.1039/c5cs00838g https://www.ncbi.nlm.nih.gov/pubmed/26963902

PMID: 26963902

As a green and sustainable technology, semiconductor-based heterogeneous photocatalysis has received much attention in the last few decades because it has potential to solve both energy and environmental problems. To achieve efficient photocatalysts, various hierarchical semiconductors have been designed and fabricated at the micro/nanometer scale in recent years. This review presents a critical appraisal of fabrication methods, growth mechanisms and applications of advanced hierarchical photocatalysts. Especially, the different synthesis strategies such as two-step templating, in situ template-sacrificial dissolution, self-templating method, in situ template-free assembly, chemically induced self-transformation and post-synthesis treatment are highlighted. Finally, some important applications including photocatalytic degradation of pollutants, photocatalytic H2 production and photocatalytic CO2 reduction are reviewed. A thorough assessment of the progress made in photocatalysis may open new opportunities in designing highly effective hierarchical photocatalysts for advanced applications ranging from thermal catalysis, separation and purification processes to solar cells.

[26]
Wan W , Zhang R , Ma M , Zhou Y . J. Mater. Chem. A, 2018,6(3):754. doi: 10.1039/C7TA09227J http://xlink.rsc.org/?DOI=C7TA09227J
[27]
Hoffmann M R , Martin S T , Choi W , Bahnemann D W . Chem. Rev., 1995,95(1):69. doi: 10.1021/cr00033a004 https://pubs.acs.org/doi/abs/10.1021/cr00033a004
[28]
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y . Science, 2001,293(5528):269. doi: 10.1126/science.1061051 https://www.ncbi.nlm.nih.gov/pubmed/11452117

PMID: 11452117

[29]
Schneider J , Matsuoka M , Takeuchi M , Zhang J , Horiuchi Y , Anpo M , Bahnemann D W . Chem. Rev., 2014,114(19):9919. doi: 10.1021/cr5001892 https://www.ncbi.nlm.nih.gov/pubmed/25234429

PMID: 25234429

[30]
Kudo A , Miseki Y . Chem. Soc. Rev., 2009,38(1):253. doi: 10.1039/b800489g https://www.ncbi.nlm.nih.gov/pubmed/19088977

PMID: 19088977

This critical review shows the basis of photocatalytic water splitting and experimental points, and surveys heterogeneous photocatalyst materials for water splitting into H2 and O2, and H2 or O2 evolution from an aqueous solution containing a sacrificial reagent. Many oxides consisting of metal cations with d0 and d10 configurations, metal (oxy)sulfide and metal (oxy)nitride photocatalysts have been reported, especially during the latest decade. The fruitful photocatalyst library gives important information on factors affecting photocatalytic performances and design of new materials. Photocatalytic water splitting and H2 evolution using abundant compounds as electron donors are expected to contribute to construction of a clean and simple system for solar hydrogen production, and a solution of global energy and environmental issues in the future (361 references).

[31]
Jang J S , Kim H G , Borse P H , Lee J S . Int. J. Hydrogen Energy, 2007,32(18):4786. doi: 10.1016/j.ijhydene.2007.06.026 https://linkinghub.elsevier.com/retrieve/pii/S0360319907003709
[32]
Dan M , Zhang Q , Yu S , Prakash A , Lin Y , Zhou Y . Appl. Catal. B: Environ., 2017,217:530. doi: 10.1016/j.apcatb.2017.06.019 https://linkinghub.elsevier.com/retrieve/pii/S0926337317305623
[33]
Bedoya-Lora F E , Hankin A , Kelsall G H . Electrochim. Acta, 2019,314:40. doi: 10.1016/j.electacta.2019.04.119 https://linkinghub.elsevier.com/retrieve/pii/S0013468619308072
[34]
Steudel R . Top Curr. Chem., 2003,231:99.
[35]
Steudel R . Top Curr. Chem., 2003,231:127.
[36]
Pandit V U , Arbuj S S , Mulik U P , Kale B B . Environ. Sci. Technol., 2014,48(7):4178. doi: 10.1021/es405150p https://www.ncbi.nlm.nih.gov/pubmed/24597841

PMID: 24597841

6,13-Pentacenequinone (PQ), an intermediate for an organic semiconductor pentacene, was synthesized by single step solvent free solid state reaction at room temperature under ambient conditions which is hitherto unattempted. The phase purity has been confirmed by XRD and NMR. Optical study showed the absorption at 390 and 412 nm attributed to the pi-pi* and n-pi* transitions, respectively. Cyclic voltammetry indicates the semiconducting nature of PQ having a band gap of 3 eV. The photoluminescence study revealed emissions at 408 and 432 nm. Considering the good thermal stability and absorption well within visible region, wisely, PQ has been used as a photocatalyst for the hydrogen production under solar light. Surprisingly we observed the utmost hydrogen evolution i.e. 4848 mumol/h/0.1 g (quantum efficiency 6.8%). The repeatability and reusability study confirmed the stability of the photocatalyst. The confirmation of the photocatalytic effect was also confirmed using methylene blue (MB) dye degradation under natural sunlight. The observed rate constant (Kapp) for photocatalytic MB degradation was 1.60 x 10(-2) min(-1). The use of an organic photocatalyst for hydrogen production has been demonstrated for the first time. This novel organic photocatalyst can also be explored for water splitting.

[37]
Chaudhari N S , Warule S S , Dhanmane S A , Kulkarni M V , Valant M , Kale B B . Nanoscale, 2013,5(19):9383. doi: 10.1039/c3nr02975a e5255d89-b329-4606-a7ab-aaf19a3fb115 http://dx.doi.org/10.1039/c3nr02975a

Nitrogen-doped TiO2 nanostructures in the form of marigold flowers have been synthesized for the first time using a facile solvothermal method. The structural analysis has shown that such an N-doped TiO2 system crystallizes in the anatase structure. The optical absorption spectra have clearly shown the shift in the absorption edge towards the visible-light range, which indicates successful nitrogen doping. The nitrogen doping has been further confirmed by photoluminescence and photoemission spectroscopy. Microscopy studies have shown the thin nanosheets (petals) of N-TiO2 with a thickness of similar to 2-3 nm, assembled in the form of the marigold flower with a high surface area (224 m(2) g(-1)). The N-TiO2 nanostructure with marigold flowers is an efficient photocatalyst for the decomposition of H2S and production of hydrogen under solar light. The maximum hydrogen evolution obtained is higher than other known N-TiO2 systems. It is noteworthy that photohydrogen production using the unique marigold flowers of N-TiO2 from abundant H2S under solar light is hitherto unattempted. The proposed synthesis method can also be utilized to design other hierarchical nanostructured N-doped metal oxides.

[38]
Kale B B , Baeg J O , Yoo J S , Lee S M , Lee C W , Moon S J , Chang H . Can. J. Chem., 2005,83(6/7):527. doi: 10.1139/v05-036 http://www.nrcresearchpress.com/doi/10.1139/v05-036
[39]
Kanade K G , Baeg J O , Kong K J , Kale B B , Lee S M , Moon S J , Lee C W , Yoon S . Int. J. Hydrogen Energy, 2008,33(23):6904. doi: 10.1016/j.ijhydene.2008.08.062 https://linkinghub.elsevier.com/retrieve/pii/S0360319908011257
[40]
Kale B B , Baeg J O , Kong K J , Moon S J , Lee S M , So W W . Int. J. Energy Res., 2010,34(5):404. doi: 10.1002/er.1645 http://doi.wiley.com/10.1002/er.1645
[41]
Naman S A , Grätzel M . J. Photochem. Photobiol. A: Chem., 1994,77(2):249. doi: 10.1016/1010-6030(94)80050-2 https://linkinghub.elsevier.com/retrieve/pii/1010603094800502
[42]
Kale B B , Baeg J O , Lee S M , Chang H , Moon S J , Lee C W . Adv. Funct. Mater., 2006,16(10):1349. doi: 10.1002/(ISSN)1616-3028 http://doi.wiley.com/10.1002/%28ISSN%291616-3028
[43]
Chaudhari N S , Bhirud A P , Sonawane R S , Nikam L K , Warule S S , Rane V H , Kale B B . Green Chem., 2011,13(9):2500. doi: 10.1039/c1gc15515f 0876b96b-c1cc-4d44-bc47-519b756f7e8b http://dx.doi.org/10.1039/c1gc15515f

It is quite well-known that refineries are producing huge amount of H2S which has been used to produce sulphur and water using the well-known Claus process. This process is not an economically viable process, due to the high-cost chemical process and creates further acute environmental problems. Therefore, we have demonstrated the conversion of poisonous H2S into H-2 using an ecofriendly phocatalysis process which is a green unconventional energy source. We have investigated ecofriendly nanostructured ZnIn2S4 photocatalyst to produce hydrogen from H2S using solar light. We also demonstrate the controlled synthesis of hierarchical nanostructured ZnIn2S4 using a facile hydrothermal method. The morphologies obtained have been greatly influenced by the presence of triethylamine (TEA) with various concentrations during the reaction. Surprisingly, a highly crystalline hexagonal layer structured ZnIn2S4 was obtained instead of cubic spinel. The hierarchical nanostructure, i.e. marigold flower-like morphology, was obtained without any surfactant. The thin and transparent petals self-assembled to form the unique nanostructured marigold flower. The highly crystalline puffy marigold flowers and nanoplates/nanostrips were obtained using TEA-assisted hydrothermal synthesis. Optical study shows the band gap in the range of 2.34-2.48 eV. Considering the band gap in the visible region, ZnIn2S4 is used as photocatalyst for hydrogen production from hydrogen sulphide under solar light which is hitherto unattempted. The constant photocatalytic activity of hydrogen evolution, i.e. 5287 mu mol h(-1), was obtained using such hierarchical nanostructured ZnIn2S4 under visible light irradiation. It is noteworthy that the H-2 evolution rate obtained is much higher compared to earlier reported photocatalysts. Considering the significance of morphologies for photocatalytic application, the formation mechanism has also been furnished. The unique hierarchical nanostructured ZnIn2S4 ternary semiconductor having hexagonal layer will have potential applications in solar cells, LEDs, charge storage, electrochemical recording, thermoelectricity and other prospective electronic and optical devices.

[44]
Bhirud A , Chaudhari N , Nikam L , Sonawane R , Patil K , Baeg J O , Kale B B . Int. J. Hydrogen Energy, 2011,36(18):11628. doi: 10.1016/j.ijhydene.2011.06.061 https://linkinghub.elsevier.com/retrieve/pii/S0360319911015333
[45]
Kale B B , Baeg J O , Kong K J , Moon S J , Nikam L K , Patil K R . J. Mater. Chem., 2011,21(8):2624.
[46]
Liu X , Liang X , Wang P , Huang B , Qin X , Zhang X , Dai Y . Appl. Catal. B: Environ., 2017,203:282. doi: 10.1016/j.apcatb.2016.10.040 https://linkinghub.elsevier.com/retrieve/pii/S0926337316308037
[47]
Dan M , Wei S , Doronkin D E , Li Y , Zhao Z , Yu S , Grunwaldt J D , Lin Y , Zhou Y . Appl. Catal. B: Environ., 2019,243:790. doi: 10.1016/j.apcatb.2018.11.016 https://linkinghub.elsevier.com/retrieve/pii/S092633731831066X
[48]
Dan M , Prakash A , Cai Q , Xiang J , Ye Y , Li Y , Yu S , Lin, Y , Zhou Y . Sol. RRL, 2019,3(1):1800237. doi: 10.1002/solr.v3.1 http://doi.wiley.com/10.1002/solr.v3.1
[49]
Borgarello E , Kalyanasundaram K , Grätzel M , Pelizzetti E . Helv. Chim. Acta, 1982,65(1):243. doi: 10.1002/hlca.19820650123 http://doi.wiley.com/10.1002/hlca.19820650123
[50]
Ma G , Yan H , Shi J , Zong X , Lei Z , Li C . J. Catal, 2008,260(1):134. doi: 10.1016/j.jcat.2008.09.017 https://linkinghub.elsevier.com/retrieve/pii/S0021951708003503
[51]
Kawade U V , Panmand R P , Sethi Y A , Kulkarni, M V , Apte S K , Naik S D , Kale B B . RSC Adv., 2014,4(90):49295. doi: 10.1039/C4RA07143C http://xlink.rsc.org/?DOI=C4RA07143C
[52]
Lashgari M , Ghanimati M . J. Hazard. Mater., 2018,345:10. doi: 10.1016/j.jhazmat.2017.10.062 https://www.ncbi.nlm.nih.gov/pubmed/29128722

PMID: 29128722

H2S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H2-source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H2S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS(-) concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint.

[53]
Lashgari M , Ghanimati M . Chem. Eng. J., 2019,358:153. doi: 10.1016/j.cej.2018.10.011 https://linkinghub.elsevier.com/retrieve/pii/S1385894718319521
[54]
淡猛(Dan M), 张骞(Zhang Q), 钟云倩(Zhong Y Q), 周莹(Zhou Y) . 无机材料学报 (J. Inorg. Mater.), 2017,32(12):1308. doi: 10.15541/jim20170104 9edf2dc2-bacf-49e9-b5b5-5768e0fb084d http://www.jim.org.cn/CN/abstract/abstract13721.shtml

2S制氢性能进行了研究。结果表明: α, γ-MnS在可见光下都具有光解H2S制氢活性, 且相比于热力学稳定相的α-MnS (4.24 μmol/(g·h)), 亚稳态的γ-MnS (23.38 μmol/(g·h))具有更好的催化性能。相对于可见光, α, γ-MnS在全光谱下的产氢速率明显提高, 其中γ-MnS在全光谱下具有最大的光解H2S制氢活性, 其产氢速率可达 2272.69 μmol/(g·h)。值得注意的是, 在6 h的光催化测试过程中, α, γ-MnS都展示较好的抗光腐蚀能力和光催化稳定性。此外, 对α, γ-MnS光催化分解H2S制氢机理进行了分析, 通过对α, γ-MnS光电化学性质的研究, 对其光催化活性存在差异的原因进行了探讨。]]>

[55]
Prakash A , Dan M , Yu S , Wei S , Li Y , Wang F , Zhou Y . Sol. Energy Mater. Sol. C., 2018,180:205. doi: 10.1016/j.solmat.2018.03.011 https://linkinghub.elsevier.com/retrieve/pii/S0927024818301144
[56]
Li Y , Yu S , Doronkin D E , Wei S , Dan M , Wu F , Ye L , Grunwaldt J D , Zhou Y . J. Catal., 2019,373:48. doi: 10.1016/j.jcat.2019.03.021 https://linkinghub.elsevier.com/retrieve/pii/S0021951719301290
[57]
Dan M , Xiang J , Wu F , Yu S , Cai Q , Ye L , Ye Y , Zhou Y . Appl. Catal. B: Environ., 2019,256:117870. doi: 10.1016/j.apcatb.2019.117870 https://linkinghub.elsevier.com/retrieve/pii/S0926337319306162
[58]
Li Z , Zhang Q , Dan M , Guo Z , Zhou Y . Mater. Lett., 2017,201:118. doi: 10.1016/j.matlet.2017.05.002 https://linkinghub.elsevier.com/retrieve/pii/S0167577X1730719X
[59]
Wang F , Wei S , Zhang Z , Patzke G R , Zhou Y . Phys. Chem. Chem. Phys., 2016,18(9):6706. doi: 10.1039/c5cp06835e https://www.ncbi.nlm.nih.gov/pubmed/26875868

PMID: 26875868

摘要

Spin-polarized DFT+U computations have been performed to investigate the role of oxygen vacancies in dissociating H2S on the rutile TiO2(110) surface. A bridged O2c atom is demonstrated to be the most energetically favorable oxygen vacancy site, which makes V(O2c) an electron donator center and induces an isolated defect level with narrowed band gaps. A H2S molecule is adsorbed dissociatively over V(O2c), but molecularly on the perfect surface. For H2S dissociation, the HS/H intermediate state reveals the best thermal stability on both defected and perfect surfaces. Moreover, potential energy surface analysis shows that V(O2c) reduces markedly the energy barriers for the paths along H2S dissociation. This indicates oxygen vacancies to be efficient trap centers for H2S dissociation, as evidenced by a significant interfacial charge transfer promoted by vacancies. This work could provide insights into the role of oxygen vacancies in facilitating the decomposition of H2S on rutile TiO2(110) surface.

[60]
Wei S , Wang F , Dan M , Zeng K , Zhou Y . Appl. Surf. Sci., 2017,422:990.
[61]
Wang F , Li P , Wei S , Guo J , Dan M , Zhou Y . Appl. Surf. Sci., 2018,445:568. doi: 10.1016/j.apsusc.2018.03.198 https://linkinghub.elsevier.com/retrieve/pii/S0169433218308857

/


AI


AI小编
你好!我是《化学进展》AI小编,有什么可以帮您的吗?