English
新闻公告
More

文章编号: 20200110  

文献标识码: A

开环易位聚合合成瓶刷聚合物

展开
  • 1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
  • 2. 南京工业大学材料科学与工程学院 南京 211800

收稿日期:2019-06-10

  要求修回日期:2019-07-12

  网络出版日期:2019-12-11

基金资助

国家自然科学基金项目(21878145)

江苏省先进生物制造创新中心项目资助(XTD1823)

江苏省先进生物制造创新中心项目资助(XTB1802)

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization

Expand
  • 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
  • 2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
** E-mail: (Xin Hu);
(Jiangkai Qiu);

Received:10 Jun. 2019

  rev-requestrev-request:12 Jul. 2019

  Online:11 Dec. 2019

Fund

National Natural Science Foundation of China(21878145)

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTD1823)

Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTB1802)

Copyright

Copyright reserved © 2020.

摘要

瓶刷聚合物是一类具有独特侧链结构的梳形聚合物。功能性瓶刷聚合物在光子晶体、表面活性剂、医药载体、防污涂层以及智能材料等领域具有良好的应用价值。通过开环易位聚合合成瓶刷聚合物的方法具有合成步骤简单、聚合物接枝密度高和侧链组成均一等优点,在控制聚合物组成、分子量和分散性等方面具有显著优势。本文基于开环易位聚合,简述了合成瓶刷均聚物以及嵌段型、混合型和核-壳型三种类型的瓶刷共聚物的方法,并介绍了合成精确结构的瓶刷聚合物的新进展。

关键词: 瓶刷聚合物 ; 开环易位聚合 ; 共聚物

中图分类号: O631;O632.1 ()  

本文引用格式

陈柯睿 , 胡欣 , 邱江凯 , 朱宁 , 郭凯 . 开环易位聚合合成瓶刷聚合物[J]. 化学进展, 2020 , 32(1) : 93 -102 . DOI: 10.7536/PC190607

Kerui Chen , Xin Hu , Jiangkai Qiu , Ning Zhu , Kai Guo . Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization[J]. Progress in Chemistry, 2020 , 32(1) : 93 -102 . DOI: 10.7536/PC190607

Abstract

Bottlebrush polymers are a class of comb polymers that have the unique side chain structures and properties. Functional bottlebrush polymers have found broad applications in photonic crystals, surfactants, pharmaceutical carriers, antifouling coatings and smart materials. The synthetic strategies to bottlebrush polymers by ring-opening metathesis polymerization (ROMP) exhibit various advantages, such as simple synthesis steps, high polymer graft density and uniform side chain composition. Well control of polymer composition, molecular weight and molecular weight dispersity could be achieved by ROMP. This review summarizes the synthesis of homo, block, Janus, core-shell bottlebrush copolymers via ROMP. Moreover, the advances in finely controlling the bottlebrush polymer architecture are discussed.

Contents

1 Introduction
2 Synthesis of homo bottlebrush polymers
3 Synthesis of block bottlebrush copolymers
4 Synthesis of Janus bottlebrush copolymers
5 Synthesis of core-shell bottlebrush copolymers
6 Novel synthetic strategies to bottlebrush polymers
7 Conclusion and outlook

1 引言

瓶刷聚合物(Bottlebrush polymers)是一种支化或接枝聚合物[1,2]。它的主链骨架上附着着高接枝密度的一种或多种聚合物侧链[3,4]。瓶刷聚合物呈现出相对扩展的蠕虫形圆柱状构象。由于其独特的结构,瓶刷聚合物成为近来研究的热门。在许多领域(例如表面活性剂、光子晶体、防污涂层和纳米医学等)都有对瓶刷聚合物的研究[5,6,7,8,9]。瓶刷聚合物可以组成结构复杂但却高度有序的物质[10,11,12,13]。通过对大分子单体的选择和瓶刷聚合物合成过程的控制,人们可以精确设计合成尺寸、形状以及组成确定的“DIY纳米材料”[14]。这种新型的纳米材料相较于塑料等传统材料功能性更强,能满足新型材料和医药等领域的要求。
开环易位聚合(Ring-opening metathesis polymerization,ROMP) 起源于20世纪中叶,是一种烯烃易位反应。与自由基、阳离子、阴离子聚合不同,开环易位聚合可以得到保留单体中双键的不饱和聚合物[15,16]。开环易位聚合具有反应条件温和、环境友好等优点,可以作为合成功能化聚烯烃的一种优良方法。开环易位聚合的单体主要为环烯烃物质,如降冰片烯、环戊烯和环丁烯等[17,18,19]。目前,开环易位聚合主要使用金属卡宾型催化剂(如钼系(Mo)催化剂[20,21]和钌系(Ru)催化剂[22,23,24,25,26]等),这类催化剂具有更好的稳定性以及更高的催化活性[27,28],被应用于各种多功能聚合物的合成[29]。开环易位聚合是将大分子单体聚合成瓶刷聚合物的主要方法,有着其他方法不可替代的优点:过程简易快速;可以合成极高侧链接枝密度的瓶刷聚合物(理论接枝密度可以达到100%)等。
合成瓶刷聚合物的方法主要有三种:从主链接枝法(“Grafting-from”法)、大单体聚合法(“Grafting-through”法)以及接枝到主链法(“Grafting-to”法)[30,31,32,33](图1)。由从主链接枝法和接枝到主链法这两种方法可以合成主链聚合度很高的瓶刷聚合物。但是这两种方法有其相应的缺点:通过从主链接枝法合成侧链时经常需要保护和去保护官能团,这会增加合成过程的复杂性[32]。而接枝到主链法由于接枝侧链间的空间位阻作用,一般只能合成接枝密度较低的瓶刷聚合物[14]。大单体聚合法合成瓶刷聚合物具有方法简单、侧链均一以及接枝密度高等优点[34]。通过开环易位聚合合成瓶刷聚合物主要使用大单体聚合法。合理地控制瓶刷聚合物合成过程可以有效提高聚合速度,改变侧链构象,从而制备出如锥形、星形等形状特别的瓶刷聚合物[35]
图1 瓶刷聚合物合成方法[5]

Fig. 1 Methods for synthesizing bottlebrush polymers[5]

2 瓶刷均聚物合成

由开环易位聚合通过大单体聚合法合成瓶刷均聚物普遍使用含有环烯烃(主要为降冰片烯)基团的大分子单体进行。合成大分子单体则可以采用多种聚合方法:原子转移自由基聚合(ATRP)、可逆加成-断裂链转移聚合(RAFT)、开环聚合(ROP)等。瓶刷均聚物的主链长度和侧链结构是决定其特性的关键因素。将开环易位聚合和其他聚合方法结合能制备具有稳定功能性侧链的瓶刷均聚物。
离子聚合是一种链式聚合反应。Oyaizu等[36]使用降冰片烯取代的二苯基己基锂通过阴离子聚合合成了降冰片烯基聚甲基丙烯酸甲酯(NB-PMMA)作为大分子单体,之后使用这种单体通过开环易位聚合成功地合成了侧链具有自由基的瓶刷聚合物(图式1)。这种自由基聚合物在有机基电池中具有良好的电化学性能,其构成的薄层电极在快速充放电时表现出定量的氧化还原能力[36]。控制合成形状结构固定的自由基瓶刷聚合物有望成为氧化还原电池中电极活性材料的新选择。
图式1 通过阴离子聚合与开环易位聚合合成瓶刷均聚物[36]

Scheme. 1 Synthesis of bottlebrush homopolymers by anionic polymerization and ring-opening metathesis polymerization[36]

活性自由基聚合也是合成功能化大分子单体的方式之一。Hong等[37]使用α-溴代异丁酰溴官能化的降冰片烯引发剂通过原子转移自由基聚合和开环易位聚合合成了侧链为聚甲基丙烯酸三氟乙酯(PTFEMA)的氟化瓶刷聚合物(图式2)。聚合物表面呈现出一定程度的纳米粗糙度。由于含氟端基和膜表面的侧链拥挤效应,这些瓶刷聚合物具有更强的疏水能力,可以应用于先进的涂层材料。Matson等[38]制备了两种降冰片烯官能化的新型二硫代氨基甲酸酯链转移剂(CTA),并通过CTA介导的可逆加成-断裂链转移聚合制备了降冰片烯基聚乙酸乙烯酯(NB-PVAc)大分子单体。使用这种大分子单体进行开环易位聚合能够合成侧链为聚乙酸乙烯酯的瓶刷均聚物。
图式2 通过原子转移自由基聚合与开环易位聚合合成瓶刷均聚物[37]

Scheme. 2 Synthesis of bottlebrush homopolymers by atom transfer radical polymerization and ring-opening metathesis polymerization[37]

功能性大分子单体也能够通过开环聚合合成。Qiao等[39]通过ε-己内酯开环聚合(ROP)合成了降冰片烯官能化的聚己内酯(PCL)大分子单体。然后进行开环易位聚合合成了侧链为聚己内酯的瓶刷均聚物。这种瓶刷均聚物可以与α-环糊精(α-CDs) 通过主-客体包合反应构建成一种新型的柱状瓶刷聚准轮烷。瓶刷聚准轮烷具有更高的热稳定性和较弱的熔融结晶性能。Matson等[40]提出了一种将开环聚合和开环易位聚合结合的“一锅”两步聚合法。在同一容器中,先通过降冰片烯甲醇引发丙交酯开环聚合合成降冰片烯基聚丙交酯大分子单体,而后进行开环易位聚合合成侧链为聚丙交酯的瓶刷均聚物(图式3)。这种“一锅”两步聚合法可以快速合成高分子量的瓶刷聚合物,具有良好的应用前景。
图式3 通过开环聚合与开环易位聚合合成瓶刷均聚物[40]

Scheme. 3 Synthesis of bottlebrush homopolymers by ring -opening polymerization and ring-opening metathesis polymerization[40]

另外,不同侧链结构的瓶刷均聚物具有广泛的用途。Storey等[41]制备了新型的聚异丁烯(PIB)官能化的降冰片烯大分子单体,通过开环易位聚合合成了侧链为聚异丁烯的瓶刷聚合物。这种大分子单体中的富电子氧原子能与钌系催化剂金属中心发生复合作用从而提高开环易位聚合的聚合速率。聚异丁烯瓶刷聚合物材料具有良好的柔韧性、阻尼性、热稳定性和抗氧化性等诸多优点。Matson等[42]将开环易位聚合和光诱导聚合结合制备了动态交联的瓶刷聚合物胶黏剂。这些瓶刷聚合物侧链末端可以释放硫醇。通过添加氧气和还原剂的方式可以控制瓶刷聚合物侧链的交联和还原,形成动态交联体系。改变瓶刷聚合物胶黏剂的主链长度可以制备性能可调的可逆热固性材料。Wong等[43]采用格氏置换聚合合成了电子给体半导体降冰片烯基聚3-己基噻吩(NB-P3HT)大分子单体。通过开环易位聚合制备了具有良好性能的半导体瓶刷聚合物(图式4)。较长的聚噻吩链能够赋予瓶刷聚合物材料更好的半导体特性,这种新型半导体瓶刷聚合物材料能提高太阳能电池器件的性能。
图式4 通过格氏置换聚合与开环易位聚合合成瓶刷均聚物[43]

Scheme. 4 Synthesis of bottlebrush homopolymers by Grignard metathesis polymerization and ring-opening metathesis polymerization[43]

3 嵌段型瓶刷共聚物合成

瓶刷共聚物具有由两种或多种单体单元组成的侧链。根据侧链结构差异,一般将瓶刷共聚物分为嵌段型瓶刷共聚物、混合型瓶刷共聚物(Janus型瓶刷共聚物)和核-壳型瓶刷共聚物三种类型[3,44](图2)。
图2 瓶刷共聚物的结构类型[3,44]

Fig. 2 Structures of bottlebrush copolymers[3,44]

嵌段型瓶刷共聚物侧链由不同的单体单元呈现出不同的“区块”。具有特殊性能侧链区块的嵌段型瓶刷共聚物是制备新型纳米材料的良好选择。Wooley等[45]使用连续增加大分子单体的合成策略,使用降冰片烯基聚乙二醇、降冰片烯基聚乳酸和功能化降冰片烯基大分子单体合成了多种具有不同疏水组成和亲水/疏水比的三嵌段瓶刷共聚物。这类三嵌段瓶刷共聚物具有亲水片段,允许自组装的疏水片段和DNA传递示踪的功能片段,它能够超分子组装为生物活性纳米材料。Ishida等[46]合成了一种侧链由聚苯乙烯和聚(二甲基氨基)甲基丙烯酸乙酯构成的新型ABA型三嵌段瓶刷共聚物(PS-PD-PS)。这种新型三嵌段瓶刷共聚物的单个分子呈哑铃状,在四氢呋喃和水的混合溶液中倾向于通过末端聚苯乙烯区块的反溶剂缔合而自组装。这种哑铃状的瓶刷共聚物具有构成大尺寸、可编程的理想纳米结构组件的潜力。Wooley等[47]通过可逆加成-断裂链转移聚合、共聚合和开环易位聚合合成了降冰片烯基聚四氟对羟基苯乙烯和聚对羟基苯乙烯-N-苯基马来酰亚胺(P(NB-g-PTFpHS)-b-P(NB-g-P(pHS-co-PhMI))二嵌段三元瓶刷共聚物(图式5)。这种共聚物具有化学构成成分通用性高、同心和纵向尺寸大等优点,能使高灵敏度的电子束光刻图案具有更小的宽度(线宽分辨率低于30 nm)。这种二嵌段三元瓶刷共聚物能够应用于高分辨率、高灵敏度的负色调光刻胶技术。
图式5 二嵌段三元瓶刷共聚物合成方式[47]

Scheme. 5 Synthesis of the diblock brush terpolymers[47]

光子晶体是近年来研究的热点。嵌段型瓶刷聚合物薄膜自组装可以形成不同区块交替组成的层状结构,可以应用于制造光子晶体材料。Grubbs等[48]在2012年研究发现将不同分子量的嵌段型瓶刷共聚物进行相对结合,可以简单地通过控制掺入量来调节聚合物自组装结构的反射光波长,从而便捷地制备出带隙可调的光子晶体材料。之后,Grubbs等[49]又合成了高分子量的聚苯乙烯和聚4-叔丁基苯乙烯双嵌段瓶刷共聚物。共聚物分子量的高低对嵌段共聚物自组装结构具有影响。这些自组装结构由双嵌段瓶刷共聚物分子量从低到高的顺序分别呈现出从蓝色到粉红色的颜色。段潜等通过开环聚合、原子转移自由基聚合和开环易位聚合分别合成了两种嵌段型瓶刷共聚物:聚苯乙烯、聚乳酸双嵌段瓶刷共聚物(P(NB-PS)-b-P(NB-PLA))和聚甲基丙烯酸甲酯、聚乳酸双嵌段瓶刷共聚物(P(NB-PMMA)-b-P(NB-PLA))。这两种嵌段型瓶刷共聚物自组装结构与一维光子晶体相似,具有良好的热稳定性,且分别在627和666 nm处具有最强反射波长,可以作为良好的光学材料[50]。任丽霞等[51]通过原子转移自由基聚合和开环易位聚合合成了一系列主链聚合度不同的具有聚苯乙烯和聚丙烯酸叔丁酯侧链的嵌段型瓶刷共聚物(P(NB-PS)-b-P(NB-PtBA))。这类共聚物可以自组装成一系列不同颜色的光子晶体薄膜。这些薄膜的反射波长随着主链聚合度增加,且最大反射波长与分子量呈线性关系。宋东坡等[52]在嵌段型瓶刷共聚物自组装成光子晶体材料方面进行了一系列研究。2016年,他们使用氧化锆(ZrO2)纳米粒子对聚丙烯酸叔丁酯和聚环氧乙烷双嵌段型瓶刷共聚物(P(NB-PtBA)-b-P(NB-PEO))自组装结构的靶区域光学常数进行调整,氧化锆纳米粒子上的配体与瓶刷共聚物的聚环氧乙烷侧链之间具有强相互作用能提高氧化锆的选择性掺入能力和负载量。加入氧化锆纳米粒子的嵌段型瓶刷共聚物自组装结构折射率显著提高[53]。而后,宋东坡等[54]又利用聚丙烯酸叔丁酯和聚环氧乙烷双嵌段型瓶刷共聚物自组装制备了热固性光子树脂,这种材料的光学现象可以通过控制自组装动力学来调节。2019年,宋东坡等[55]使用聚苯乙烯和聚二甲基硅氧烷的双嵌段瓶刷共聚物(P(NB-PS)-b-P(NB-PDMS))在乳化微滴内自组装制备分层光子颜料。这类光子颜料反射率极高,并且在不同溶剂中溶胀时,可以观察到选择性和可逆的颜色变化,具有良好的应用价值。
嵌段型瓶刷共聚物也可应用于其他领域。Hobbs等[56]将开环易位聚合与硫代溴“点击”反应相结合,制备了能作为疏水药物胶束纳米载体的具有聚乙二醇和甲苯硫酚侧链的两亲性瓶刷嵌段共聚物。这种嵌段共聚物易自组装成纳米核-壳型聚合物胶束。紫杉醇等疏水抗癌药物可以负载到其疏水核内,形成稳定的载药胶束,载药量最高可达35%(w/w)。王伟等[57]使用多面体低聚倍半硅氧烷(POSS)通过开环易位聚合合成了多聚体团簇聚合物。之后将多聚体团簇聚合物与聚环氧乙烷结合合成多种团簇数量不同的嵌段瓶刷聚合物(P(NB-mPOSS)-b-P(NB-PEO))。当侧链中的多面体低聚倍半硅氧烷数量从1增加到4时,团簇聚合物的性能逐渐改变。这种特性为制备可拉伸链的聚合物提供了一种新思路。Lee等[58]设计合成具有仲胺基官能化POSS团簇和聚甲基丙烯酸苄基酯结构的嵌段型瓶刷聚合物,这类嵌段聚合物自组装能产生有序多孔结构。仲胺基的亲水性使得POSS团簇在有机溶剂中具有吸附并包封水的能力,这种特性可应用于界面上的自组装。

4 Janus型及混合型瓶刷共聚物合成

混合型瓶刷共聚物有两个或更多单体单元不同的侧链附着在主链上,它们的侧链呈随机状或交替状。由于其随机分布的侧链序列,混合型瓶刷共聚物表现出不同于嵌段型和核-壳型共聚物的物理特性。Verduzco等[59]设计合成了具有混合侧链的聚二甲基硅氧烷(PDMS)和聚乳酸(PLA)的降冰片烯基瓶刷共聚物。这种共聚物可以作为功能性表面活性添加剂,添加剂会在薄膜表面自发积累,不发生横向相偏移,并能在薄膜铸造过程中转化。加入这种共聚物添加剂可使聚合物薄膜中呈现出新的表面性质。
两仪聚合(Janus polymerization)是凌君等于2014年首次提出的一种将阳离子聚合和配位阴离子聚合结合到同一条增长链中的全新聚合方法,可用于合成复杂拓扑结构聚合物[60,61,62,63,64]。近期他们基于两仪聚合,获得含有聚己内酯(PCL)和聚(己内酯-四氢呋喃)(P(THF-co-CL))两种侧链的降冰片烯大分子单体,随后与降冰片烯基聚肌氨酸(NB-PSar)大分子单体通过开环易位聚合实现共聚,成功制备出混合型聚合物刷(Heterograft molecular polymer brushes),三种不同的功能侧链赋予聚合物良好的生物相容性、可降解性、半结晶性以及两亲性,在药物控释等生物医学领域具有潜在应用价值[65](图式6)。
图式6 通过两仪聚合和开环易位聚合合成混合型瓶刷共聚物[65]

Scheme. 6 Synthesis of heterograft molecular polymer brushes via Janus polymerization and ROMP[65]

Janus型瓶刷聚合物是一种特殊的混合型瓶刷聚合物。Janus聚合物最初以双面罗马神Janus命名,它们具有两种或两种以上的不同化学或极性的结构特性[66](图3)。Janus聚合物主要以圆柱刷形为主,但也有星形、圆盘形等不同形状。1991年,De Gennes在诺贝尔奖的演讲中突出了“Janus grain”的概念,Janus聚合物纳米材料引起了广泛的兴趣。由于具有两个不相互包容的域,Janus聚合物纳米材料能应用在稳定界面、光学探针、分层薄膜等方面[67,68]。与聚集的非中心对称纳米材料相比,Janus单分子纳米材料具有更强的结构稳定性和适用性。使用大分子单体聚合法通过开环易位聚合合成Janus共聚物是一个热门的研究领域。
图3 多种结构的Janus粒子[69]

Fig. 3 Structures of Janus particles[69]

Cheng等[67]通过一锅法串联可逆加成-断裂链转移聚合和开环聚合合成具有聚苯乙烯和聚丙交酯的降冰片烯基双刷聚合物,并以此作为大分子单体通过开环易位聚合合成了Janus型瓶刷共聚物(图式7)。通过热退火后的透射电子显微镜(TEM)成像证明了它们的Janus型结构。这对Janus纳米材料的发展做出了关键作用。
图式7 Janus型瓶刷共聚物合成方式[67]

Scheme. 7 Synthesis of Janus bottlebrush copolymers[67]

Johnson等[70]通过原子转移自由基聚合、锡(Ⅱ)介导的开环聚合和铜催化的超临界反应合成了一种新型的带有聚苯乙烯和聚乳酸支链化的降冰片烯基Janus大分子单体。以此为单体使用“Brush-first”开环易位聚合方法合成二相和三相的刷臂星形聚合物(BASP)。这种聚合物可以随着溶剂扩散形成复杂的结构。在紫外光照射下,星形聚合物能够发生降解,实现从三相星形聚合物到分子团的转变。2018年,Johnson等[71]提出了一种三步收敛合成Janus聚合物的方法。这种方法将二价降冰片烯酰亚胺有效地与各种亲核试剂和叠氮化合物偶联产生多种功能化的支化大分子单体。Johnson等通过该方法制备了聚苯乙烯和聚乳酸双支链大分子单体并以此单体合成了Janus型瓶刷共聚物。

5 核-壳型瓶刷共聚物合成

核-壳型瓶刷共聚物侧链由含有两种或多种单体单元的线型嵌段共聚物组成。作为核壳结构材料的载体和模板,核-壳型瓶刷共聚物可以在其边缘或核心区域选择性地进行化学结合从而可控地改变自身结构。
核-壳型共聚物化学结构改变可以通过水解法控制。2006年,Wooley等[72]提出了一种核-壳型瓶刷共聚物的聚合框架:通过串联活性聚合序列将初始的核壳结构聚合物转化为高性能的超交联共聚物。通过对末端结构的改变,这些核-壳型瓶刷共聚物可以在水溶液中构造出能满足不同应用的目标产物(图4A)。之后,Wooley等[73]又通过开环易位聚合与可逆加成-断裂链转移聚合的“一锅法”合成含有聚苯乙烯和聚马来酸酐(PMAn)线型侧链的二嵌段核-壳型瓶刷共聚物(图式8)。通过内部马来酸酐区块的水解,所得的瓶刷共聚物可以容易地转化为两亲性核-壳型瓶刷共聚物。Rzayev等[74]通过开环易位聚合合成具有聚乳酸、聚甲基丙烯酸叔丁酯(PtBMA)和聚乙二醇三嵌段共聚物侧链的核-壳型瓶刷共聚物。这种三嵌段瓶刷共聚物的壳嵌段含有香豆素官能团,可以通过光进行交联。聚乳酸区块可以通过水解法除去。在水溶液中,聚丙烯酸酯(PMA)区块能发生pH响应的端基聚集并延长共聚物的柱状纳米结构。
图式8 核-壳型瓶刷共聚物合成方式[73]

Scheme. 8 Synthesis of core-shell bottlebrush copolymers[73]

图4 核心可分解的核-壳型瓶刷聚合物[72,76]

Fig. 4 Core decomposable core-shell bottlebrush polymers[72,76]

光解也是改变核-壳型瓶刷共聚物的化学结构的一种方法。2010年,Johnson等[75]将抗癌药物阿霉素(Dox)和喜树碱(Ct)通过光解键连接到降冰片烯上,合成了一种可以负载药物的聚乙二醇(PEG)官能化的大分子单体。通过开环易位聚合合成核-壳型瓶刷共聚物,在365 nm波长的光照射下,这些聚合物能释放出游离的阿霉素和喜树碱。在光引发药物释放后,携带阿霉素和喜树碱的共聚物对人体癌细胞的毒性提高了30倍。这对于实现瓶刷共聚物医药载体的功能有重要意义。两年后,Johnson等[76]使用一锅法合成核心可光解的侧链为聚乙二醇的核-壳型刷臂星形聚合物。这种水溶性聚合物通过光裂解的双降冰片烯交联剂合成。改变交联剂使用量,可以控制刷臂星形聚合物核心在紫外光照射下时被裂解的程度(图4B)。刷臂星形聚合物核心和侧链具有不同的环境特征和反应性,可以应用于具有刺激响应功能的纳米结构。
核-壳型瓶刷共聚物能呈现出与侧链组成相近的瓶刷均聚物不同的物理性质。Hadjichristidis等[77]通过阴离子聚合和同源聚合合成了聚苯乙烯和聚乙烯双嵌段大分子单体。之后通过开环易位聚合合成了核-壳型瓶刷共聚物。瓶刷聚合物侧链中聚乙烯端基的存在对聚合物热性能产生巨大的影响。与侧链仅为聚苯乙烯的瓶刷聚合物相比,聚苯乙烯和聚乙烯双嵌段核-壳型瓶刷共聚物显示出更低的熔点和更好的溶解性。

6 瓶刷聚合物合成策略新进展

接枝密度和接枝分布是影响瓶刷聚合物链长和物理性质的关键因素。为了根据实际应用领域的不同需求来合成主链序列和侧链分布等结构精确且量身定制的瓶刷聚合物,学者们在瓶刷聚合物的合成策略上进行了研究。
Matson等[78]合成了具有可直接聚合的Z-基团的新型二硫代氨基甲酸酯链转移剂(CTA 1)。利用ω链端可聚合的Z-基团,通过可逆加成-断裂链转移聚合和开环易位聚合制备了侧链为聚苯乙烯的瓶刷聚合物。该方法在反应过程中可以利用链转移剂(CTA 1)来控制侧链大分子的聚合度从而简易地制备具有固有侧链可塑性的瓶刷聚合物。在限制瓶刷聚合物侧链分子量和阻止终止反应进行的条件下,该方法的聚合过程容易受到单体选择以及初始单体与链转移剂浓度比例([M]/[CTA])的影响[79]。使用高聚合速率的单体和相对较低的初始单体与链转移剂浓度比例能够控制形成高分子量,低分子量分布的聚合物。Beers等[80]使用聚丙烯酸丁酯合成了一种降冰片烯基大分子单体和二冰片烯交联剂并且利用这些单体和交联剂构造了瓶刷聚合物网络。通过改变大分子单体和交联剂的比例可以实现对聚合物交联网络的性能控制。
锚定基团对聚合动力学和瓶刷聚合物的最终分子量有很大的影响。Matson等[34]研究了含有不同锚定基团的降冰片烯基聚苯乙烯和聚乳酸大分子单体开环易位聚合反应动力学。含有不同锚定基团的大分子单体之间的反应速率呈现4倍以上的差异。低反应速率下合成的聚合物分子量下降了一个数量级(从~106降到~105)。
通过大分子单体和小分子稀释剂结合的方法可以控制开环易位聚合过程并决定聚合物侧链的空间排列。Grubbs等[35]发现将大分子单体和小分子稀释剂以不同的速率共聚,合成的瓶刷聚合物会产生梯度序列不同的侧链构象(侧链拉伸程度、横截面半径和分子形状不同)。Grubbs等[81]研究了具有不同锚定基团的降冰片烯基小分子稀释剂的聚合反应动力学,并以此为基础使用降冰片烯官能化的聚苯乙烯(PS)、聚丙交酯(PLA)和聚二甲基硅氧烷(PDMS)大分子单体和不同聚合速率的降冰片烯基小分子稀释剂共聚合成了不同接枝密度和空间分布的瓶刷聚合物(图5)。选择合适的大分子单体和小分子稀释剂,通过主链构筑接枝结构,可以简单地定制主链序列、侧链分布以及结构确定的功能化瓶刷聚合物。这将作为一种合成可控聚合物的通用方法。
图5 加入小分子稀释剂控制瓶刷聚合物合成[35,81]

Fig. 5 Adding diluent to control synthesis of bottlebrush polymers[35,81]

不同的合成策略会影响瓶刷聚合物的结构形状。Xia等[82]分别使用直接合成法(“direct-growth”法)与先生长后偶联法(“growth-then-coupling”法)两种方法通过可控自由基聚合(CRP)合成各种降冰片烯官能化的大分子单体。使用直接合成法合成大分子单体会产生少量的二冰片烯基遥螺旋聚合物,这会影响聚合生成的瓶刷聚合物分子量分布。使用先生长后偶联法合成大分子单体不会生成二冰片烯基遥螺旋聚合物,能制备结构良好的瓶刷聚合物。Matson等[83]开发了一种连续增加大分子单体的合成策略(SAM),首次将分子量从1~10 kDa的降冰片烯基聚苯乙烯大分子单体依次通过开环易位聚合合成了锥形瓶刷聚合物(分子量大于1000 kDa)。通过连续五次添加分子量由大到小的降冰片烯基聚苯乙烯大分子单体合成了锥形瓶刷聚合物,根据体积排除色谱(SEC)得到的锥形瓶刷聚合物分子量增加过程和原子力显微镜(AFM)获得的锥形瓶刷聚合物的高度剖面图(宽端为蓝色,窄端为绿色)证明锥形瓶刷聚合物合成成功(图6)。连续增加大分子单体的合成策略在合成复杂体系结构的瓶刷聚合物时有良好的应用前景。
图6 通过SAM策略合成锥形瓶刷聚合物[83]

Fig. 6 Synthesis of tapered bottlebrush polymers by sequential addition of macromonomers[83]

7 结论与展望

聚合物的性能与应用不仅受到化学组成、分子量以及分子量分布等因素的影响,还与其拓扑结构有着重要的联系。瓶刷聚合物具有独特的拓扑结构,表现出多样的性能,应用前景广阔。开环易位聚合是合成瓶刷聚合物的重要方法,可制备出均聚型、嵌段型、Janus型、混合型、核-壳型等多种瓶刷聚合物。尽管开环易位聚合制备瓶刷聚合物取得了重要的进展,但是合成步骤较多、后处理繁琐、主链聚合度较低等问题仍然存在,亟待发展新的高效合成方法,例如大分子单体合成与开环易位聚合偶合、利用微流场反应技术强化聚合过程等,提高瓶刷聚合物制备效率,推动工业化应用。与此同时,基于新的合成方法,设计并构筑更加丰富的瓶刷聚合物,研究结构与性能之间的构效关系,特别是自组装行为,例如引导自组装形成小尺寸纳米图案、光子晶体、刺激响应材料等,拓展新的应用领域,是瓶刷聚合物研究的另一重要方向。
[1]
Sheiko S S , Sumerlin B S , Matyjaszewski K . Prog. Polym. Sci., 2008,33:759.
[2]
Hadjichristidis N , Pitsikalis M , Iatrou H , Pispas S . Macromol. Rapid Commun., 2003,24:979. http://doi.wiley.com/10.1002/%28ISSN%291521-3927

DOI: 10.1002/(ISSN)1521-3927

[3]
Verduzco R , Li X , Pesek S L , Stein G E . Chem. Soc. Rev., 2015,44:2405. https://www.ncbi.nlm.nih.gov/pubmed/25688538

DOI: 10.1039/c4cs00329b   PMID: 25688538

Bottlebrush polymers are a type of branched or graft polymer with polymeric side-chains attached to a linear backbone, and the unusual architectures of bottlebrushes provide a number of unique and potentially useful properties. These include a high entanglement molecular weight, enabling rapid self-assembly of bottlebrush block copolymers into large domain structures, the self-assembly of bottlebrush block copolymer micelles in a selective solvent even at very low dilutions, and the functionalization of bottlebrush side-chains for recognition, imaging, or drug delivery in aqueous environments. This review article focuses on recent developments in the field of bottlebrush polymers with an emphasis on applications of bottlebrush copolymers. Bottlebrush copolymers contain two (or more) different types of polymeric side-chains. Recent work has explored the diverse properties and functions of bottlebrush polymers and copolymers in solutions, films, and melts, and applications explored include photonic materials, bottlebrush films for lithographic patterning, drug delivery, and tumor detection and imaging. We provide a brief introduction to bottlebrush synthesis and physical properties and then discuss work related to: (i) bottlebrush self-assembly in melts and bulk thin films, (ii) bottlebrushes for photonics and lithography, (iii) bottlebrushes for small molecule encapsulation and delivery in solution, and (iv) bottlebrush micelles and assemblies in solution. We briefly discuss three potential areas for future research, including developing a more quantitative model of bottlebrush self-assembly in the bulk, studying the properties of bottlebrushes at interfaces, and investigating the solution assembly of bottlebrush copolymers.

[4]
Guo J , Peng L , Yuan J . Eur. Polym. J., 2015,69:449.
[5]
Müllner M . Macromol. Chem. Phys., 2016,217:2209.
[6]
Liberman-Martin A L , Chu C K , Grubbs R H . Macromol. Rapid Commun., 2017,38:1700058.
[7]
Krivorotova T , Radzevicius P , Makuska R . Eur. Polym. J., 2015,66:543.
[8]
Nese A , Sheiko S S , Matyjaszewski K . Eur. Polym. J., 2011,47:1198.
[9]
Jia J , Liu C , Wang L , Liang X , Chai X . Chem. Eng. J., 2018,347:631.
[10]
Müllner M , Müller A H E . Polymer, 2016,98:389.
[11]
Rzayev J . ACS Macro Lett., 2012,1:1146.
[12]
Zhang A , Guo Y . Chem. Eur. J., 2008,14:8939. https://www.ncbi.nlm.nih.gov/pubmed/18696526

DOI: 10.1002/chem.200801191   PMID: 18696526

Polymer bottlebrushes with monodisperse oligoproline side chains were efficiently synthesized, and the conformation of the peptide side chains in different solvents was investigated. Polymers with number-average degrees of polymerization (DPn) of 89 and 366 were obtained by polymerization of the macromonomer in iPrOH/MeCN (1:1) and hexafluoroisopropanol, respectively. Circular dichroism (CD) spectra of the bottlebrush polymers in the neutral and charged states reveal that the oligoproline side chains attain stable polyproline II (PPII) helical conformations not only in aqueous solution, but also in aliphatic alcohol solutions. Dense attachment of oligopeptides onto a linear polymer chain did not lead to an increase in helix content. The possible effects of the main-chain length on the conformational stability were examined. The switching between the polyproline I (PPI) and PPII helical conformations for the oligoproline side chains in aliphatic alcohol solutions is believed to be inhibited by the overcrowded structure in the polymer bottlebrushes.

[13]
Li W , Zhang X , Wang J , Qiao X , Liu K , Zhang A . J. Polym. Sci. Pol. Chem., 2012,50:4063.
[14]
Pelras T , Mahon C S , Mullner M . Angew. Chem. Int. Ed., 2018,57:6982. https://www.ncbi.nlm.nih.gov/pubmed/29484797

DOI: 10.1002/anie.201711878   PMID: 29484797

Polymer science is rapidly advancing towards the precise construction of synthetic macromolecules of formidable complexity. Beyond the impressive advances in control over polymer composition and uniformity enabled by the living polymerisation revolution, the introduction of compartmentalisation within polymer architectures can elevate their functionality beyond that of their constituent parts, thus offering immense potential for the production of tailor-made nanomaterials. In this Minireview, we discuss synthetic routes to complex molecular brushes with discrete chemical compartments and highlight their potential in the development of advanced materials with applications in nanofabrication, optics and functional materials.

[15]
Bielawski C W , Grubbs R H . Prog. Polym. Sci., 2007,32:1.
[16]
Leitgeb A , Wappel J , Slugovc C . Polymer, 2010,51:2927. https://linkinghub.elsevier.com/retrieve/pii/S0032386110004039

DOI: 10.1016/j.polymer.2010.05.002

[17]
Le D , Morandi G , Legoupy S , Pascual S , Montembault V , Fontaine L . Eur. Polym. J., 2013,49:972.
[18]
Zhou C , Wang Y , Zhao L , Liu Z , Cheng J . Eur. Polym. J., 2019,112:60.
[19]
赵健(Zhao J), 吕英莹(Lv Y Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2001,13:48.
[20]
Bazan G C , Khosravi E , Schrock R R , Feast W J , Gibson V C , Oregan M B , Thomas J K , Davis W M . J. Am. Chem. Soc., 1990,112:8378.
[21]
Schrock R R . Dalton Trans., 2011,40:7484. https://www.ncbi.nlm.nih.gov/pubmed/21547311

DOI: 10.1039/c1dt10215j   PMID: 21547311

Three of the four possible structures for polymers formed from an achiral monomer through a single ROMP polymerization step have been prepared for a small collection of monomers. Trans,syndiotactic structures have been prepared through chain end control, cis,isotactic polymers have been prepared through enantiomorphic site control, and cis,syndiotactic polymers have been prepared through stereogenic metal control. Stereogenic metal control at the metal center as a means of forming syndiotactic polymers is virtually unknown. Synthesis of ROMP polymers with a regular structure that contain alternating enantiomers from a racemic mixture of monomers is a natural consequence of stereogenic metal control. Ruthenium catalysts do not display ROMP specificities analogous to those described here, perhaps since alkylidene isomers have not been observed for Ru catalysts and the barrier to rotation of the carbene in a generic NHC dichloride Ru catalyst has been calculated to be relatively low.

[22]
Nguyen S T , Johnson L K , Grubbs R H , Ziller J W . J. Am. Chem. Soc., 1992,114:3974.
[23]
Scholl M , Ding S , Lee C W , Grubbs R H . Org. Lett., 1999,1:953. https://www.ncbi.nlm.nih.gov/pubmed/10823227

DOI: 10.1021/ol990909q   PMID: 10823227

[formula: see text] A new family of 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene-substituted ruthenium-based complexes 9a-c has been prepared starting from RuCl2(=CHPh)(PCy3)2 2. These air- and water-tolerant complexes were shown to exhibit an increased ring-closing metathesis activity at elevated temperature when compared to that of the parent complex 2 and the previously developed complex 3. In many instances the activity of these complexes also rivaled or exceeded that of the alkoxy-imido molybdenum complex 1. Catalyst loadings of as low as 0.05 mol% could be used.

[24]
Vougioukalakis G C , Grubbs R H . Chem. Rev., 2010,110:1746. https://www.ncbi.nlm.nih.gov/pubmed/20000700

DOI: 10.1021/cr9002424   PMID: 20000700

[25]
Bielawski C W , Grubbs R H . Angew. Chem. Int. Ed., 2000,39:2903. https://www.ncbi.nlm.nih.gov/pubmed/11028004

DOI: 10.1002/1521-3773(20000818)39:16<2903::aid-anie2903>3.0.co;2-q   PMID: 11028004

[26]
Cruz T R , Silva R A N , Machado A E H , Lima-Neto B S , Goi B E P , Carvalho V . New J. Chem., 2019,43:6220.
[27]
Grubbs R H . Angew. Chem. Int. Ed., 2006,45:3760. https://www.ncbi.nlm.nih.gov/pubmed/16724297

DOI: 10.1002/anie.200600680   PMID: 16724297

[28]
Schrock R R , Hoveyda A H . Angew. Chem. Int. Ed., 2003,42:4592. https://www.ncbi.nlm.nih.gov/pubmed/14533149

DOI: 10.1002/anie.200300576   PMID: 14533149

Catalytic olefin metathesis has quickly emerged as one of the most often-used transformations in modern chemical synthesis. One class of catalysts that has led the way to this significant development are the high-oxidation-state alkylidene complexes of molybdenum. In this review key observations that resulted in the discovery and development of molybdenum- and tungsten-based metathesis catalysts are outlined. An account of the utility of molybdenum catalysts in the synthesis of biologically significant molecules is provided as well. Another focus of the review is the use of chiral molybdenum complexes for enantioselective synthesis. These highly efficient catalysts provide unique access to materials of exceptional enantiomeric purity and often without generating solvent waste.

[29]
张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014,26:110.
[30]
张磊(Zhang L), 李文(Li W), 张阿方(Zhang A F). 化学进展(Progress in Chemistry), 2006,18:939.
[31]
Nikovia C , Theodoridis L , Alexandris S , Bilalis P , Hadjichristidis N , Floudas G , Pitsikalis M . Macromolecules, 2018,51:8940.
[32]
Wang Y , Ren R , Ling J , Sun W , Shen Z . Polymer, 2018,138:378.
[33]
Teo Y C , Xia Y . Macromolecules, 2018,52:81.
[34]
Radzinski S C , Foster J C , Chapleski R C , Troya D , Matson J B . J. Am. Chem. Soc., 2016,138:6998. https://www.ncbi.nlm.nih.gov/pubmed/27219866

DOI: 10.1021/jacs.5b13317   PMID: 27219866

Control over bottlebrush polymer synthesis by ring-opening metathesis polymerization (ROMP) of macromonomers (MMs) is highly dependent on the competition between the kinetics of the polymerization and the lifetime of the catalyst. We evaluated the effect of anchor group chemistry-the configuration of atoms linking the polymer to a polymerizable norbornene-on the kinetics of ROMP of polystyrene and poly(lactic acid) MMs initiated by (H2IMes)(pyr)2(Cl)2Ru═CHPh (Grubbs third generation catalyst). We observed a variance in the rate of propagation of >4-fold between similar MMs with different anchor groups. This phenomenon was conserved across all MMs tested, regardless of solvent, molecular weight (MW), or repeat unit identity. The observed >4-fold difference in propagation rate had a dramatic effect on the maximum obtainable backbone degree of polymerization, with slower propagating MMs reducing the maximum bottlebrush MW by an order of magnitude (from ∼10(6) to ∼10(5) Da). A chelation mechanism was initially proposed to explain the observed anchor group effect, but experimental and computational studies indicated that the rate differences likely resulted from a combination of varying steric demands and electronic structure among the different anchor groups. The addition of trifluoroacetic acid to the ROMP reaction substantially increased the propagation rate for all anchor groups tested, likely due to scavenging of the pyridine ligands. Based on these data, rational selection of the anchor group is critical to achieve high MM conversion and to prepare pure, high MW bottlebrush polymers by ROMP grafting-through.

[35]
Chang A B , Lin T P , Thompson N B , Luo S X , Liberman-Martin A L , Chen H Y , Lee B , Grubbs R H . J. Am. Chem. Soc., 2017,139:17683. https://www.ncbi.nlm.nih.gov/pubmed/29117478

DOI: 10.1021/jacs.7b10525   PMID: 29117478

-1 s-1 &lt; khomo &lt; 82 M-1 s-1). Rate trends were identified and elucidated by complementary mechanistic and density functional theory (DFT) studies. Building on this foundation, complex architectures were achieved through copolymerizations of selected diluents with a poly(d,l-lactide) (PLA), polydimethylsiloxane (PDMS), or polystyrene (PS) macromonomer. The cross-propagation rate constants were obtained by nonlinear least-squares fitting of the instantaneous comonomer concentrations according to the Mayo-Lewis terminal model. In-depth kinetic analyses indicate a wide range of accessible macromonomer/diluent reactivity ratios (0.08 &lt; r1/r2 &lt; 20), corresponding to blocky, gradient, or random backbone sequences. We further demonstrated the versatility of this copolymerization approach by synthesizing AB graft diblock polymers with tapered, uniform, and inverse-tapered molecular &quot;shapes.&quot; Small-angle X-ray scattering analysis of the self-assembled structures illustrates effects of the graft distribution on the domain spacing and backbone conformation. Collectively, the insights provided herein into the ROMP mechanism, monomer design, and homo- and copolymerization rate trends offer a general strategy for the design and synthesis of graft polymers with arbitrary architectures. Controlled copolymerization therefore expands the parameter space for molecular and materials design.]]>

[36]
Sukegawa T , Masuko I , Oyaizu K , Nishide H . Macromolecules, 2014,47:8611.
[37]
Xu Y , Wang W , Wang Y , Zhu J , Uhrig D , Lu X , Keum J K , Mays J W , Hong K . Polym. Chem., 2016,7:680.
[38]
Foster J C , Radzinski S C , Lewis S E , Slutzker M B , Matson J B . Polymer, 2015,79:205.
[39]
Fu Q , Ren J M , Qiao G G . Polym. Chem., 2012,3:343.
[40]
Radzinski S C , Foster J C , Matson J B . Macromol. Rapid Commun., 2016,37:616. https://www.ncbi.nlm.nih.gov/pubmed/26847467

DOI: 10.1002/marc.201500672   PMID: 26847467

Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide.

[41]
Yang B , Abel B A McCormick C L , Storey R F . Macromolecules, 2017,50:7458.
[42]
Arrington K J , Radzinski S C , Drummey K J , Long T E , Matson J B . ACS Appl. Mater. Interfaces, 2018,10:26662. https://www.ncbi.nlm.nih.gov/pubmed/30062885

DOI: 10.1021/acsami.8b08480   PMID: 30062885

Dynamically cross-linkable bottlebrush polymer adhesives were synthesized by the grafting-from strategy through a combination of ring-opening metathesis polymerization (ROMP) and photoiniferter polymerization. A norbornene-containing trithiocarbonate was first polymerized by ROMP to form the bottlebrush polymer backbone; this was followed by blue-light-mediated photoiniferter polymerization of butyl acrylate initiated by the poly(trithiocarbonate) to form the bottlebrush polymer. This strategy afforded well-defined bottlebrush polymers with molar masses in excess of 11 000 kg/mol. For un-cross-linked bottlebrush polymers, 180° peel tests revealed a cohesive failure mode and showed similar peel strengths (∼30 g/mm) regardless of the backbone polymer degree of polymerization (DP). The bottlebrush polymers were then treated with butylamine to remove the trithiocarbonate, liberating thiols on each side-chain terminus. In the presence of oxygen, these thiols readily cross-linked via disulfide bond formation. The cross-linked bottlebrush polymers with a backbone DP of 400 showed a greater than sixfold improvement in peel strength, whereas those with a backbone DP of 100 exhibited a twofold enhancement compared with un-cross-linked samples along with a change to adhesive failure. Triphenylphosphine readily reduced the disulfide bonds, effectively removing all cross-links in the bottlebrush network and allowing for recasting of the adhesive, which showed similar adhesive and rheological properties to the original un-cross-linked samples.

[43]
van As D , Subbiah J , Jones D J , Wong W W H . Macromol. Chem. Phys., 2016,217:403.
[44]
Lanson D , Ariura F , Schappacher M , Borsali R , Deffieux A . Macromolecules, 2009,42:3942.
[45]
Su L , Heo G S , Lin Y N , Dong M , Zhang S , Chen Y , Sun G , Wooley K L . J. Polym. Sci. Pol. Chem., 2017,55:2966.
[46]
Yamauchi Y , Yamada K , Horimoto N N , Ishida Y . Polymer, 2017,120:68.
[47]
Sun G , Cho S , Clark C , Verkhoturov S V , Eller M J , Li A , Pavia-Jimenez A , Schweikert E A , Thackeray J W , Trefonas P , Wooley K L . J. Am. Chem. Soc., 2013,135:4203. https://www.ncbi.nlm.nih.gov/pubmed/23480169

DOI: 10.1021/ja3126382   PMID: 23480169

We describe a high-resolution, high-sensitivity negative-tone photoresist technique that relies on bottom-up preassembly of differential polymer components within cylindrical polymer brush architectures that are designed to align vertically on a substrate and allow for top-down single-molecule line-width imaging. By applying cylindrical diblock brush terpolymers (DBTs) with a high degree of control over the synthetic chemistry, we achieved large areas of vertical alignment of the polymers within thin films without the need for supramolecular assembly processes, as required for linear block copolymer lithography. The specially designed chemical compositions and tuned concentric and lengthwise dimensions of the DBTs enabled high-sensitivity electron-beam lithography of patterns with widths of only a few DBTs (sub-30 nm line-width resolution). The high sensitivity of the brush polymer resists further facilitated the generation of latent images without postexposure baking, providing a practical approach for controlling acid reaction/diffusion processes in photolithography.

[48]
Miyake G M , Piunova V A , Weitekamp R A , Grubbs R H . Angew. Chem. Int. Ed., 2012,51:11246. https://www.ncbi.nlm.nih.gov/pubmed/22976479

DOI: 10.1002/anie.201205743   PMID: 22976479

Colorful: enabled by their reduced capacity for chain entanglement, high-molecular-weight brush block copolymers can rapidly self-assemble to photonic crystals. The blending of two polymers of different molecular weight can predictably modulate the sizes of the polymer domains, giving rise to a facile means of precision tuning of these photonic-band-gap materials.

[49]
Yu Y G , Chae C G , Kim M J , Seo H B , Grubbs R H , Lee J S . Macromolecules, 2018,51:447.
[50]
梁晨(Liang C) Master Dissertation of Changchun University of Science and Technology(长春理工大学硕士学位论文), 2016.
[51]
Qiao Y , Zhao Y , Yuan X , Zhao Y , Ren L . J. Mater. Sci., 2018,53:16160.
[52]
Song D P , Li C , Colella N S , Lu X , Lee J H , Watkins J J . Adv. Optical Mater., 2015,3:1169.
[53]
Song D P , Li C , Li W , Watkins J J . ACS Nano, 2016,10:1216. https://www.ncbi.nlm.nih.gov/pubmed/26713452

DOI: 10.1021/acsnano.5b06525   PMID: 26713452

Photonic crystals (PhCs) prepared using the self-assembly of block copolymers (BCPs) offer the potential for simple and rapid device fabrication but typically suffer from low refractive index contrast (Δn ≤ 0.1) between the phase-segregated domains. Here, we report the simple fabrication of BCP-based photonic nanocomposites with large differences in refractive index (Δn > 0.27). Zirconium oxide (ZrO2) nanoparticles coated with gallic acid are used to tune the optical constants of the target domains of self-assembled (polynorbornene-graft-poly(tert-butyl acrylate))-block-(polynorbornene-graft-poly(ethylene oxide)) (PtBA-b-PEO) brush block copolymers (BBCPs). Strong hydrogen-bonding interactions between the ligands on ZrO2 and PEO brushes of the BBCPs enable selective incorporation and high loading of up to 70 wt % (42 vol %) of the ZrO2 nanoparticles within the PEO domain, resulting in a significant increase of refractive index from 1.45 to up to 1.70. Consequently, greatly enhanced reflection at approximately 398 nm (increases of ∼250%) was observed for the photonic nanocomposites (domain spacing = 137 nm) relative to that of the unmodified BBCPs, which is consistent with numeric modeling results using transfer matrix methods. This work provides a simple strategy for a wide range tuning of optical constants of BCP domains, thereby enabling the design and creation of high-performance photonic coatings for various applications. The large refractive index contrast enables high reflectivity while simultaneously reducing the coating thickness necessary, compared to pure BCP systems.

[54]
Song D P , Jacucci G , Dundar F , Naik A , Fei H F , Vignolini S , Watkins J J . Macromolecules, 2018,51:2395. https://www.ncbi.nlm.nih.gov/pubmed/29681653

DOI: 10.1021/acs.macromol.7b02288   PMID: 29681653

Despite a huge variety of methodologies having been proposed to produce photonic structures by self-assembly, the lack of an effective fabrication approach has hindered their practical uses. These approaches are typically limited by the poor control in both optical and mechanical properties. Here we report photonic thermosetting polymeric resins obtained through brush block copolymer (BBCP) self-assembly. We demonstrate that the control of the interplay between order and disorder in the obtained photonic structure offers a powerful tool box for designing the optical appearance of the polymer resins in terms of reflected wavelength and scattering properties. The obtained materials exhibit excellent mechanical properties with hardness up to 172 MPa and Young's modulus over 2.9 GPa, indicating great potential for practical uses as photonic coatings on a variety of surfaces.

[55]
Song D P , Zhao T H , Guidetti G , Vignolini S , Parker R M . ACS Nano, 2019,13:1764. https://www.ncbi.nlm.nih.gov/pubmed/30620557

DOI: 10.1021/acsnano.8b07845   PMID: 30620557

Hierarchical, structurally colored materials offer a wide variety of visual effects that cannot be achieved with standard pigments or dyes. However, their fabrication requires simultaneous control over multiple length-scales. Here we introduce a robust strategy for the fabrication of hierarchical photonic pigments via the confined self-assembly of bottlebrush block copolymers within emulsified microdroplets. The bottlebrush block copolymer self-assembles into highly ordered concentric lamellae, giving rise to a near perfect photonic multilayer in the solid state, with reflectivity up to 100%. The reflected color can be readily tuned across the whole visible spectrum by either altering the molecular weight or by blending the bottlebrush block copolymers. Furthermore, the developed photonic pigments are responsive, with a selective and reversible color change observed upon swelling in different solvents. Our system is particularly suited for the scalable production of photonic pigments, arising from their rapid self-assembly mechanism and size-independent color.

[56]
Yao Q , Gutierrez D C , Hoang N H , Kim D , Wang R , Hobbs C , Zhu L . Mol. Pharmaceutics, 2017,14:2378. https://www.ncbi.nlm.nih.gov/pubmed/28605595

DOI: 10.1021/acs.molpharmaceut.7b00278   PMID: 28605595

The novel self-assembling bottlebrush polyethylene glycol-polynorbornene-thiocresol block copolymers (PEG-PNB-TC) were synthesized by the ring opening metathesis polymerization (ROMP), followed by functionalization of the polymer backbone via the thio-bromo "click" postpolymerization strategy. The PEG-PNB-TC copolymers could easily self-assemble into the nanoscale core-shell polymeric micelles. The hydrophobic anticancer drugs, such as paclitaxel (PTX), could be loaded into their hydrophobic core to form a stable drug-loaded micelle with a superior drug loading capacity of up to ∼35% (w/w). The sustained drug release behavior of the PEG-PNB-TC micelles was observed under a simulated "sink condition". Compared with commercial PTX formulation (Taxol), the PTX-loaded PEG-PNB-TC micelles showed the enhanced in vitro cellular uptake and comparable cytotoxicity in the drug-sensitive cancer cells, while the copolymers were much safer than Cremophor EL, the surfactant used in Taxol. Furthermore, curcumin (CUR), a natural chemotherapy drug sensitizer, was successfully coloaded with PTX into the PEG-PNB-TC micelles. High drug loading capacity of the PEG-PNB-TC micelles allowed for easy adjustment of drug doses and the ratio of the coloaded drugs. The combination of PTX and CUR showed synergistic anticancer effect in both the drug mixture and drug coloaded micelles at high CUR/PTX ratio, while low CRU/PTX ratio only exhibited additive effects. The combinatorial effects remarkably circumvented the PTX resistance in the multidrug resistant (MDR) cancer cells. Due to the easy polymerization and functionalization, excellent self-assembly capability, high drug loading capability, and great stability, the PEG-PNB-TC copolymers might be a promising nanomaterial for delivery of the hydrophobic anticancer drugs, especially for combination drug therapy.

[57]
Meng C S , Yan Y K , Wang W . Polym. Chem., 2017,8:6824.
[58]
Chae C G , Yu Y G , Seo H B , Kim M J , Mallela Y L N K , Lee J S . Macromolecules, 2019,52:1912.
[59]
Pesek S L , Lin Y H , Mah H Z , Kasper W , Chen B , Rohde B J , Robertson M L , Stein G E , Verduzco R . Polymer, 2016,98:495. https://linkinghub.elsevier.com/retrieve/pii/S0032386116300581

DOI: 10.1016/j.polymer.2016.01.057

[60]
You L , Ling J . Macromolecules, 2014,47:2219.
[61]
Li Y , Bai T , Li Y , Ling J . Macromol. Chem. Phys., 2017,218:1600450.
[62]
Shah M , Yang Z , Li Y , Jiang L , Ling J . Polymers, 2017,9:559.
[63]
Li Y , von der Lühe M , Schacher F H , Ling J . Macromolecules, 2018,51:4938.
[64]
Qiu H , Yang Z , Shah M I , Mao Z , Ling J . Polymer, 2017,128:71.
[65]
Li Y , Schacher F H , Ling J . Macromol. Rapid Commun., 2019,40:1800905.
[66]
Walther A , Müller A H E . Soft Matter, 2008,4:663.
[67]
Li Y , Themistou E , Zou J , Das B P , Tsianou M , Cheng C . ACS Macro Lett., 2011,1:52.
[68]
刘一寰(Liu Y H), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K). 化学进展(Progress in Chemistry), 2018,30:1133.
[69]
Ruhland T M , Groschel A H , Ballard N , Skelhon T S , Walther A , Muller A H , Bon S A . Langmuir, 2013,29:1388. https://www.ncbi.nlm.nih.gov/pubmed/23311383

DOI: 10.1021/la3048642   PMID: 23311383

We investigate the self-assembly behavior of Janus particles with different geometries at a liquid-liquid interface. The Janus particles we focus on are characterized by a phase separation along their major axis into two hemicylinders of different wettability. We present a combination of experimental and simulation data together with detailed studies elucidating the mechanisms governing the adsorption process of Janus spheres, Janus cylinders, and Janus discs. Using the pendant drop technique, we monitor the assembly kinetics following changes in the interfacial tension of nanoparticle adsorption. According to the evolution of the interfacial tension and simulation data, we will specify the characteristics of early to late stages of the Janus particle adsorption and discuss the effect of Janus particle shape and geometry. The adsorption is characterized by three adsorption stages which are based on the different assembly kinetics and different adsorption mechanisms depending on the particle shape.

[70]
Burts A O , Gao A X , Johnson J A . Macromol. Rapid Commun., 2014,35:168. https://www.ncbi.nlm.nih.gov/pubmed/24265215

DOI: 10.1002/marc.201300618   PMID: 24265215

This report describes the synthesis of miktoarm brush-arm star polymers (BASPs) from branched and linear norbornene-terminated macromonomers (MMs) via the brush-first ring-opening metathesis polymerization (ROMP) method. First, a polystyrene (PS)-branch-poly(lactic acid) (PLA) MM is synthesized via a combination of atom transfer radical polymerization (ATRP), tin(II)-mediated ring opening polymerization, and copper-catalyzed azide-alkyne cycloaddition reactions. Graft-through ROMP of this MM followed by in situ cross-linking with a photo-cleavable bis-norbornene derivative provided nanoscopic BASPs with photodegradable cores and a precise 1:1 PS:PLA arm composition. Three-miktoarm BASPs are prepared in an analogous manner via copolymerization of the same PS-branch-PLA MM with a poly(ethylene glycol) (PEG) MM prior to cross-linking. Intramolecular phase segregation of these miktoarm BASPs is characterized by transmission electron microscopy (TEM); a UV-induced structural rearrangement from three-faced Janus particles to micelles is observed.

[71]
Nguyen H V , Gallagher N M , Vohidov F , Jiang Y , Kawamoto K , Zhang H , Park J V , Huang Z , Ottaviani M F , Rajca A , Johnson J A . ACS Macro Lett., 2018,7:472. https://www.ncbi.nlm.nih.gov/pubmed/30271675

DOI: 10.1021/acsmacrolett.8b00201   PMID: 30271675

exo-norbornene imide capable of efficient coupling with various nucleophiles and azides to produce diversely functionalized branched macromonomers optimized for ring-opening metathesis polymerization (ROMP). In addition, we describe an efficient iterative procedure for the synthesis of tri-and tetra-valent branched macromonomers. We demonstrate the use of these branched macromonomers for the synthesis of Janus bottlebrush block copolymers as well as for the generation of bottlebrush polymers with up to three conjugated small molecules per repeat unit. This work significantly expands the scalability and diversity of nanostructured macromolecules accessible via ROMP.]]>

[72]
Cheng C , Qi K , Khoshdel E , Wooley K L . J. Am. Chem. Soc., 2006,128:6808. https://www.ncbi.nlm.nih.gov/pubmed/16719459

DOI: 10.1021/ja061892r   PMID: 16719459

Core-shell brush copolymers were prepared on the basis of a tandem synthetic strategy and used as single molecular templates for the preparation of polymeric nanomaterials. An alkoxyamine-functionalized norbornene monomer was prepared and then polymerized by ring-opening metathesis polymerization. The well-defined polymer (Mn = 122 kDa, Mw/Mn = 1.13) contained one alkoxyamine functionality per repeat unit and was then used as a polyfunctional macroinitiator for sequential nitroxide-mediated radical polymerizations of isoprene and tert-butyl acrylate. The resulting well-defined brush copolymer (Mn = 1410 kDa, Mw/Mn = 1.23) was transformed to an amphiphilic core-shell brush copolymer comprising poly(isoprene)-b-poly(acrylic acid) grafts by hydrolysis. Subsequent cross-linking of the poly(acrylic acid) block segments afforded peripherally cross-linked brush copolymer nanostructures, which served, finally, as templates for hollowed nanoscale frameworks by ozonolysis of the poly(isoprene)-based cores. Each transformation led to dramatic changes in the nanoscale composition and structure which were detected by combinations of spectroscopic measurements, atomic force microscopy imaging in the solid state, and/or dynamic light-scattering characterization in aqueous solution.

[73]
Cheng C , Khoshdel E , Wooley K L . Macromolecules, 2007,40:2289.
[74]
Onbulak S , Rzayev J . J. Polym. Sci. Pol. Chem., 2017,55:3868.
[75]
Johnson J A , Lu Y Y , Burts A O , Xia Y , Durrell A C , Tirrell D A , Grubbs R H . Macromolecules, 2010,43:10326. https://www.ncbi.nlm.nih.gov/pubmed/21532937

DOI: 10.1021/ma1021506   PMID: 21532937

Graft-through ring-opening metathesis polymerization (ROMP) using ruthenium N-heterocyclic carbene catalysts has enabled the synthesis of bottle-brush polymers with unprecedented ease and control. Here we report the first bivalent-brush polymers; these materials were prepared by graft-through ROMP of drug-loaded polyethylene-glycol (PEG) based macromonomers (MMs). Anticancer drugs doxorubicin (DOX) and camptothecin (CT) were attached to a norbornene-alkyne-PEG MM via a photocleavable linker. ROMP of either or both drug-loaded MMs generated brush homo- and co-polymers with low polydispersities and defined molecular weights. Release of free DOX and CT from these materials was initiated by exposure to 365 nm light. All of the CT and DOX polymers were at least 10-fold more toxic to human cancer cells after photoinitiated drug release while a copolymer carrying both CT and DOX displayed 30-fold increased toxicity upon irradiation. Graft-through ROMP of drug-loaded macromonomers provides a general method for the systematic study of structure-function relationships for stimuli-responsive polymers in biological systems.

[76]
Liu J , Burts A O , Li Y , Zhukhovitskiy A V , Ottaviani M F , Turro N J , Johnson J A . J. Am. Chem. Soc., 2012,134:16337.
[77]
Zhang H , Hadjichristidis N . Macromolecules, 2016,49:1590.
[78]
Radzinski S C , Foster J C , Matson J B . Polym. Chem., 2015,6:5643.
[79]
Radzinski S C , Foster J C , Lewis S E , French E V , Matson J B . Polym. Chem., 2017,8:1636.
[80]
Sarapas J M , Chan E P , Rettner E M , Beers K L . Macromolecules, 2018,51:2359.
[81]
Lin T P , Chang A B , Chen H Y , Liberman-Martin A L , Bates C M , Voegtle M J , Bauer C A , Grubbs R H . J. Am. Chem. Soc., 2017,139:3896. https://www.ncbi.nlm.nih.gov/pubmed/28221030

DOI: 10.1021/jacs.7b00791   PMID: 28221030

x-ran-DME1-x)n bearing variable grafting densities (x = 1.0, 0.75, 0.5, 0.25) and total backbone degrees of polymerization (n = 167, 133, 100, 67, 33) were synthesized. The approach disclosed in this work therefore constitutes a powerful strategy for the synthesis of polymers spanning the linear-to-bottlebrush regimes with controlled grafting density and side chain distribution, molecular attributes that dictate micro- and macroscopic properties.]]>

[82]
Teo Y C , Xia Y . Macromolecules, 2015,48:5656.
[83]
Radzinski S C , Foster J C , Scannelli S J , Weaver J R , Arrington K J , Matson J B . ACS Macro Lett., 2017,6:1175.

/


AI


AI小编
你好!我是《化学进展》AI小编,有什么可以帮您的吗?