English
新闻公告
More

文章编号: 2020020316  

文献标识码: A

基于PHPMA的生物医用功能高分子

展开
  • 1. 北京化工大学 有机无机复合材料国家重点实验室 北京 100029
  • 2. 北京化工大学 北京新型高分子材料制备与加工重点实验室 北京 100029
  • 3. 北京化工大学 材料科学与工程学院 北京 100029

收稿日期:2019-03-26

  要求修回日期:2020-01-14

  网络出版日期:2019-10-15

版权

版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Biomedical Functional Polymer Based on PHPMA

Expand
  • 1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijng 100029, China
  • 2. Beijing Key Laboratory of preparation and processing of new polymer materials, Beijing University of Chemical Technology, Beijing 100029, China
  • 3. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received:26 Mar. 2019

  rev-requestrev-request:14 Jan. 2020

  Online:15 Oct. 2019

Copyright

Copyright reserved © 2020.

摘要

聚(N-(2-羟丙基)甲基丙烯酰胺) (PHPMA)作为一种应用较广的水溶性聚合物,具有结构稳定性、非免疫原性以及良好的亲水性,可在人体中代谢,因此这种药物载体在过去几十年中被广泛运用于抗癌药物载药体系的研究。将PHPMA作为药物载体,连接不同功能基团,可使药物准确地在特定区域表达或释放,由此完成对疾病的检测或治疗。科学家进一步改进了载体的可降解性,降低了系统的细胞毒性,使这一体系获得更广阔的应用前景。目前为止只有少数的综述论文对这一领域进行了总结,几乎全部是从材料的生物功能方面进行阐述,而忽视了对材料制备方法的关注。为了弥补这一空白,本文从聚合物键合药物方式的独特分类视角,分别从共价键键合以及非共价键合的角度进行归纳整理,同时对于外界刺激可断裂型的材料进行了详细的论述,以期为科研工作者提供更多的启示。

关键词: 聚(N-(2-羟丙基)甲基丙烯酰胺) ; 水溶性聚合物 ; 药物载体

中图分类号: O633;TQ463 ()  

本文引用格式

张芬铭 , 田语舒 , 郑绩 , 陈堃 , 冯岸超 , 张立群 . 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020 , 32(2/3) : 331 -343 . DOI: 10.7536/PC190332

Fenming Zhang , Yushu Tian , Ji Zheng , Kun Chen , Anchao Feng , Liqun Zhang . Biomedical Functional Polymer Based on PHPMA[J]. Progress in Chemistry, 2020 , 32(2/3) : 331 -343 . DOI: 10.7536/PC190332

Abstract

Poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), a water soluble polymer bearing a stable structure, can be metabolized in the human body. Because of that, PHPMA is widely used in anticancer drug’s delivery systems. The drug delivery systems based on the PHPMA have been extensively studied over the past few decades. Scientists use different kinds of functional groups to modify the polymer, which can deliver drugs to targeted tissue or detect pathogenic tissue. In recent studies, scientists enhance the degradability of the polymer and decrease the cytotoxicity, which makes the delivery system based on PHPMA more suitable to be utlized in human body. In this paper, we summarize the recent works about PHPMA and studies of different methods to modify the polymer with drugs or functional groups.

Contents

1 Introduction
2 Modification of polymers with drugs using covalent bond
2.1 Undegradable covalent bond
2.2 Degradable covalent bond
3 Modification of polymers with drugs using non-covalent bond
3.1 Encapsulation of the drugs using polymers
3.2 Modification of polymers with drugs using supramolecular linkers.
4 Conclusion

1 引言

随着新药物输送体系的快速发展,生物活性天然高分子与人工合成高分子在药物输送方面的研究得到了广泛的重视。其中水溶性聚合物被广泛运用于蛋白质改性、脂质体改性和生物材料的表面改性,除此以外还可用作药物、基因和寡肽苷酸的载体。水溶性聚合物在临床医学中发挥的作用越来越重要[1]
将水溶性聚合物作为药物载体的研究始于上世纪。1906年,Elrlich创造了“魔术子弹”,并认识到生物识别对于药物输送的成功起到了关键作用[2]。而将人工合成高分子或天然高分子与药物缀合在一起的研究始于60年前。1955年,Jatzkewitz用一段二肽链将药物酶斯卡灵(Mescaline)与聚乙烯吡咯烷酮(PVP)相连,合成了聚合物-药物缀合物[3]。Ushakov等也致力于此研究,合成了多种水溶性聚合物-药物缀合物[4,5,6]。1958年,Mathe等将药物与免疫球蛋白缀合,由此开创了靶向药物传输体系[7]。1975年,Ringsdorf通过研究总结,探讨了高效的药物传输体系的组成要求:(1)亲水性水溶性聚合物作药物载体以此提升疏水药物的稳定性;(2)药物与聚合物通过可生物降解的链段相连;(3)拥有可定向传输的靶向部分[8]
Kopeček等致力于研究可用作生物材料以及药物载体的亲水性聚合物,因为α-碳取代和N-取代的酰胺结构能够有效提高聚合物链段的水稳定性,所以他们以N-取代的甲基丙烯酰胺类单体作为研究对象做了大量的合成及聚合动力学的研究。最终,他们通过简单的提纯合成了N-2-羟丙基-甲基丙烯酰胺(HPMA)这种新的单体[9]
用HPMA共聚物作为药物载体的研究始于20世纪70年代初。其中大多数的PHPMA-抗体缀合物通过对聚合物末端官能氨基进行氨解将抗体修饰在聚合物链末端,或将HPMA共聚物与含有抗体的单体进行聚合而制备得到聚合物抗体缀合物。在这些系统中,PHPMA主链被可生物降解的寡肽侧链修饰,这些侧链末端修饰了靶向抗体和药物,并沿主链随机分布。这种缀合物能够被设计为蛋白质传输系统或是更容易定点给药的药物传输系统。基于HPMA的水溶性共聚物合成的聚合物-药物缀合物作为一类受到广泛研究的药物传递系统,经常被运用于肿瘤或肿瘤细胞的治疗,并进入临床试验阶段。在理想情况下,这种缀合物在血液中的输送过程中并不活跃,但能在肿瘤组织内或肿瘤细胞内释放药物。聚N-2-羟丙基-甲基丙烯酰胺(PHPMA)药物缀合物相比于游离药物具有多种优点,例如在体内拥有更长的保留时间、全身用药更加安全、治疗效果更好和可代谢分解等。在过去20年中,基于HPMA共聚物的大分子治疗试剂快速发展,许多共聚物已经在过去十年内进入临床治疗试验,其中包括PHPMA-阿霉素缀合物、PHPMA-阿霉素-半乳糖胺缀合物、PHPMA-喜树碱缀合物、PHPMA-紫杉醇缀合物等,并且这些缀合物测试结果良好,有望成为经FDA批准的第一批大分子治疗剂。
PHPMA-药物缀合物也可用于治疗非癌症疾病。比如将PHPMA共聚物与人工合成骨代谢剂缀合,合成PHPMA基骨靶向药物,可用于治疗骨质疏松症和其他肌肉骨骼疾病。该缀合物拥有在全身给药后特异性地向骨组织传递,并促进合成骨代谢物的能力。这种骨靶向药物一旦与骨组织结合,将促进组织蛋白酶产生骨代谢物,随后缀合物上特异性肽链段发生水解并将缀合物代谢。当在合适的代谢剂量内给药时,释放的合成骨代谢物将激活骨细胞表面上相应的受体以实现骨的形成。同时,PHPMA-药物缀合物也已经成功治疗类风湿关节炎等疾病。总而言之,PHPMA-药物缀合物在非癌症疾病方面的治疗表现也很优秀。
目前为止只有少数的综述论文对这一领域进行了阐述,且几乎全部都是从材料的生物功能方面进行阐述,而鲜少有人对这类材料的制备方法总结。为了弥补这一空白,本文总结了近十年间基于聚合物PHPMA的生物医用功能高分子的前沿进展,按照药物分子与聚合物骨架的连接方式进行分类整理,按照从共价键连接到非共价键连接的顺序分别进行了详细阐述,希望能为生物医用高分子领域的研究者提供更多启示。

2 药物通过共价键与聚合物连接

2.1 不可断裂共价键

经放射性元素标记的聚合物能够通过核磁共振等方法对聚合物在体内的分布情况进行监测分析,在医学诊断过程中发挥了重大作用,因此放射性标记聚合物的设计研究也得到了广泛的关注。2010年,Herth等利用三价砷对HPMA基所构建的聚合物进行标记[10]。他们以二硫代苯甲酸酯作为链转移剂,通过可逆加成断裂链转移聚合方法(RAFT)得到带有二硫代苯甲酸酯端基的聚合物链段,然后加入三(2-羟乙基)膦(TCEP),将聚合物末端基还原成硫醇基团(图式1)。三价砷与游离的硫醇官能团可以更高效地反应,有效提高了下一步放射性标记的收益率,得到更多的被三价砷标记的HPMA基聚合物。而这种方法制得的放射性标记聚合物具有良好的盐稳定性,所以放射性元素在体内的停留时间更长,不需要再附加电子或其他体积庞大的官能团来提升它在体内的停留时间,既降低了药物的毒性,也节约了成本。
图式1 含硫醇末端基团的HPMA基聚合物的合成[10]

Scheme 1 Scheme 1 Synthesis of HPMA based polymers bearing thiol end groups for radioactive labeling with 72/74As [10]

2010年,Barz等[11]发表了一种通过简单的置换反应合成多功能化生物材料的方法。他们在丙交酯开环聚合后,将聚合物与RAFT试剂酯化得到大分子RAFT试剂,再用于下一步的甲基丙烯酸五氟苯基酯(pentafluorophenyl methacrylate,PFMA)的RAFT聚合。然后再将侧链上的五氟苯基进行简单的替换,就能得到生物相容的P(HPMA)-b-P(LLA)共聚物及其功能化材料,比如带有荧光基团的P(HPMA)-b-P(LLA)共聚物。
在治疗中枢神经系统相关疾病时,血脑屏障效应极大地限制了治疗效果。为了解决这一问题, 2012年, Zentel等[12]设计了基于PHPMA和PLMA(poly(laurylmethacrylate))的聚合物。与前者相同,他们用PFMA与LMA共聚,再将得到的共聚体分别与一氨基二丙醇和罗丹明药物反应,前者将PFMA转化为生物相容性材料PHPMA,后者将罗丹明药物成功修饰在共聚物侧链上。之后他们用人类大脑微血管内皮细胞构建了血脑屏障,并对不同聚合物-药物体系在血脑屏障模型中的渗透率进行测试。研究发现,含有10%LMA的PHPMA-PLMA无规共聚物渗透率最高,有效减弱了血脑屏障效应对于罗丹明等药物的阻隔,对于中枢神经系统疾病治疗提供了一种新思路。
2013年,Kunjachan和Gremse[13]以纳米药物为研究对象,将其用于改善静脉注射治疗药物的生物分布。他们通过甲基丙烯酰氯与双甘氨肽在碱性介质中的酰化作用制备N-甲基丙烯酰基双甘氨肽(MA-GG-OH)。在二环己基碳二亚胺(DCC)存在的情况下,由MA-GG-OH和4,5-二氢噻唑-2-巯基在N,N-二甲基甲酰胺(DMF)中反应制备3-(N-甲基丙烯酰基-双甘胺肽)噻唑烷-2硫酮 (MA-GG-TT)。再用HPMA和Ma-GG-TT溶解在DMSO中使用自由基聚合方法合成共聚物P(HPMA-co-MA-GG-TT)。最后将荧光染料Dy750与共聚物侧链上的TT(噻唑烷-2硫酮)官能团反应制备荧光功能化的PHPMA-Dy750缀合物。对带有肿瘤细胞的小鼠给药后,创意性地结合三维荧光分子断层成像(3D-FMT)和微机扫描断层成像(CT),对纳米药物在体内的分布进行了分析及定位。该研究提供了一种研究纳米药物生物分布的无创性的评估方法。
2012年,Šubr和Ulbrich等[14]提出可溶性高分子药物载体的分子量和分子结构对其在体内的生物分布和抗肿瘤活性有显著影响。他们合成了线形和星形结构的HPMA共聚物,并对其生物分布进行了测定和比较。此外,肿瘤小鼠的存活情况与药物高分子载体的分子量和缀合体系结构有密切关系。用低分子量的药物对小鼠进行治疗,12%的动物可长期存活,而相应的星形聚合物结合治疗可使动物存活率达到75%。
2013年,Ghandehari等[15]研究证明了金纳米棒介导的等离子光热疗法(PPTT)可有效提高HPMA共聚物在肿瘤细胞内的累积量。将金属纳米棒包埋在癌变部位,通过激光照射时癌变部位升温,使HPMA共聚物更有效地在癌变部位堆积。为了验证这一结论,他们通过RAFT聚合方法,使用十二烷基三硫代碳酸酯(2-cyano-2-propyl dodecyl trithiocarbonate)作为链转移剂,将VA-044作为引发剂进行制备了放射标记的HPMA共聚物并进行小鼠实验。在用PPTT治疗肿瘤前后,对患有前列腺肿瘤的小鼠进行磁共振成像(MRI)分析,结果表明PPTT能够提高HPMA共聚物的肿瘤质量穿透率。荧光标记共聚物的共聚焦显微镜也证实了这一观点,PPTT能够将HPMA共聚物更多更高效地传递到肿瘤的中心和边缘,说明PPTT是一种用来提高聚合物药物缀合物在肿瘤组织中传递效率的有效手段,对治疗肿瘤有着很好的促进作用。前体共聚物含有活性羧基(噻唑烷-2-硫酮)侧链,可以与靶向肽结合。这些共聚物可被水解以获得分散独立的偶联化合物。单靠激光治疗并不会改善药物的运输情况,但用离子光热疗法(PPTT)治疗动物体内的肿瘤有助于显著提高HPMA共聚物的在肿瘤内的蓄积及分布。
2013年,Stayton等[16]通过硫醇-烯反应,成功将一种具有生物活性的硫醇化α(1,2)-三甘露糖与poly(AMA-co-HPMA)共聚物缀合。他们通过RAFT聚合方法,制备了甲基丙烯酸烯丙酯(AMA)与N-2-羟丙基-甲基丙烯酰胺(HPMA)的共聚物,然后通过光介导的硫醇-烯反应,将硫醇化的三聚糖与共聚物侧链上的烯烃官能团反应,将三聚糖修饰在亲水链端上。经核磁检测发现,经过硫醇-烯反应2 h后,有约87%的烯烃官能团消失,证明了该过程有效地将三聚糖接枝在亲水链段上。他们还通过UV-Vis光谱和表面等离子体共振成像(SPRi)的方法,研究了修饰在聚合物上的低聚糖与甘露糖特异性蛋白的结合活性。研究发现,通过将聚糖修饰在共聚物上的方法,使耦合物拥有与糖受体结合的能力,为之后多功能药物的研究提供了一种新的思路(图式2)。
图式1 用RAFT合成方法制备带有硫醇末端官能团的HPMA与AMA共聚物[16]

Scheme 2 Scheme 2 Synthesis of copolymer of HPMA and allyl methacrylate (AMA) via RAFT and subsequent conjugation with thiolated α(1,2)-trimannoside using thiol-ene chemistry [16]

2.2 可断裂共价键

2.2.1 pH响应断裂
虽然PHPMA基药物载体拥有优异的生物可相容性等优点,但是单纯的将药物通过简单的共价键键合在聚合物药物基体上并不能完全发挥药物的疗效。比如在癌症的临床治疗中发现,这种单纯的药物-聚合物缀合物在治疗过程中,能够将缀合物通过实体瘤的高通透性和滞留效应(EPR效应)富集于肿瘤细胞中,但因为药物一直负载在聚合物载体上并不能有效地在肿瘤细胞中发挥治疗效果。因此如何将药物-聚合物缀合物有效富集于肿瘤细胞后,再将药物有效释放成为了肿瘤治疗的关键。
科学家发现肿瘤细胞内的细胞环境偏酸性,可将HPMA共聚物的pH响应行为用于抗癌药物研究领域,这一发现引起了各国科学家的广泛研究,也取得了不少的研究成果。2008年,Liu等[17]设计并合成了一种含地塞米松(dexamethasone,DEX)对pH敏感的单体。他们使用RAFT聚合方法,以甲醇作为反应溶剂,将DEX单体与HPMA直接共聚就能得到多分散性的高分子药物。在pH=5.0的实验环境中,检测得到药物Dex释放效率为每天1%。2012年,Hruby等[18]将吖啶(acridine)派生物通过具有pH响应性的腙键连接在PHPMA主链上,制备了可生物降解的苯胺基吖啶的聚合物缀合物。这类缀合物在pH=7.4的环境中(模拟人体血液环境)可以稳定存在不分解。但在pH=5.0的环境中(模拟核内体环境)将分解并释放出药物。2013年,Chytil等[19]通过自由基共聚法在甲醇中制备了HPMA与长链甲基丙烯酰胺酯类单体的无规共聚物,再分别将胆固醇派生物与阿霉素(doxorubicin, DOX)通过腙键连接在聚合物主链上。因为胆固醇派生物的疏水性极强,使缀合物可以在水溶液中组成组装体,胆固醇派生物形成疏水内核,DOX与亲水链段组成亲水外壳。这种自组装的胶束可以通过EPR效应聚集于肿瘤组织,进入癌细胞核内体的酸性环境(pH=5.0)后,腙键断裂释放药物和胆固醇派生物,完成超分子结构的解组装,在释放药物的同时有效地清除聚合物。
在临床治疗过程中,科学家们设想能否将多种药物修饰于聚合物载体上,通过联合治疗的方法提升药物的疗效。2012年,Jäger等[20]制备了带有多烯紫杉醇(docetaxel,DTX)和DOX两种药物的缀合物。他们使DOX与PHPMA共聚物上的酰肼基团反应,制备了DOX-PHPMA缀合物,之后通过自组装的方法形成壳核结构组装体。DTX在组装过程中包埋在可降解的组装体内核里,而DOX缀合物组成组装体的亲水外壳。研究发现两种药物在不同pH环境(5.0~7.1)中释放效果不同。DTX的释放效率随着酸性的增强而稍许减弱,但DOX在pH=7.1的环境中稳定存在,在pH=5.0的环境中快速释放。这是因为疏水内核的降解作用并没有pH响应,而DOX与聚合物通过pH响应的酰肼键相连,导致了他们药物释放效果的不同。这种缀合物提供了两种药物协同治疗实体肿瘤的方法,可同时实现两种化疗手段,而且两种药物可以快速和互相独立地释放,有利于肿瘤细胞的联合治疗(图1)。
图1 PBS/PRDL共聚物(左)、PHPMA-chol(中)和PHPMA-chol-DOX(右)的分子结构。纳米颗粒的结构示意图(PBS/PBDL-黑色,PHPMA-蓝色,胆固醇-黄色,DTXL-绿色,DOX-红色)[20]

Fig.1 Molecular structure of the PBS/PBDL copolyester-left, PHPMA-chol-middle and PHPMA-chol-DOX-right (top) and schematic representation of the prepared NPs (bottom) (PBS/PBDL-black, PHPMA-blue, cholesterol anchor-yellow, DTXL-green, and DOX-red) [20]

2013年,Maeda等[21]合成了HPMA共聚物-吡喃阿霉素缀合物(PHPMA-THP),THP相比于DOX更容易被细胞快速吸收,在低pH值情况下毒性更低且保留效果更好,具有较强的抗肿瘤作用。2014年,Huang等[22]通过具有pH响应性的腙键将药物DOX与甲基丙烯酰胺单体(MA)相连制成可聚合单体MA-GG-NHN=DOX,再将其与疏水单体天然植物甾醇(β-SITO)一起和亲水HPMA组装成胶束。然后再用腙键对胶束的亲水链进行交联,使药物在血浆中更加稳定且不易分解。腙键在碱性环境下能够稳定存在,但在酸性环境下能够迅速水解,因此这种方法制备的胶束,能够在碱性环境的血液中或正常细胞内稳定存在,但在肿瘤细胞内的酸性环境中迅速水解,可达到特异性释放药物的目的(图2)。
图2 细胞内聚合物主链的降解,将DOX从含有β-SITO的HPMA交联胶束中释放[22]

Fig.2 Illustration of acid-specific intracellular backbone degradation and release of doxorubicin (DOX) from cross-linked micelles of HPMA copolymers containing β-sitosterol (β-SITO) [22]

2011年,Liu等[23]制备了多功能pH响应纳米粒子。粒子以环糊精基星形共聚物为基体,通过共价键将DOX、叶酸(folic acid, FA)、造影剂DOTA-Gd等多功能基团修饰在星形聚合物的HPMA臂上。其中叶酸的加入使共聚物可与细胞表面的叶酸受体结合,达到靶向传输的目的。造影剂DOTA-Gd的加入赋予共聚物核磁共振成像的功能。DOX通过酸不稳定的氨基甲酸酯链段修饰在HPMA臂上,由于肿瘤细胞内pH低于正常细胞环境,使得DOX可以在肿瘤细胞内释放,达到治疗效果。由此制备了可用于核磁共振成像等领域的靶向抗癌多功能药物(图3)。2013年,Pun等[24]通过RAFT聚合方法将HPMA与多肽合成共聚物,最终合成PHPMA-寡聚赖氨酸-寡聚组氨酸三嵌段共聚物,这类共聚物有希望被广泛用作DNA载体。组氨酸的加入提高了聚合物的内缓冲能力(即提高溶酶体内pH的能力),当溶酶体内pH升高,溶酶体能够大量捕获质子,并引起水分子的内流导致溶酶体渗透性肿胀并破裂(质子海绵效应),使得内吞在其中的DNA-聚合物缀合物释放到细胞质,从而提高了基因的传递效率。
图3 多功能胶束纳米颗粒的制备[23]

Fig.3 Schematic illustration for the fabrication of multifunctional micellar nanoparticles [23]

目前,抗肿瘤药物的临床试验结果并不理想,特别是疏水性药物很难在人体内发挥治疗效果。为了开发新一代的保留时间更长的生物可降解聚合物药物载体, 2013年,Kopeček等[25]利用RAFT聚合方法制备HPMA共聚物-紫杉醇(paclitaxel,PTX)缀合物。他们合成了MA-GFLF-PTX单体用于共聚,其中GFLG连接片段具有pH响应性。如图式3,他们分别制备了低分子量(48 kDa)的缀合物(P-PTX)和高分子量(335 kDa)的多嵌段缀合物(mP-PTX)。通过比较发现mP-PTX、P-PTX与PTX具有相似的细胞毒性,但是mP-PTX具有更高的分子量因此具有更长的保留时间,从而表现出更好的抗癌作用(图4)。
图式3 HPMA共聚物- PTX缀合物的合成:(A)合成传统的HPMA共聚物-紫杉醇缀合物(P-PTX);(B)合成多块主干生物可降解的HPMA共聚物-紫杉醇缀合物(mP-PTX)[25]

Scheme 3 Scheme 3 Synthetic scheme of HPMA copolymer-PTX conjugates. (A) Synthesis of traditional HPMA copolymer-paclitaxel conjugate (P-PTX). (B) Synthesis of multiblock backbone biodegradable HPMA copolymer-paclitaxel conjugate (mP-PTX) [25]

图4 (A)经125I标记的P-PTX/mP-PTX的药物,静脉注射后,移植A2780人体卵巢癌的小鼠SPECT/CT成像结果。异体移植卵巢癌的小鼠分别感染P-PTX和mP-PTX的情况。L:肝S:脾B:膀胱T:肿瘤。(B) 经不同PTX的药物治疗后,癌组织的照片[25]

Fig.4 (A) SPECT/CT imaging of mice bearing orthotopic A2780 human ovarian carcinoma after intravenous injection of 125I-labeled P-PTX or mP-PTX. L, liver; S, spleen; B, bladder; T, tumor. (B) Photographs of tumors after treatment with different PTX formulations [25]

2.2.2 酶响应断裂
多肽具有良好的生物相容性和优异的可降解性,因此常用作聚合物与药物的连接链段,有效提高了聚合物药物的特定位点释放药物能力,具有极高的生物医用潜力。基于HPMA共聚物的酶响应是指特定酶精确作用于HPMA共聚物-寡肽-药物缀合物,使其肽链断裂并高效释放药物的机制。以Kopeček为代表的科学家们以HPMA为药物载体合成了多种酶响应的药物缀合物并评估其作用效果,引起人们的广泛关注。
2002年,Kopeček等[26]在之前的研究基础上对乙型肝炎的药物输送系统在细胞内的分布情况进行深入研究。他们先使用不可分解的二肽GG链段将寡核苷酸(Oligo)和HPMA共聚物进行共价键连接,并将用荧光基团(二异丙基乙胺,Fl)标定寡核苷酸,最终合成不可断裂的缀合物[P-GG-(Oligo-Fl)],通过荧光失踪的手段研究寡核苷酸缀合物在细胞内的分散行为。随后他们使用GG链段将罗丹明(LR)修饰在聚合物主链上,达到失踪聚合物主链的目的,再通过可分解的四肽GFLG链段将寡核苷酸与HPMA共聚物进行共价键连接,并用二异丙基乙胺标定寡核苷酸,最终合成可酶降解的缀合物[P-(GG-LR)-(GFLG-(Oligo-Fl))],通过荧光失踪的手段研究经酶分解后,游离的寡核苷酸与聚合物主链的分布情况。并将实验结果与游离的寡核苷酸作比较发现,通过将寡核苷酸与聚合物缀合的方法,可以使寡核苷酸保持抗病毒活性并提升其内化程度。2003年,Kopeček等[27]在上述系统原理的基础上在聚合物基体上引入了细胞穿透肽(TAT)并由此成功改善了卵巢癌的治疗效果(图式4)。这是第一次证明能够将一种与聚合物结合的药物通过非内吞作用输送到细胞质和细胞核,这一发现也揭示了在细胞内(主要细胞和亚细胞)进行大分子传递的可行性。
图式4 HPMA共聚物和TAT的缀合物的结构示意图[27]

Scheme 4 Scheme 4 Structures of HPMA copolymer TAT conjugates [27]

此后,科学家成功地在生物体外进行酶响应研究并增强了聚合物的生物降解性。2011年,Kopeček等[28]在研究治疗卵巢癌的药物输送系统时,以HPMA、新型双功能链转移剂CTA、引发剂2,2'-偶氮二异丁腈(AIBN)进行RAFT聚合和高效的硫-烯反应,合成了远端疏水的HPMA共聚物-阿霉素缀合物,并加入一种酶降解的寡肽序列,最终通过木瓜蛋白酶和蛋白酶B的酶响应来实现药物释放,显著降低了卵巢癌治疗的药物副作用。在这之后RAFT作为一种高效的聚合方法在该领域被广泛运用。
2013年, Gu等 [29]结合纳米特性,将抗肿瘤药物阿霉素通过一种酶敏感的GFLG寡肽结合在共聚物上,设计和制备了两亲性三嵌段HPMA共聚物-阿霉素缀合物纳米颗粒,并将其作为酶敏感药物运载工具。该纳米粒子抗肿瘤效果相比于游离的DOX显著提高且降低了细胞毒性。值得注意的是,实验仅用两个步骤就制备了具有高分子量的酶敏感缀合物:一是使用肽链修饰的CTA作链转移试剂,通过VA-044引发HPMA的RAFT聚合;二是采用第一步制得的PHPMA与MA-GFLG-DOX通过VA-044引发共聚反应。制备步骤的简化为高分子量生物降解型HPMA共聚物结合物的合成提供了可能。
科学家们还通过改进聚合物的疗法来改善治疗效果。2011年,Kopeček等[30]研究了大分子结合疗法。他们合成了HPMA共聚物-环巴胺缀合物(P-GFLG-CYP),再通过在聚合物主链与药物之间的对木瓜蛋白酶和蛋白酶B具有酶响应的GFLG四肽链段达到释放药物的目的。这为后来的大分子治疗提供了参考。2013年,Kopeček等 [31]综合不同药物的大分子治疗方法,研究了大分子联合治疗。他们设计了HPMA共聚物-多烯紫杉醇缀合物(P-DTX)与HPMA共聚物-环巴胺缀合物(P-CYP),并由此证明联合治疗比单一药物治疗更有效。基于该机理,他们对联合治疗做了相关后续研究,包括第二代可降解的二嵌段HPMA共聚物-紫杉醇(P-PTX)与吉西他滨(P-GEM)的联合治疗[32], HPMA结合 PI3K/mTOR抑制剂制备了共聚物-抑制剂缀合物(P-GDC)与P-DTX联合治疗[33],阿糖孢苷(cytarabine)和PI3K/mTOR双重抑制剂的联合化疗等[34]。体现出HPMA共聚物-药物缀合物在大分子联合治疗领域的显著的药理优势。
与此同时,科学家还研发出多种表征机制证明其疗效。2015年, Kopeček等[35]在研究治疗卵巢癌的药物输送系统时,采用荧光标记法单独阐明了药物和聚合物基体的性质,证明了蛋白酶B水平是药物抗肿瘤活性的决定性因素。2016年其课题组使用碘和铟的放射性同位素开发了双放射性同位素标记法制备的PHPMA缀合物,这种缀合物保留了PHPMA长保留时间的优势,并且不影响HPMA共聚物的肿瘤靶向能力,因此在双同位素成像、放化疗、前临床评价和纳米结合的优化等方面起了重要作用[36]
近年来,研究人员还对不同形态聚合物的递药效率进行了深入研究。2016年,Kovar等 [37]研究了线形HPMA共聚物- DOX缀合(conjugate 1)和星形HPMA共聚物- DOX缀合物(conjugate 2)的生物活性。结果显示线形缀合物与星形缀合物都能有效搭载药物并使载药体系在癌症细胞中蓄积(图5)。但相比于线形缀合物,星形缀合物具有更高的流体力学半径,也拥有更长的保留时间,使药物更持久得影响细胞,因此更有利于治疗白血病。因此对于不同的病症,我们可以选择性地使用不同尺寸和结构的缀合物进行治疗。而2017年,Šírová等[38]研究治疗小鼠EL4 T细胞淋巴瘤的药物输送系统时提出了不同结论,即线形缀合物-DOX和缀合物-DTX具有累加效应,而星形缀合物-DTX和缀合物-DOX产生拮抗作用。相关研究仍在进行,聚合物形态如何影响不同药物疗效尚未有明确的结论。
图5 DOX在血液和肿瘤中的动力学研究:(A)DOX在肿瘤组织中的蓄积情况; (B) DOX在血液中的清除情况; (C)瘤血比[37]

Fig.5 Kinetics of DOX in the blood and tumour after i.v. administration of HPMA copolymer-DOX conjugates. (A) Accumulation of DOX in tumour tissue; (B) Blood clearance of DOX; (C) Tumour to blood ratio[37]

由以上研究历程可知,酶响应机制从评估体内溶酶体逃逸效果到引入酶降解的寡肽序列进行体外研究,有了较大进展。其中主要通过运用蛋白酶B和木瓜蛋白酶进行酶解来释放药物。在接下来的研究中,科学家们逐步改进了酶响应的评估机制和酶响应的作用背景,也继续探索这新的酶解体系。
2.2.3 氧化还原响应断裂
对于另一类基于HPMA所构建的共价-可断裂的聚合物,它们的结构中都存在着二硫键,都是通过氧化还原的方式发挥作用。
2008年,Kopecek等[39]使用光敏性药物Mce6合成了一种新的聚合物药物载体体系。他们通过双硫键将药物内消旋二氢卟吩e6(mesochlorin e6,Mce6)与HPMA共聚物主链相连(图式5)。双硫键结构具有还原响应性,当共聚物暴露于DTT环境中,便会发生氧化反应,破坏双硫键,释放光敏性药物Mce6。他们还将此结构(P-SS-Mce6)与酶响应体系(P-GFLF-Mce6)作比较发现,氧化还原体系具有更高的释放效率,并使光敏剂保有更高的光敏性,虽然稳定性不及酶响应体系,但对此体系加以修饰必能设计出更加稳定可控的药物载体。
图式5 P-SS-Mce 6的合成[39]

Scheme 5 Scheme 5 Synthetic scheme for P-SS-Mce6 [39]

Pun等在基于HPMA所构建的共价-可断裂聚合物的研究方面有着重要贡献。2012年,Pun等[40]研究了一种利用硫醇类还原剂TCEP还原响应的聚合物药物载体体系。他们将寡赖氨酸通过两种连接链段修饰在甲基丙烯酰胺上,再将其作为单体与HPMA单体共聚,得到两种寡肽-HPMA共聚物。其中,两类连接链段分别是不可还原的6-氨基己酸(AHX)和可还原的3-[(2-氨乙基)二硫醇]丙酸(AEDP)。随后他们将这两种共聚物以及这两种共聚物的1∶1(w∶w)混合共聚物,与DNA相连得到DNA缀合物。他们研究了这三种缀合物的盐稳定性、转染效率和细胞毒性。结果表明,AEDP体系虽然无毒性,但是其转染效率低,并且在盐环境下不稳定容易产生絮结现象。因为人体中的微量金属能够将被还原的游离硫氢基再次氧化为二硫键,产生絮结,并降低了转染效率。因此他们向AEDP体系中加入了低浓度的EDTA,EDTA作为一种配合剂能与微量金属络合形成螯合物,通过这种方法,AEDP体系的稳定性与转染效率均得到了提升。
2014年,Pun等 [41]意识到核酸疗法治疗中枢神经系统疾病的关键在于非病毒性基因传递系统能否使细胞感染其携带的核酸。他们提出将溶膜肽修饰在基因传递系统中或许可以提高细胞的感染率。为此他们通过RAFT聚合方法设计了一种嵌段共聚物(图式6)。第一组是由HPMA和吡啶二硫甲基丙烯酰胺(pyridyl disulfide methacrylamide,PDSMA)组成的嵌段共聚物,可以将蜂毒肽(一种溶膜肽)通过侧链上的双硫键修饰在聚合物上。第二组是由低聚赖氨酸和HPMA组成的嵌段共聚物,用于与DNA结合。研究表明,与没有蜂毒肽的人工合成多聚物相比,含蜂毒肽的人工合成多聚物在大脑中产生了大约35倍高的荧光素酶活性。因此,这一研究中含蜂毒肽的嵌段共聚物能够有效地将目标基因传递到大脑细胞中,有望运用到中枢神经系统疾病的治疗中。对于未来的基因修补或者基因改造提供了一种工具和有效的方式。
图式6 RAFT聚合法制备还原性HPMA-共聚物[41]

Scheme 6 Synthesis of reducible HPMA-co-oligolysine copolymers via reversible-addition fragmentation chain transfer (RAFT) polymerization [41]

3 药物通过非共价键与聚合物连接

3.1 物理包覆

以物理包覆为特征的HPMA有很多合成方法,其中大多数都和RAFT聚合方法有关。2010年,Boyer等[42]利用金纳米颗粒(GNP)作为牺牲模板合成中空功能高分子纳米胶囊。他们在金纳米颗粒表面组装两段不同功能的聚合物链段。一段为聚乙二醇丙烯酸酯((poly(oligoethylene glycol) acrylate,POEG-A)或PHPMA这类具有生物相容性的材料,另一段由苯乙烯与马来酸酐组成的可交联的交替共聚物组成,利用RAFT端基对金表面的高亲合力,采用嫁接的方法,将该嵌段共聚物组装到GNP表面,利用酸酐组对聚合物层进行交联。最后,在不影响聚合物链或纳米微囊完整性的情况下,用王水去除金芯,制备得到空心的高分子纳米胶囊(图6)。
图6 以金纳米颗粒为牺牲模板合成纳米胶囊:(1)纳米颗粒组装;(2)交联;(3)GNP核心移除。[42]

Fig.6 Synthesis of nano-capsules using gold nanoparticles, (1) assembly of nanoparticles, (2) crosslinking, (3) removal of GNP cores [42]

在癌症和糖尿病等疾病的临床治疗上治疗性活性蛋白质的应用拥有巨大潜力。但是蛋白质在肠道传输过程中能被快速降解,因此它的应用受到了很大的限制。2012年,Zetterlund和Stenzel等[43]发表利用新型的反相微乳液边界RAFT聚合工艺(IMEPP)合成具有亲水核的空心聚合物纳米粒子(图7)。该聚合工艺依赖于一种两亲性的大分子RAFT稳定剂,它在有机连续相中充当水滴的稳定剂,同时在液滴的外周以可控的方式介导交联链生长。大分子RAFT稳定剂由HPMA的亲水性部分和聚苯乙烯(PS)或聚甲基丙烯酸甲酯(PMMA)的疏水性部分组成,交联壳分别由苯乙烯/二乙烯基苯或甲基丙烯酸甲酯/乙二醇二甲基丙烯酸甲酯聚合而成。这种方法成功地将蛋白质(牛血清白蛋白)包裹到微乳中,且不对液滴的大小和稳定性产生负面影响,对蛋白质封装具有特殊的意义。2013年,Stenzel等[44]在此基础上采用RAFT交联聚合技术,在油相液滴的外围发生交联聚合,对纳米粒子的外壳进行交联加固,形成更稳定的空心纳米球,便于将蛋白质稳定封装在其内部。
图7 反微乳液边缘聚合(IMEPP)合成空心纳米颗粒[43]

Fig.7 Using miniemulsion periphery RAFT polymerization (IMEPP) approach to prepare hollow polymeric nanoparticles [43]

3.2 超分子作用

目前,利用超分子作用将药物搭载在生物相容性聚合物载体上主要有两种方法:一种是由两种互补的肽链互相缠绕,通过异质二聚作用形成大分子;另一种是通过电荷作用形成复合物。
2010年, Duncan和Klok等[45]首先报道了通过互补肽链的异质二聚作用制成一种螺旋状的肽链状连接器,并将两端分别与载体和药物相连,完成载药(图8)。它可以用于约束和释放客体分子,还可以促进和引导客体分子在细胞质内的运输,这种载药方式也引出了生物分子治疗过程中的药物如何细胞溶质内运输的问题及相关研究。
图8 通过互补肽链过二聚作用形成分子,(A)非共价的基于PHPMA的聚合物治疗药物,(B)该非共价聚合物治疗药物的细胞内吞途径及其细胞内释放[45]

Fig.8 (A) Schematic illustration of the structure of the proposed noncovalent poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)- based polymer therapeutics. (B) Envisioned pathway for the cell uptake of the proposed noncovalent polymer therapeutics and subsequent intracellular release of the cargo. In this illustration, the drug is represented by a red star [45]

2010年,Kopeček等[46]受此启发,通过CCE和CCK这一对互补肽链的异质二聚作用将抗体搭载在PHPMA共聚物上(图9)。首先HPMA与N-(3-氨丙基)甲基丙烯酰胺共聚,再通过与琥珀酸盐-4-(N-马来酰亚胺)环己羧酸的作用将侧链末端的氨基转化为马来酰亚胺基,再通过硫醇作用将CCK连接在侧链末端。同理,再通过硫醇作用将抗体1F5接在CCE链上,最后通过异质二聚作用,将CCE与CCK链缠结。这种异质二聚体有着亲疏水性交互作用、界面间的静电交互作用、螺旋倾向效应。其有优良的生物相容性、药物负载能力、细胞外稳定性,能引发靶向细胞内药物释放。
图9 (a) (CCK)-Polymer的合成 (b) Fab’-(CCE)的合成[46]

Fig.9 (a) synthesis of (CCK)-Polymer; (b) synthesis of Fab’-(CCE) [46]

2011年, Klok等[47]研究并发表了一系列关于非共价相连的聚合物药物缀合物的细胞吸收和运输特性的工作。这些缀合物也是由两种互补的肽链经过异质二聚作用形成的。其中一条肽链连接聚合物(如PHPMA),另一条肽链连接药物。这种螺旋肽在药物输送体系中,不仅可以用来连接和释放药物,还能指导和增强细胞内的运输和转运,以此降低缀合物细胞毒性并提高药物的细胞吸收效率。
2011年,Griffiths等[48]研究表明,通过一对互补的肽链的异质二聚作用和添加大型的芳香族结构如甲氨蝶呤(methotrexate,MTX)可形成一种HPMA共聚物。在添加MTX前,分子对pH不敏感,但添加了MTX的E3/K3(一对互补肽链)杂二聚线圈在pH降低时由于MTX的疏水结构导致聚合物线圈快速崩塌,使其对pH响应增大。通过这种研究,他们找到了一种新的由非共价键相连的pH响应载药体系。
此外,还有其他研究人员探索通过电荷作用形成复合物的方法。2013年, Hennink等[49]研究发表了三步法合成中性聚合物基因传递系统。首先通过阳离子嵌段共聚物与质粒DNA连接,加强有效的电荷驱动冷凝;然后通过硫醇与二硫酚的交换反应,诱导多聚物间的二硫化交联,增加聚合物结构稳定性;最后用水解法移除二甲胺基乙醇(DMAE)阳离子。这种系统拥有稳定的DNA加载能力,并且能够稳定存在细胞外环境中,同时拥有低毒性和特异性高等优点,能够提高靶向治疗的效率和效果。
2015年,Huang等[50]发现将含胰岛素和细胞渗透肽的水溶液混合在一起后加入到PHPMA溶液中,自发组装成纳米颗粒。纳米颗粒由胰岛素和细胞渗透肽(CPP)组成的带正电的核和带负电的PHPMA的壳组成。这种可自组装的口服胰岛素纳米颗粒能克服多重吸收障碍并穿过上皮黏膜被上皮组织吸收,对治疗糖尿病有显著效果。

4 结论及展望

PHPMA作为一种良好水溶性聚合物,拥有结构稳定、非免疫原性和可在人体中代谢等优点,被广泛用于抗癌药物等载药体系的研究中,但载药体系的研究总会面临新的难题。
由于肾阈值的限制,药物载体的分子量通常不能超过40 kDa,这也导致了聚合物药物缀合物存在着在人体内保留时间短,载药效率低下等缺点。因此科学家们不断探寻一种能够制备高分子量药物载体的新方法,即同时在聚合物主链上引入可断裂键,使得高分子量聚合物可以降解并通过肾脏排出体外。这样的高分子量药物载体不仅能够有效延长聚合物药物缀合物在体内的保留时间,还可以在足够长的聚合物链端上耦合多种药物,有效提高载体的载药效率。活性自由基聚合是一种非常可行的方法。
但是单纯的聚合物药物缀合物并不能发挥疗效,必须在高分子链段上引入多种功能模块同时发挥相应的作用才能有效提高疗效。比如靶向模块,药物释放模块以及核内体破坏模块都是重要的组成部分。如何将这些不同的功能模块同时引入到高分子链段上,并使各个模块都能发挥相应的作用成为一大难题。在同一分子链上的组分或多或少都会互相影响,因此如何设计出理想的聚合物链段结构成为了重要课题。
通过科学家们的共同努力,如今传统的两亲性嵌段共聚物,在适当地引入各种功能模块后,载药效率显著提升。基于HPMA共聚物的大分子治疗试剂作为一种新的载药体系,近20年来的研究成果丰硕,如PHPMA-阿霉素缀合物、PHPMA-阿霉素-半乳糖胺缀合物、PHPMA-喜树碱缀合物、PHPMA-多烯紫杉醇缀合物等聚合物药物缀合物的成功合成和部分缀合物的临床实验证明了其可行性和巨大潜力。通过不同的载药方式可将近期研究成果分为共价键相连载药体系与非共价键相连载药体系。在最为常见的共价键相连体系中,又可根据不同的医疗目的分为药物可断裂相连与不可断裂相连两种体系。为了达到有效释放药物,又可根据病症部位微环境的不同细分为pH响应断裂、酶响应断裂与氧化还原反应断裂。非共价键相连体系可分为超分子作用相连与物理包覆两种载药方式。
超分子作用中值得一提的是运用两种不同肽链异质二聚作用将两种肽链通过超分子作用紧密连接在一起形成一个类DNA卷曲螺旋的结构,再分别在两个肽链上接上高分子载体和药物,达到载药的目的。这是一种新颖的载药方式,简称互补肽链的大分子疗法,是近期备受关注的研究热点之一。物理包覆主要是研究大小可控的纳米粒子,将药物包裹于粒子内进行载药。以物理包覆为特征的HPMA有很多合成方法,其中大多数都和RAFT聚合方法有关。如中空功能高分子纳米胶囊及适合蛋白质传递的亲水核的空心纳米颗粒的合成都取得了许多进展。同时,较为传统的pH响应、酶响应、氧化还原响应体系也取得了一些新成果,PHPMA-阿霉素缀合物、PHPMA-多烯紫杉醇缀合物等的成功合成证明了这一点。与此同时,科学家们开始关注聚合物药物缀合物之间的协同效应,通过两种药物的快速、有序释放来促进肿瘤细胞的联合治疗。此外,近几年来,研究人员还对不同形态聚合物的药物传递效率进行了深入研究,但聚合物形态对不同药物疗效的影响还无法明确。
PHPMA作为载体的药物输送体系经过多年研究,发展出了不同的载药体系,其中一些关于癌症治疗的药物更是已经在临床治疗试验阶段,有望成为有效治疗癌症的药物。PHPMA的多种载药体系还有许多有待完善之处,挑战诸多,但前景也非常广阔。
[1]
Kopeček J, Pavla K . Adv. Drug Delivery Rev., 2009,62(2):122. https://www.ncbi.nlm.nih.gov/pubmed/19919846

DOI: 10.1016/j.addr.2009.10.004   PMID: 19919846

The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors' laboratory - the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of modified and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed.

[2]
Ehrlich P. Studies in Immunity. New York: Plenum Press, 1906.
[3]
Jatzkewitz H . Z Naturforsch, 1955,10(b):27.
[4]
Panarin E F, Ushakov S N . Pharm. Chem. J., 1968,2(5):260.
[5]
Givental N I, Ushakov S N, Panarin E F, Popova G O . Antibiotiki, 1965,10(8):701. https://www.ncbi.nlm.nih.gov/pubmed/5887624

PMID: 5887624

[6]
Shumikhina K I, Panarin E F, Ushakov S N . Antibiotiki, 1966,11(9):767. https://www.ncbi.nlm.nih.gov/pubmed/4968207

PMID: 4968207

[7]
Mathé G, Loc TB, Bernard J . CR Hebd Seances Acad. Sci., 1958,246(10):1626. https://www.ncbi.nlm.nih.gov/pubmed/13537412

PMID: 13537412

[8]
Ringsdorf H . J. Polym. Sci., Polym. Symp., 1975,51(1):135.
[9]
Duncan R, Kopeček J, Rejmanová P, Lloyd J B . Biochim. Biophys. Acta, 1983,755(3):518. https://www.ncbi.nlm.nih.gov/pubmed/6824743

DOI: 10.1016/0304-4165(83)90258-1   PMID: 6824743

Soluble synthetic polymers have potential as targetable carriers of pharmacological agents. Here we report that incorporation into poly[N-(2-hydroxypropyl)methacrylamide)] of an oligopeptide side-chain terminating in galactose enhanced the polymer's pinocytic uptake from the rat bloodstream by the liver. Within the liver lysosomes enzymic digestion led to the intracellular release of a drug analogue also bound to oligopeptide side-chains of the polymer.

[10]
Herth M M, Barz M, Jahn M, Jahn M, Zentel R, Rösch F . Bioorg. Med. Chem. Lett., 2010,20(18):5454. https://www.ncbi.nlm.nih.gov/pubmed/20709549

DOI: 10.1016/j.bmcl.2010.07.092   PMID: 20709549

In the context of molecular imaging, various polymers based on the clinically approved N-(2-hydroxypropyl)-methacrylamide (HPMA) have been radio-labeled using longer-living positron emitters 72As t1/2=26 h or 74As t1/2=17.8 d. This approach may lead to non-invasive determination of the long-term in vivo fate of polymers by PET (positron emission tomography). Presumably, the radio label itself will not strongly influence the polymer structure due to the fact that the used nuclide binds to already existing thiol moieties within the polymer structure. Thus, the use of additional charges or bulky groups can be avoided.

[11]
Barz M, Wolf F K, Canal F, Koynov K, Vicent M J, Frey H, Zentel R . Macromol. Rapid Commun., 2010,31(17):1492. https://www.ncbi.nlm.nih.gov/pubmed/21567557

DOI: 10.1002/marc.201000090   PMID: 21567557

We describe a synthetic pathway to functional P(HPMA)-b-P(LLA) block copolymers. The synthesis relies on a combination of ring-opening polymerization of L-lactide, conversion into a chain transfer agent (CTA) for the RAFT polymerization of pentafluorophenyl methacrylate. A series of block copolymers was prepared that exhibited molecular weights $\overline M _{\rm n}$ ranging from 7 600 to 34 300 g · mol(-1) , with moderate PDI between 1.3 and 1.45. These reactive precursor polymers have been transformed into biocompatible P(HPMA)-b-P(LLA) copolymers and their fluorescently labeled derivatives by facile replacement of the pentafluorophenyl groups. The fluorescence label attached to this new type of a partially degradable amphiphilic block copolymer was used to study cellular uptake in human cervix adenocarcinoma (HeLa) cells as well as aggregation behavior by fluorescence correlation spectroscopy (FCS).

[12]
Hemmelmann M, Metz V V, Koynov K, Blank K, Postina R, Zentel R . J. Controlled Release, 2012,163(2):170. https://www.ncbi.nlm.nih.gov/pubmed/22981565

DOI: 10.1016/j.jconrel.2012.08.034   PMID: 22981565

The successful non-invasive treatment of diseases associated with the central nervous system (CNS) is generally limited by poor brain permeability of various developed drugs. The blood-brain barrier (BBB) prevents the passage of therapeutics to their site of action. Polymeric drug delivery systems are promising solutions to effectively transport drugs into the brain. We recently showed that amphiphilic random copolymers based on the hydrophilic p(N-(2-hydroxypropyl)-methacrylamide), pHPMA, possessing randomly distributed hydrophobic p(laurylmethacrylate), pLMA, are able to mediate delivery of domperidone into the brain of mice in vivo. To gain further insight into structure-property relations, a library of carefully designed polymers based on p(HPMA) and p(LMA) was synthesized and tested applying an in vitro BBB model which consisted of human brain microvascular endothelial cells (HBMEC). Our model drug Rhodamine 123 (Rh123) exhibits, like domperidone, a low brain permeability since both substances are recognized by efflux transporters at the BBB. Transport studies investigating the impact of the polymer architecture in relation to the content of hydrophobic LMA revealed that random p(HPMA)-co-p(LMA) having 10mol% LMA is the most auspicious system. The copolymer significantly increased the permeability of Rh123 across the HBMEC monolayer whereas transcytosis of the polymer was very low. Further investigations on the mechanism of transport showed that integrity and barrier function of the BBB model were not harmed by the polymer. According to our results, p(HPMA)-co-p(LMA) copolymers are a promising delivery system for neurological therapeutics and their application might open alternative treatment strategies.

[13]
Kunjachan S, Gremse F, Theek B , et al. ACS Nano, 2013,7(1):252. https://www.ncbi.nlm.nih.gov/pubmed/23067565

DOI: 10.1021/nn303955n   PMID: 23067565

Nanomedicines are sub-micrometer-sized carrier materials designed to improve the biodistribution of i.v. administered (chemo-) therapeutic agents. In recent years, ever more efforts in the nanomedicine field have employed optical imaging (OI) techniques to monitor biodistribution and target site accumulation. Thus far, however, the longitudinal assessment of nanomedicine biodistribution using OI has been impossible, due to limited light penetration (in the case of 2D fluorescence reflectance imaging; FRI) and to the inability to accurately allocate fluorescent signals to nonsuperficial organs (in the case of 3D fluorescence molecular tomography; FMT). Using a combination of high-resolution microcomputed tomography (μCT) and FMT, we have here set out to establish a hybrid imaging protocol for noninvasively visualizing and quantifying the accumulation of near-infrared fluorophore-labeled nanomedicines in tissues other than superficial tumors. To this end, HPMA-based polymeric drug carriers were labeled with Dy750, their biodistribution and tumor accumulation were analyzed using FMT, and the resulting data sets were fused with anatomical μCT data sets in which several different physiologically relevant organs were presegmented. The robustness of 3D organ segmentation was validated, and the results obtained using 3D CT-FMT were compared to those obtained upon standard 3D FMT and 2D FRI. Our findings convincingly demonstrate that combining anatomical μCT with molecular FMT facilitates the noninvasive assessment of nanomedicine biodistribution.

[14]
Etrych T, Šubr V, Strohalm J, Šírová M, $\breve{R}$íhová B, Ulbrich K . J. Controlled Release, 2012,164(3):346. https://www.ncbi.nlm.nih.gov/pubmed/22759979

DOI: 10.1016/j.jconrel.2012.06.029   PMID: 22759979

The molecular weight and molecular architecture of soluble polymer drug carriers significantly influence the biodistribution and anti-tumour activities of their doxorubicin (DOX) conjugates in tumour-bearing mice. Biodistribution of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-DOX conjugates of linear and star architectures were compared in EL4 T-cell lymphoma-bearing mice. Biodistribution, including tumour accumulation, and anti-tumour activity of the conjugates strongly depended on conjugate molecular weight (MW), polydispersity, hydrodynamic radius (R(h)) and molecular architecture. With increasing MW, renal clearance decreased, and the conjugates displayed extended blood circulation and enhanced tumour accumulation. The linear conjugates with flexible polymer chains were eliminated by kidney clearance more quickly than the highly branched star conjugates with comparable MWs. Interestingly, the data suggested different mechanisms of renal filtration for star and linear conjugates. Only star conjugates with MWs below 50,000g.mo(-1) were removed by kidney filtration, while linear polymer conjugates with MWs near 70,000g.mol(-1), exceeding the generally accepted limit for renal elimination, were detected in the urine 36-96h after injection. Additionally, survival of tumour-bearing mice was strongly dependent on molecular weight and polymer conjugate architecture. Treatment of mice with the lower MW conjugate at a dose of 10mg DOX eq./kg resulted in 12% long-term surviving animals, while treatment with the corresponding star conjugate enabled 75% survival of animals.

[15]
Gormley A J, Larson N, Banisadr A, Robinson R, Frazier N, Ray A, Ghandehari H . J. Controlled Release, 2013,166(2):130. https://www.ncbi.nlm.nih.gov/pubmed/23262203

DOI: 10.1016/j.jconrel.2012.12.007   PMID: 23262203

Effective drug delivery to tumors requires both transport through the vasculature and tumor interstitium. Previously, it was shown that gold nanorod (GNR) mediated plasmonic photothermal therapy (PPTT) is capable of increasing the overall accumulation of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers in prostate tumors. In the present study, it is demonstrated that PPTT is also capable of increasing the distribution of these conjugates in tumors. Gadolinium labeled HPMA copolymers were administered to mice bearing prostate tumors immediately before treatment of the right tumor with PPTT. The left tumor served as internal, untreated control. Magnetic resonance imaging (MRI) of both tumors showed that PPTT was capable of improving the tumor mass penetration of HPMA copolymers. Thermal enhancement of delivery, roughly 1.5-fold, to both the tumor center and periphery was observed. Confocal microscopy of fluorescently labeled copolymers corroborates these findings in that PPTT is capable of delivering more HPMA copolymers to the tumor's center and periphery. These results further demonstrate that PPTT is a useful tool to improve the delivery of polymer-drug conjugates.

[16]
Roy D, Ghosn B, Song E H, Ratner D M, Stayton P S . Polym. Chem., 2013,4:1153.
[17]
Liu X M, Quan L D, Tian J, Alnouti Y, Fu K, Thiele G M, Wang D . Pharm. Res., 2008,25(12):2910. https://www.ncbi.nlm.nih.gov/pubmed/18649124

DOI: 10.1007/s11095-008-9683-3   PMID: 18649124

To develop a pH-sensitive dexamethasone (Dex)-containing N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer conjugate with well-defined structure for the improved treatment of rheumatoid arthritis (RA).

[18]
Sedláček O, Hrub$\breve{y}$ M, Studenovsk$\breve{y}$ M, Větvička D, Svoboda J, Kaňková D, Ková$\breve{r}$ J, Ulbrich K . Bioorgan. Med. Chem., 2012,20(13):4056.
[19]
Chytil P, Etrych T, Kostka L, Ulbrich K . Macromol. Chem. Phys., 2012,213(8):858.
[20]
Jäger E, Jäger A, Chytil P, Etrych T, $\breve{R}$íhová B, Giacomelli F C, Štěpánek P, Ulbrich K . J. Controlled Release, 2013,165(2):153. https://www.ncbi.nlm.nih.gov/pubmed/23178950

DOI: 10.1016/j.jconrel.2012.11.009   PMID: 23178950

The preparation of core-shell polymeric nanoparticles simultaneously loaded with docetaxel (DTXL) and doxorubicin (DOX) is reported herein. The self-assembly of the aliphatic biodegradable copolyester PBS/PBDL (poly(butylene succinate-co-butylene dilinoleate)) and HPMA-based copolymers (N-(2-hydroxypropyl)methacrylamide-based copolymers) hydrophobically modified by the incorporation of cholesterol led to the formation of narrow-size-distributed (PDI<0.10) sub-200-nm polymeric nanoparticles suitable for passive tumor-targeting drug delivery based on the size-dependent EPR (enhanced permeability and retention) effect. The PHPMA provided to the self-assembled nanoparticle stability against aggregation as evaluated in vitro. The highly hydrophobic drug docetaxel (DTXL) was physically entrapped within the PBS/PBDL copolyester core and the hydrophilic drug doxorubicin hydrochloride (DOX·HCl) was chemically conjugated to the reactive PHPMA copolymer shell via hydrazone bonding that allowed its pH-sensitive release. This strategy enabled the combination chemotherapy by the simultaneous DOX and DTXL drug delivery. The structure of the nanoparticles was characterized in detail using static (SLS), dynamic (DLS) and electrophoretic (ELS) light scattering besides transmission electron microscopy (TEM). The use of nanoparticles simultaneously loaded with DTXL and DOX provided a more efficient suppression of tumor-cell growth in mice bearing EL-4 T cell lymphoma when compared to the effect of nanoparticles loaded with either DTXL or DOX separately. Additionally, the obtained self-assembled nanoparticles enable further development of targeting strategies based on the use of multiple ligands attached to an HPMA copolymer on the particle surface for simultaneous passive and active targeting and different combination therapies.

[21]
Nakamura H, Etrych T, Chytil P, Ohkubo M, Fang J, Ulbrich K, Maeda H . J. Controlled Release, 2014,174(1):81.
[22]
Zhou Z, Li L, Yang Y, Xu X, Huang Y . Biomaterials, 2014,35(24):6622. https://www.ncbi.nlm.nih.gov/pubmed/24814427

DOI: 10.1016/j.biomaterials.2014.04.059   PMID: 24814427

Increasing the molecular weight of N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers by using micellar structures could result in more pronounced enhanced permeability and retention effect, thus increase the tumor accumulation of drug. However, most micellar formulations are relatively unstable and release their drug non-specifically. To improve on these disadvantages, we developed a micellar drug delivery system based on self-assembly of HPMA copolymers. Amphiphilic conjugates were synthesized by conjugating the hydrophobic drug doxorubicin and hydrophobic β-sitosterol to the hydrophilic HPMA polymer backbone via pH-sensitive hydrazone linkages. This linkage is quite stable at physiological pH but hydrolyzes easily at acidic pH. After conjugates self-assembly into micelles, HPMA copolymer side chains were cross-linked through the hydrazone linkages to ensure micelle stability in the blood. Using this approach, cross-linked micelles were obtained with molecular weight of 1030 KD and diameter of 10-20 nm. These micelles remained stable with undetectable doxorubicin release at pH 7.4 or mouse plasma, whereas collapsed quickly with 80% of the drug released at pH 5 which corresponds to the pH of lyso/endosome compartments of tumor cells. Both cross-linked and non-cross-linked micelles displayed similar in vitro anti-tumor activity as linear copolymer conjugates in Hep G2 and A549 cancer cell lines with internalization mechanism by caveolin, clathrin, and giant macropinocytosis. In vivo studies in an H22 mouse xenograft model of hepatocarcinoma showed the tumor accumulation (1633 μCi/L*h) and anti-tumor rate (71.8%) of cross-linked micelles were significantly higher than non-cross-linked ones (698 μCi/L*h, 64.3%). Neither type of micelle showed significant toxicity in heart, lung, liver, spleen or kidney. These results suggest that cross-linked HPMA copolymer micelles with pH-sensitivity and biodegradability show excellent potential as carriers of anti-cancer drugs.

[23]
Liu T, Li X, Qian Y, Hu X, Liu S . Biomaterials, 2012,33(8):2521. https://www.ncbi.nlm.nih.gov/pubmed/22204981

DOI: 10.1016/j.biomaterials.2011.12.013   PMID: 22204981

We report on a novel type of multifunctional pH-disintegrable micellar nanoparticles fabricated from asymmetrically functionalized β-cyclodextrin (β-CD) based star copolymers covalently conjugated with doxorubicin (DOX), folic acid (FA), and DOTA-Gd moieties for integrated cancer cell-targeted drug delivery and magnetic resonance (MR) imaging contrast enhancement. Asymmetrically functionalized β-CD, (N(3))(7)-CD-(Br)(14), which possesses 7 azide functionalities and 14 α-bromopropionate moieties in the upper and lower rim of rigid toroidal β-CD core, respectively, was synthesized at first. The subsequent atom transfer radical polymerization (ATRP) of N-(2-hydroxypropyl) methacrylamide (HPMA), conjugation with DOX and FA, and click reaction with alkynyl-(DOTA-Gd) complex afforded (DOTA-Gd)(7)-CD-(PHPMA-FA-DOX)(14) star copolymer comprising of 7 DOTA-Gd complex moieties and 14 PHPMA arms covalently anchored with DOX and FA via acid-labile carbamate linkages and ester bonds, respectively. The covalent conjugation with ∼13 DOX molecules onto PHPMA arms per star copolymer (∼14 wt% loading content) endows the initially hydrophilic one with amphiphilicity, leading to the self-assembly into micellar nanoparticles of several tens of nanometers in aqueous solution at pH 7.4. In vitro DOX release profile from micellar nanoparticles is highly pH-dependent, and over a time period of 42 h, cumulative releases of ∼10%, 53%, and 89% conjugated DOX at pH 7.4, 5.0, and 4.0, respectively, were observed. Most importantly, the pH-modulated release of conjugated DOX from micellar nanoparticles is accompanied with the micelle disintegration due to the loss of amphiphilicity of the star copolymer scaffold. In vitro cell viability assays revealed that (DOTA-Gd)(7)-CD-(PHPMA(15))(14) star copolymer is almost non-cytotoxic up to a concentration of 0.5 g/L, whereas DOX-conjugated micellar nanoparticles of (DOTA-Gd)(7)-CD-(PHPMA-FA-DOX)(14) can effectively enter and kill HeLa cells at a concentration higher than ∼80 mg/L. In vitro MR imaging experiments indicated a considerably enhanced T(1) relaxivity (r(1) = 11.4 s(-1) mM(-1)) for micellar nanoparticles compared to that for the small molecule counterpart, alkynyl-DOTA-Gd (r(1) = 3.1 s(-1) mM(-1)). In vivo MR imaging assay in rats revealed considerable accumulation of micellar nanoparticles within rat liver and kidney and prominent positive contrast enhancement. The integrated design of diagnostic and therapeutic functions of multifunctional pH-disintegrable micellar nanoparticles augurs well for their practical applications in the field of image-guided cancer chemotherapy.

[24]
Shi J, Schellinger J G, Johnson R N, Choi J L, Chou B, Anghel E L, Pun S H . Biomacromolecules, 2013,14(6):1961. https://www.ncbi.nlm.nih.gov/pubmed/23641942

DOI: 10.1021/bm400342f   PMID: 23641942

One of the major intracellular barriers to nonviral gene delivery is efficient endosomal escape. The incorporation of histidine residues into polymeric constructs has been found to increase endosomal escape via the proton sponge effect. Statistical and diblock copolymers of N-(2-hydroxypropyl)methacrylamide (HPMA), oligolysine, and oligohistidine were synthesized via reversible-addition fragmentation chain transfer (RAFT) polymerization and tested for in vitro transfection efficiency, buffering ability, and polyplex uptake mechanism via the use of chemical endocytic inhibitors. Interestingly, histidine-containing statistical and diblock polymers exhibited increased buffer capacity in different endosomal pH ranges. Statistical copolymers transfected better than block copolymers that contained similar amounts of histidine. In addition, only the polymer containing the highest incorporation of oligohistidine residues led to increases in transfection efficiency over the HPMA-oligolysine base polymer. Thus, for these polymer architectures, high histidine incorporation may be required for efficient endosomal escape. Furthermore, inhibitor studies indicate that nonacidified caveolae-mediated endocytosis may be the primary route of transfection for these copolymers, suggesting that alternative approaches for increasing endosomal escape may be beneficial for enhancing transfection efficiency with these HPMA-oligolysine copolymers.

[25]
Zhang R, Luo K, Yang J, Sima M, Sun Y, Janát-Amsbury M M, Kopeček J . J. Controlled Release, 2013,166(1):66. https://www.ncbi.nlm.nih.gov/pubmed/23262201

DOI: 10.1016/j.jconrel.2012.12.009   PMID: 23262201

The performance and safety of current antineoplastic agents, particularly water-insoluble drugs, are still far from satisfactory. For example, the currently widely used Cremophor EL®-based paclitaxel (PTX) formulation exhibits pharmacokinetic concerns and severe side effects. Thus, the concept of a biodegradable polymeric drug-delivery system, which can significantly improve therapeutic efficacy and reduce side effects is advocated. The present work aims to develop a new-generation of long-circulating, biodegradable carriers for effective delivery of PTX. First, a multiblock backbone biodegradable N-(2-hydroxypropyl)methacrylamide(HPMA) copolymer-PTX conjugate (mP-PTX) with molecular weight (Mw) of 335 kDa was synthesized by RAFT (reversible addition-fragmentation chain transfer) copolymerization, followed by chain extension. In vitro studies on human ovarian carcinoma A2780 cells were carried out to investigate the cytotoxicity of free PTX, HPMA copolymer-PTX conjugate with Mw of 48 kDa (P-PTX), and mP-PTX. The experiments demonstrated that mP-PTX has a similar cytotoxic effect against A2780 cells as free PTX and P-PTX. To further compare the behavior of this new biodegradable conjugate (mP-PTX) with free PTX and P-PTX in vivo evaluation was performed using female nu/nu mice bearing orthotopic A2780 ovarian tumors. Pharmacokinetics study showed that high Mw mP-PTX was cleared more slowly from the blood than commercial PTX formulation and low Mw P-PTX. SPECT/CT imaging and biodistribution studies demonstrated biodegradability as well as elimination of mP-PTX from the body. The tumors in the mP-PTX treated group grew more slowly than those treated with saline, free PTX, and P-PTX (single dose at 20 mg PTX/kg equivalent). Moreover, mice treated with mP-PTX had no obvious ascites and body-weight loss. Histological analysis indicated that mP-PTX had no toxicity in liver and spleen, but induced massive cell death in the tumor. In summary, this biodegradable drug delivery system has a great potential to improve performance and safety of current antineoplastic agents.

[26]
Jensen K D, Kopecková P, Kopeček J . Bioconjugate Chem., 2002,13(5):975. https://www.ncbi.nlm.nih.gov/pubmed/12236779

DOI: 10.1021/bc025559y   PMID: 12236779

The subcellular fate and activity in inhibiting the hepatitis B virus of free and N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-phosphorothioate oligonucleotides were studied. Their internalization and subcellular fate were monitored with confocal microscopy. A fraction of the internalized free oligonucleotides escaped into the cytoplasm and nucleus of Hep G2 cells but were not active antiviral agents. Covalently attaching the oligonucleotides to the HPMA copolymers via nondegradable dipeptide GG spacers resulted in sequestering the oligonucleotides in vesicles after internalization. Conjugation of the oligonucleotides to an HPMA copolymer via a lysosomally cleavable tetrapeptide GFLG spacer resulted in release of the oligonucleotide in the lysosome and subsequent translocation into the cytoplasm and nucleus of the cells. The HPMA copolymer-oligonucleotide conjugate possessed antiviral activity, indicating that phosphorothioate oligonucleotides released from the carrier in the lysosome were able to escape into the cytoplasm and nucleus and remain active. The Hep G2 cells appeared to actively internalize the phosphorothioate oligonucleotides as oligonucleotide-HPMA copolymer conjugates were internalized to a greater extent than unconjugated polymers.

[27]
Nori A, Jensen K D, Tijerina M, Kopečková P, Kopeček J . Bioconjugate Chem., 2003,14(1):44. https://pubs.acs.org/doi/10.1021/bc0255900

DOI: 10.1021/bc0255900

[28]
Pan H, Yang J, Kopečková P, Kopeček J . Biomacromolecules, 2011,12(1):247. https://www.ncbi.nlm.nih.gov/pubmed/21158387

DOI: 10.1021/bm101254e   PMID: 21158387

Telechelic water-soluble HPMA copolymers and HPMA copolymer-doxorubicin (DOX) conjugates have been synthesized by RAFT polymerization mediated by a new bifunctional chain transfer agent (CTA) that contains an enzymatically degradable oligopeptide sequence. Postpolymerization aminolysis followed by chain extension with a bis-maleimide resulted in linear high molecular weight multiblock HPMA copolymer conjugates. These polymers are enzymatically degradable; in addition to releasing the drug (DOX), the degradation of the polymer backbone resulted in products with molecular weights similar to the starting material and below the renal threshold. The new multiblock HPMA copolymers hold potential as new carriers of anticancer drugs.

[29]
Yang Y, Pan D, Luo K, Li L, Gu Z . Biomaterials, 2013,34(33):8430. 8c05c983-9dc2-4568-a1c8-853327f4b37a http://dx.doi.org/10.1016/j.biomaterials.2013.07.037

DOI: 10.1016/j.biomaterials.2013.07.037

Polymeric nanoparticles have shown great promise as attractive vehicles for drug delivery. In this study, we designed, prepared and characterized biodegradable amphiphilic triblock HPMA copolymer-doxorubicin (copolymer-DOX) conjugate based nanoparticle as enzyme-sensitive drug delivery vehicle. The enzyme-sensitive peptide GFLGKGLFG was introduced to the main chain of the copolymer with hydrophilic and hydrophobic blocks. The triblock HPMA polymer-DOX conjugate with high molecules (Mw 90 kDa) can be degraded to product with low molecule weight (Mw 44 kDa) below the renal threshold. The copolymer-DOX conjugate can self-assemble into compact nanoparticle, which was characterized by scanning electron microscope (SEM) and atomic force microscope (AFM) studies. This polymeric nanoparticle substantially enhanced antitumor efficacy compared to the free DOX, exhibiting much higher effects on inhibiting proliferation and inducing apoptosis on the 4T1 murine breast cancer model confirmed by the evidences from mice weight shifts, tumor growth curves, tumor growth inhibition (TGI), immunohistochemical analysis and histological assessment. The in vivo toxicity evaluation demonstrated that the polymeric nanoparticle reduced DOX-induced toxicities and presented no significant side effects to normal organs of both tumor bearing and healthy mice as measured by body weight shift, blood routine test and histological analysis. Therefore, the triblock HPMA copolymer-DOX conjugate based nanoparticle is promising as a potential drug delivery vehicle for breast cancer therapy. (C) 2013 Elsevier Ltd.

[30]
Zhou Y, Yang J, Kopeček J . Biomaterials, 2012,33(6):1863. https://www.ncbi.nlm.nih.gov/pubmed/22138033

DOI: 10.1016/j.biomaterials.2011.11.029   PMID: 22138033

Improved treatments for prostate cancer are in great need to overcome lethal recurrence and metastasis. Targeting the tumorigenic cancer stem cells (CSCs) with self-renewal and differentiation capacity appears to be a promising strategy. Blockade of the hedgehog (Hh) signaling pathway, an important pathway involved in stem cell self-renewal, by cyclopamine leads to long-term prostate cancer regression without recurrence, strongly suggesting the connection between Hh pathway and prostate CSCs. Here we designed an HPMA (N-(2-hydroxypropyl)methacrylamide)-based cyclopamine delivery system as a CSC-selective macromolecular therapeutics with improved drug solubility and decreased systemic toxicity. To this end, HPMA and N-methacryloylglycylphenylalanylleucylglycyl thiazolidine-2-thione were copolymerized using the RAFT (reversible addition-fragmentation chain transfer) process, followed by polymer-analogous attachment of cyclopamine. The selectivity of the conjugate toward CSCs was evaluated on RC-92a/hTERT cells, the human prostate cancer epithelial cells with human telomerase reverse transcriptase transduction. The use of RC-92a/hTERT cells as an in vitro CSC model was validated by stem cell marker expression and prostasphere culture. The bioactivity of cyclopamine was retained after conjugation to the polymer. Furthermore, HPMA polymer-conjugated cyclopamine showed anti-CSC efficacy on RC-92a/hTERT cells as evaluated by decreased stem cell marker expression and CSC viability.

[31]
Zhou Y, Yang J, Rhim J S, Kopeček J . J. Controlled Release, 2013,172(3):946. https://www.ncbi.nlm.nih.gov/pubmed/24041709

DOI: 10.1016/j.jconrel.2013.09.005   PMID: 24041709

Current treatments for prostate cancer are still not satisfactory, often resulting in tumor regrowth and metastasis. One of the main reasons for the ineffective anti-prostate cancer treatments is the failure to deplete cancer stem-like cells (CSCs) - a subset of cancer cells with enhanced tumorigenic capacity. Thus, combination of agents against both CSCs and bulk tumor cells may offer better therapeutic benefits. Several molecules with anti-cancer stem/progenitor cell activities have been under preclinical evaluations. However, their low solubility and nonspecific toxicity limit their clinical translation. Herein, we designed a combination macromolecular therapy containing two drug conjugates: HPMA copolymer-cyclopamine conjugate (P-CYP) preferentially toxic to cancer stem/progenitor cells, and HPMA copolymer-docetaxel conjugate (P-DTX) effective in debulking the tumor mass. Both conjugates were synthesized using RAFT (reversible addition-fragmentation chain transfer) polymerization resulting in narrow molecular weight distribution. The killing effects of the two conjugates against bulk tumor cells and CSCs were evaluated in vitro and in vivo. In PC-3 or RC-92a/hTERT prostate cancer cells, P-CYP preferentially kills and impairs the function of CD133+ prostate cancer stem/progenitor cells; P-DTX was able to kill bulk tumor cells instead of CSCs. In a PC-3 xenograft mice model, combination of P-DTX and P-CYP showed the most effective and persistent tumor growth inhibitory effect. In addition, residual tumors contained less CD133+ cancer cells following combination or P-CYP treatments, indicating selective killing of cancer cells with stem/progenitor cell properties.

[32]
Zhang R, Yang J, Sima M, Zhou Y, Kopeček J . PNAS, 2014,111(33):12181. https://www.ncbi.nlm.nih.gov/pubmed/25092316

DOI: 10.1073/pnas.1406233111   PMID: 25092316

For rapid and effective clinical translation, polymer-based anticancer therapeutics need long circulating conjugates that produce a sustained concentration gradient between the vasculature and solid tumor. To this end, we designed second-generation backbone-degradable diblock N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer carriers and evaluated sequential combination therapy of HPMA copolymer-paclitaxel and HPMA copolymer-gemcitabine conjugates against A2780 human ovarian carcinoma xenografts. First, extensive in vitro assessment of administration sequence impact on cell cycle, viability, apoptosis, migration, and invasion revealed that treatment with paclitaxel conjugate followed by gemcitabine conjugate was the most effective scheduling strategy. Second, in an in vivo comparison with first-generation (nondegradable, molecular weight below the renal threshold) conjugates and free drugs, the second-generation degradable high-molecular weight conjugates showed distinct advantages, such as favorable pharmacokinetics (three- to five-times half-life compared with the first generation), dramatically enhanced inhibition of tumor growth (complete tumor regression) by paclitaxel and gemcitabine conjugate combination, and absence of adverse effects. In addition, multimodality imaging studies of dual-labeled model conjugates confirmed the efficacy of second-generation conjugates by visualizing more than five-times enhanced tumor accumulation, rapid conjugate internalization, and effective intracellular release of payload. Taken together, the results indicate that the second-generation degradable HPMA copolymer carrier can provide an ideal platform for the delivery of a range of antitumor compounds, which makes it one of the most attractive candidates for potential clinical application.

[33]
Yan Z, Jiyuan Y, Rui Z, Kopeček J . Eur. J. Pharm. Biopharm, 2015,89:107. https://www.ncbi.nlm.nih.gov/pubmed/25481033

DOI: 10.1016/j.ejpb.2014.11.025   PMID: 25481033

Combination therapies have been investigated to address the current challenges of anti-cancer therapeutics. In particular, a novel paradigm of combination therapy targeting both cancer stem/progenitor cells and bulk tumor cells is promising to improve the long-term therapeutic benefit against prostate cancer. Among the therapeutic agents with anti-CSC activities, the PI3K/mTOR inhibitors exhibit preferential inhibitory effect on prostate cancer stem/progenitor cells and potent cytotoxicity against bulk tumor cells. The combination of PI3K/mTOR inhibitor and traditional chemotherapy docetaxel may show superior therapeutic effect over single drug treatment. Aiming to further improve the combinational anti-tumor and anti-CSC effect, we developed the combination therapy containing two HPMA copolymer-drug conjugates, incorporated with PI3K/mTOR inhibitor GDC-0980 (P-(GDC-0980)) and docetaxel (P-DTX), respectively. The anti-tumor and anti-CSC effects of the single and combination therapy were investigated in vitro and on PC-3 prostate cancer xenografts in nude mice. Our evaluations showed that P-(GDC-0980) suppressed CD133+ prostate stem/progenitor cell growth even at the low dose which does not cause significant growth inhibition in bulk tumor cells. The combination therapy exhibited effective anti-CSC effect as well as enhanced anti-bulk tumor effect in vitro. Among all the single and combination dosing regimens of free drugs and conjugates, the macromolecular combination therapy showed significantly prolonged mice survival in vivo.

[34]
Zhang R, Yang J, Sima M, Zhou Y, Kopeček J . Macromol. Biosci., 2016,16(1):121. https://www.ncbi.nlm.nih.gov/pubmed/26222892

DOI: 10.1002/mabi.201500193   PMID: 26222892

There is a need for new treatment strategies of acute myeloid leukemia (AML). In this study, four different drugs, including cytarabine, daunorubicin, GDC-0980, and JS-K, were investigated in vitro for the two-drug combinations treatment of AML. The results revealed that cytarabine and GDC-0980 had the strongest synergism. In addition, cell cycle analysis was conducted to investigate the effect of the different combinations on cell division. For future in vivo application, N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-cytarabine and GDC-0980 conjugates were synthesized, respectively. In vitro studies demonstrated that both conjugates had potent cytotoxicity and their combination also showed strong synergy, suggesting a potential chemotherapeutic strategy for future AML treatment.

[35]
Yang J, Zhang R, Radford D C, Kopeček J J. Controlled Release, 2015,218:36. https://www.ncbi.nlm.nih.gov/pubmed/26410808

DOI: 10.1016/j.jconrel.2015.09.045   PMID: 26410808

To develop a biodegradable polymeric drug delivery system for the treatment of ovarian cancer with the capacity for non-invasive fate monitoring, we designed and synthesized N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-epirubicin (EPI) conjugates. The polymer backbone was labeled with acceptor fluorophore Cy5, while donor fluorophores (Cy3 or EPI) were attached to HPMA copolymer side chains via an enzyme-cleavable GFLG linker. This design allows elucidating separately the fate of the drug and of the polymer backbone using fluorescence resonance energy transfer (FRET). The degradable diblock conjugate (2P-EPI) was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using a bifunctional chain transfer agent (Peptide2CTA). The pharmacokinetics (PK) and therapeutic effect of 2P-EPI (Mw ~100 kDa) were determined in mice bearing human ovarian carcinoma A2780 xenografts. Compared to 1st generation conjugate (P-EPI, Mw <50 kDa), 2P-EPI demonstrated remarkably improved PK such as fourfold terminal half-life (33.22 ± 3.18 h for 2P-EPI vs. 7.55 ± 3.18 h for P-EPI), which is primarily attributed to the increased molecular weight of the polymer carrier. Notably, complete tumor remission and long-term inhibition of tumorigenesis (100 days) were achieved in mice (n=5) treated with 2P-EPI. Moreover, in vitro cell uptake and intracellular drug release were determined via FRET intensity changes. The results establish a solid foundation for future in vivo tracking of drug delivery and chain scission of polymeric conjugates by FRET imaging.

[36]
Zhang L, Zhang R, Yang J, Wang J, Kopeček J . J. Controlled Release, 2016,235:306. https://www.ncbi.nlm.nih.gov/pubmed/27266365

DOI: 10.1016/j.jconrel.2016.06.004   PMID: 27266365

Recently, we developed 2nd generation backbone degradable N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-drug conjugates which contain enzymatically cleavable sequences (GFLG) in both polymeric backbone and side-chains. This design allows using polymeric carriers with molecular weights above renal threshold without impairing their biocompatibility, thereby leading to significant improvement in therapeutic efficacy. For example, 2nd generation HPMA copolymer-epirubicin (EPI) conjugates (2P-EPI) demonstrated complete tumor regression in the treatment of mice bearing ovarian carcinoma. To obtain a better understanding of the in vivo fate of this system, we developed a dual-labeling strategy to simultaneously investigate the pharmacokinetics and biodistribution of the polymer carrier and drug EPI. First, we synthesized two different types of dual-radiolabeled conjugates, including 1) (111)In-2P-EPI-(125)I (polymeric carrier 2P was radiolabeled with (111)In and drug EPI with (125)I), and 2) (125)I-2P-EPI-(111)In (polymeric carrier 2P was radiolabeled with (125)I and drug EPI with (111)In). Then, we compared the pharmacokinetics and biodistribution of these two dual-labeled conjugates in female nude mice bearing A2780 human ovarian carcinoma. There was no significant difference in the blood circulation between polymeric carrier and payload; the carriers ((111)In-2P and (125)I-2P) showed similar retention of radioactivity in both tumor and major organs except kidney. However, compared to (111)In-labeled payload EPI, (125)I-labeled EPI showed lower radioactivity in normal organs and tumor at 48h and 144h after intravenous administration of conjugates. This may be due to different drug release rates resulting from steric hindrance to the formation of enzyme-substrate complex as indicated by cleavage experiments with lysosomal enzymes (Tritosomes). A slower release rate of EPI(DTPA)(111)In than EPI(Tyr)(125)I was observed. It may be also due to in vivo catabolism and subsequent iodine loss as literature reported. Nevertheless, tumor-to-tissue uptake ratios of both radionuclides were comparable, indicating that drug-labeling strategy does not affect the tumor targeting ability of HPMA copolymer conjugates.

[37]
Tomalova B, Sirova M, Rossmann P, Pola R, Strohalm J, Chytil P, Cerny V, Tomala J, Kabesova M, Rihova B, Ulbrich K, Etrych T, Kovar M . J. Controlled Release, 2016,223:1. https://www.ncbi.nlm.nih.gov/pubmed/26708020

DOI: 10.1016/j.jconrel.2015.12.023   PMID: 26708020

Polymer drug carriers that are based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers have been widely used in the development and synthesis of high-molecular-weight (HMW) drug delivery systems for cancer therapy. In this study, we compared linear (Mw ~27kDa, Rh ~4nm) and non-degradable star (Mw ~250kDa, Rh ~13nm) HPMA copolymer conjugates bearing anthracycline antibiotic doxorubicin (DOX) bound via pH-sensitive hydrazone bond. We determined the in vitro and in vivo toxicity of both conjugates and their maximum tolerated dose (MTD). We also compared their anti-tumour activity in mouse B-cell leukaemia (BCL1) and a mouse T-cell lymphoma (EL4) model. We found that MTD was higher for the linear conjugate (85mgDOX/kg) and lower for the star conjugate (22.5mgDOX/kg). An evaluation of the intestinal barrier integrity using FITC-dextran as a gut permeability tracer proved that no pathology was caused by the MTD of either conjugate. However, free DOX showed some damage to the gut barrier. The therapy of BCL1 leukaemia by both of the polymeric conjugates using the MTD or its fraction (i.e., equitoxic dosage) showed better results in the case of the star conjugate. On the other hand, treatment of EL4 lymphoma seemed to be more efficient when the linear conjugate was used. We suppose that the anti-cancer treatment of solid tumours and leukaemias requires different types of drug conjugates. We hypothesise that the most suitable HPMA copolymer-DOX conjugate for the treatment of solid tumours should have an HMW structure with increased Rh that would be stable for three to four days after the conjugate administration and then rapidly disintegrate in the short polymer chains, which are excretable from the body by glomerular filtration. On the other hand, the treatment of leukaemia requires a drug conjugate with a long circulation half-life. This would provide an active drug, whilst slowly degrading to excretable fragments.

[38]
rová M, Strohalmb J, Chytil P, Lidick$\breve{y}$ O, Tomala J, $\breve{R}$íhová B, Etrych T . J. Controlled Release, 2017,246:1. https://www.ncbi.nlm.nih.gov/pubmed/27940304

DOI: 10.1016/j.jconrel.2016.12.004   PMID: 27940304

w 250,000gmol-1) of doxorubicin (Dox) or docetaxel (Dtx) designed for enhanced tumor accumulation and combination therapy. Although the combination of linear conjugates (Mw=28,000gmol-1) containing Dox or Dtx resulted in an additive effect in the treatment of the lymphoma, the opposite was observed in the combination of two star conjugates with Dox or Dtx, as the star Dtx conjugate decreased the treatment efficacy of the star Dox conjugate. The Dtx conjugate alone was virtually ineffective in the reduction of tumor growth or survival time extension; thus, a curative effect could be solely attributed to the Dox-containing conjugate. When Dtx was delivered to the tumor on the same polymer carrier as Dox, the efficacy of the Dox-induced treatment was reduced to a lesser extent. No reduction was found when Dtx was delivered by a linear polymer or applied as a free drug. The phenomenon was strictly related to the enhanced permeability and retention (EPR) effect, as it was not observed in BCL1 leukemia, a model without EPR. The diminished treatment outcome in the combination therapy with the two star conjugates was underlined by the significantly decreased accumulation of Dox in the tumor. The use of the drug-free polymer carrier instead of the Dtx-containing star conjugate did not reduce the treatment efficacy of the Dox conjugate. Thus, the physicochemical characteristics of the polymer carrier designed for tumor-specific drug delivery systems control the activity of the respective drug, leading to changes within the tumor microenvironment that can determine ultimate efficacy of the combination therapy.]]>

[39]
Cuchelkar V, Kopecková P, Kopeček J . Macromol. Biosci., 2008,8(5):375. https://www.ncbi.nlm.nih.gov/pubmed/18215003

DOI: 10.1002/mabi.200700240   PMID: 18215003

Novel polymeric delivery systems for the photosensitizer mesochlorin e6 (Mce6) were synthesized to overcome problems of systemic toxicity. A disulfide bond was included to allow for quick release of Mce6 from the N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer backbone once internalized in tumor tissue. The synthesized conjugates demonstrated a time-dependent reductive cleavage with an accompanying increase in the quantum yield of singlet oxygen generation on exposure to DTT. Quicker release kinetics and a higher cytotoxicity in SKOV-3 human ovarian carcinoma cells were obtained as compared to polymer conjugate with a proteolytically cleavable GFLG spacer. These novel conjugates hold promise as clinically relevant drug delivery systems for photodynamic therapy of cancer.

[40]
Shi J, Johnson R N, Schellinger J G, Carlson P M, Pun S H . Int. J. Pharm., 2012,427(1):113. https://www.ncbi.nlm.nih.gov/pubmed/21893178

DOI: 10.1016/j.ijpharm.2011.08.015   PMID: 21893178

Biodegradability can be incorporated into cationic polymers via use of disulfide linkages that are degraded in the reducing environment of the cell cytosol. In this work, N-(2-hydroxypropyl)methacrylamide (HPMA) and methacrylamido-functionalized oligo-l-lysine peptide monomers with either a non-reducible 6-aminohexanoic acid (AHX) linker or a reducible 3-[(2-aminoethyl)dithiol] propionic acid (AEDP) linker were copolymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Both of the copolymers and a 1:1 (w/w) mixture of copolymers with reducible and non-reducible peptides were complexed with DNA to form polyplexes. The polyplexes were tested for salt stability, transfection efficiency, and cytotoxicity. The HPMA-oligolysine copolymer containing the reducible AEDP linkers was less efficient at transfection than the non-reducible polymer and was prone to flocculation in saline and serum-containing conditions, but was also not cytotoxic at charge ratios tested. Optimal transfection efficiency and toxicity were attained with mixed formulation of copolymers. Flow cytometry uptake studies indicated that blocking extracellular thiols did not restore transfection efficiency and that the decreased transfection of the reducible polyplex is therefore not primarily caused by extracellular polymer reduction by free thiols. The decrease in transfection efficiency of the reducible polymers could be partially mitigated by the addition of low concentrations of EDTA to prevent metal-catalyzed oxidation of reduced polymers.

[41]
Schellinger J G, Pahang J A, Johnson R N, Chu D S H, Sellers D L, Maris D O, Convertine A J, Stayton P S, Horner P J, Pun S H . Biomaterials, 2013,34(9):2318. https://www.ncbi.nlm.nih.gov/pubmed/23261217

DOI: 10.1016/j.biomaterials.2012.09.072   PMID: 23261217

Non-viral gene delivery systems capable of transfecting cells in the brain are critical in realizing the potential impact of nucleic acid therapeutics for diseases of the central nervous system. In this study, the membrane-lytic peptide melittin was incorporated into block copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The first block, designed for melittin conjugation, was composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and pyridyl disulfide methacrylamide (PDSMA) and the second block, designed for DNA binding, was composed of oligo-l-lysine (K10) and HPMA. Melittin modified with cysteine at the C-terminus was conjugated to the polymers through the pyridyl disulfide pendent groups via disulfide exchange. The resulting pHgMelbHK10 copolymers are more membrane-lytic than melittin-free control polymers, and efficiently condensed plasmid DNA into salt-stable particles (~100-200 nm). The melittin-modified polymers transfected both HeLa and neuron-like PC-12 cells more efficiently than melittin-free polymers although toxicity associated with the melittin peptide was observed. Optimized formulations containing the luciferase reporter gene were delivered to mouse brain by intraventricular brain injections. Melittin-containing polyplexes produced about 35-fold higher luciferase activity in the brain compared to polyplexes without melittin. Thus, the melittin-containing block copolymers described in this work are promising materials for gene delivery to the brain.

[42]
Boyer C, Whittaker M R, Nouvel C, Davis T P . Macromolecules, 2010,43(4):1792.
[43]
Utama R H, Guo Y, Zetterlund P B, Stenzel M H . Chem. Commun., 2012,48(90):11103. https://www.ncbi.nlm.nih.gov/pubmed/23041953

DOI: 10.1039/c2cc36116g   PMID: 23041953

Hollow polymeric nanoparticles with a hydrophilic liquid core have been synthesized in a one-pot approach via a novel inverse miniemulsion periphery RAFT polymerization process. Successful encapsulation and release of a model protein is reported as a potential application.

[44]
Utama R H, Stenzel M H, Zetterlund P B . Macromolecules, 2013,46(6):2118.
[45]
Apostolovic B, Deacon S P, Duncan R, Klok H A . Biomacromolecules, 2010,11(5):1187. https://www.ncbi.nlm.nih.gov/pubmed/20359192

DOI: 10.1021/bm901313c   PMID: 20359192

This article reports the design, synthesis and results of first in vitro model studies of a conceptually novel class of polymer therapeutics in which the cargo is attached to a polymer backbone via a noncovalent, biologically inspired coiled coil linker, which is formed by heterodimerization of two complementary peptide sequences that are linked to the polymer carrier and the cargo, respectively. In contrast with the polymer-drug conjugates prepared so far, in which the drug is typically attached via an enzymatically or hydrolytically cleavable linker, the noncovalent polymer therapeutics proposed in this article offer several potential advantages, including facile access to combination therapeutics and rapid production of compound libraries to screen for structure-activity relationships. Furthermore, the coiled coil based peptide linkers may not only be useful to bind and release guests but may also play an active role in enhancing and directing intracellular transport and trafficking, which may make these constructs of particular interest for the cytosolic delivery of biomolecular therapeutics.

[46]
Wu K, Liu J, Johnson R N, Yang J, Kopeček J . Angew. Chem., 2010,122:1493.
[47]
Apostolovic B, Deacon S P E, Duncan R, Klok H A . Macromol. Rapid Commun., 2011,32(1):11. https://www.ncbi.nlm.nih.gov/pubmed/21432965

DOI: 10.1002/marc.201000434   PMID: 21432965

This paper reports on the cell uptake and trafficking properties of a series of non-covalent polymer-drug conjugates. These nanomedicines are composed of a poly(N-(2-hydroxypropyl)methacrylamide) backbone functionalized with multiple copies of a drug. The drug moieties are attached to the polymer via a non-covalent, so called coiled coil motif, which is formed by heterodimerization of two complementary peptide strands, one of which is attached to the polymer carrier and the other to the drug. Cytotoxicity and FACS experiments, which were carried out with model anticancer drug or fluorophore conjugates, provided insight into the cell uptake and trafficking behavior of these conjugates.

[48]
Griffiths P C, Paul A, Apostolovic B, Klok H A, Luca E, King S M, Heenan R K . J. Controlled Release, 2011,153(2):173.
[49]
Novo L, Gaal E V B V, Mastrobattista E, Nostrum C F, Hennink W E . J. Controlled Release, 2013,169(3):246. https://www.ncbi.nlm.nih.gov/pubmed/23583705

DOI: 10.1016/j.jconrel.2013.03.035   PMID: 23583705

The clinical applicability of polymers as gene delivery systems depends not only on their efficiency, but also on their safety. The cytotoxicity of these systems remains a major issue, mainly due to their cationic nature. Therefore, it is highly preferable to have a system based on biocompatible neutral polymers, lacking polycations, without compromising the DNA condensing and protecting capacities. Here, we introduce a concept to obtain a neutral polymeric gene delivery system, through a 3-step process (charge-driven condensation; stabilization through disulfide crosslinking; polyplex decationization) to generate polyplexes with a core of disulfide crosslinked poly(hydroxypropyl methacrylamide) (pHPMA) in which plasmid DNA (pDNA) is entrapped and a shell of poly(ethylene glycol) (PEG). The resulting polyplexes combine beneficial features of high and stable DNA loading capacity, stealth behavior and reduced toxicity. The nanoparticles are designed to release the pDNA after cellular uptake through cleavage of disulfide crosslinks within the intracellular reducing environment. This was shown by forced introduction of the polyplexes into the cytosol of HeLa cells by electroporation, which resulted in a high level of expression of the reporter gene. Additionally, the decationized polyplexes showed no interference on the cellular cell viability or metabolic activity (even at high dose) and no complex-induced membrane destabilization. Furthermore, decationized polyplexes showed a low degree of non-specific uptake, which is a highly favorable property for targeted therapy. Summarizing, the stabilized, decationized polyplexes presented here contribute to solve the high toxicity, low stability and lack of cellular/tissue specificity of cationic polymer based gene delivery systems.

[50]
Shan W, Zhu X, Liu M, Li L, Zhong J, Sun W, Zhang Z, Huang Y . ACS Nano, 2015,9(3):2345. https://www.ncbi.nlm.nih.gov/pubmed/25658958

DOI: 10.1021/acsnano.5b00028   PMID: 25658958

Nanoparticles (NPs) have demonstrated great potential for the oral delivery of protein drugs that have very limited oral bioavailability. Orally administered NPs could be absorbed by the epithelial tissue only if they successfully permeate through the mucus that covers the epithelium. However, efficient epithelial absorption and mucus permeation require very different surface properties of a nanocarrier. We herein report self-assembled NPs for efficient oral delivery of insulin by facilitating both of these two processes. The NPs possess a nanocomplex core composed of insulin and cell penetrating peptide (CPP), and a dissociable hydrophilic coating of N-(2-hydroxypropyl) methacrylamide copolymer (pHPMA) derivatives. After systematic screening using mucus-secreting epithelial cells, NPs exhibit excellent permeation in mucus due to the "mucus-inert" pHPMA coating, as well as high epithelial absorption mediated by CPP. The investigation of NP behavior shows that the pHPMA molecules gradually dissociate from the NP surface as it permeates through mucus, and the CPP-rich core is revealed in time for subsequent transepithelial transport through the secretory endoplasmic reticulum/Golgi pathway and endocytic recycling pathway. The NPs exhibit 20-fold higher absorption than free insulin on mucus-secreting epithelium cells, and orally administered NPs generate a prominent hypoglycemic response and an increase of the serum insulin concentration in diabetic rats. Our study provides the evidence of using pHPMA as dissociable "mucus-inert" agent to enhance mucus permeation of NPs, and validates a strategy to overcome the multiple absorption barriers using NP platform with dissociable hydrophilic coating and drug-loaded CPP-rich core.

/


AI


AI小编
你好!我是《化学进展》AI小编,有什么可以帮您的吗?