English
新闻公告
More

图/表 详细信息

基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用
葛明, 胡征, 贺全宝
化学进展, 2021, 33(9): 1648-1664.   DOI: 10.7536/PC200851

Catalyst Application in AOPs Mechanism for organic
pollutants degradation
Methods for the
enhancement of activity
ZnFe2O4 (1)Fenton [19~21] ≡Fe3+ + e- → ≡Fe2+;
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[20,21]
(2)Photocatalysis [13,41,43~44,46~52,54,56] ZnFe2O4 + hν → e- + h+O2 + e- O 2 · - O 2 · -/h+ + pollutants → degradation
products
Carbon modification [49,52]
Construction of heterojunction [13,44,46~52,54]
NiFe2O4 (1)Fenton [22~24] ≡Fe3+ + e- → ≡Fe2+;
≡Ni2+ + ≡Fe3+ → ≡Fe2+ + ≡Ni3+
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[23,24]
(2)Photocatalysis [14,57,61,62,66] NiFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation
products
Metal deposition [57,61]
Construction of heterojunction [14,62,66]
CoFe2O4 (1)Fenton [27~30] ≡Co2+ + H2O2→·OH + ≡Co3+ + OH-
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification[28,29]
(2)Photocatalysis [15,60,64,67,68] CoFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation
products
Carbon modification[60]
Construction of heterojunction [15,64,67,68]
(3)Persulfate oxidation [72~79] ≡Co2+-OH-+ HSO 5 -→≡CoO++ SO 4 · -+H2O
≡Fe3+ + HSO 5 -→ ≡Fe2+ + SO 5 · - + H+
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
SO 4 · -+H2O → SO 4 2 -+ ·OH + H+
SO 4 · -/·OH + pollutants → degradation products
Metallic oxide modification [74,75]
Carbon modification [76~78]
CuFe2O4 (1)Fenton [12,35,37~40] ≡Cu+ + H2O2→·OH + ≡Cu2+ + OH-
≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification [37,38,40]
Metal modification [12]
(2)Photocatalysis [16,58,65] CuFe2O4 + hν → e- + h+O2 + e- O 2 · -
O 2 · -/h+ + pollutants → degradation products
Construction of heterojunction [16,65]
Metal deposition [58]
(3)Persulfate oxidation [17,80~91] ≡Cu+ + HSO 5 -→ ≡Cu2+ + SO 4 · - + OH-
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
≡Fe2+ + HSO 5 - → ≡Fe3+ + SO 4 2 - + ·OH
≡Cu+ + HSO 5 - → ≡Cu2+ + SO 4 2 - + ·OH
S2 O 8 2 - + ≡Cu+→≡Cu2+ + SO 4 · -+ SO 4 2 -
S2 O 8 2 - + ≡ Fe 2 +→≡Fe3++ SO 4 · -+ SO 4 2 -
SO 4 · -/·OH + pollutants → degradation products
Metal modification [17]
Carbon modification [87,88,91]
Metallic oxide modification [86]
MnFe2O4 (1)Fenton [31,33,34] Mn 2 ++ H2O2→·OH + ≡ Mn 3 + + OH-≡Fe2+ + H2O2→·OH + ≡Fe3+ + OH-
·OH + pollutants → degradation products
Carbon modification [33]
(2)Persulfate oxidation [92~100] Mn 2 + + HSO 5 -→ ≡ Mn 3 ++ SO 4 · - + OH-
≡Fe2+ + HSO 5 -→ ≡Fe3+ + SO 4 · - + OH-
S2 O 8 2 - + ≡ Mn 2 +→ ≡Mn3++ SO 4 · -+ SO 4 2 -
SO 4 · -+H2O → SO 4 2 -+ ·OH + H+
SO 4 · -/·OH + pollutants → degradation products
Carbon modification [95,99]
Metallic oxide modification [97,100]
表4 不同铁氧体在3类高级氧化技术中的应用、催化机制以及活性增强方法的比较
本文的其它图/表