1 引言
2 氟代碳酸酯类溶剂
表1 氟代碳酸酯类电解液的电池性能Table 1 Cell performance of fluorinated carbonate based electrolytes |
Fluorinated carbonate | Electrolyte | Batteries | Cycling Condition | Cell Performance | Ref |
---|---|---|---|---|---|
Fluorinated cyclic carbonate | 1.2 M LiPF6-FEC | Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 1050 h | 34 |
1 M LiPF6-FEC∶EMC(1∶3, by vol) | Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 900 h | 35 | |
Li||NMC622 | 2.7~4.3 V, 1 C | 70%@250 cycles | |||
1 M LiPF6-FEC∶DMC(1∶4, by vol) | Li||Li | 2 mA·cm-2, 3.3 mAh·cm-2 | 3600 h | 36 | |
1 M LiPF6-DFEC∶DEC(1∶1, by vol) | Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 800 h | 38 | |
Li||NMC811 | 2.8~4.5 V, 0.2 C | 91%@300 cycles | |||
7 M LiFSI-FEC | Li||Li | 0.25 mA·cm-2, 0.25 mAh·cm-2 | 300 h | 39 | |
Li||LNMO | 3.0~5.0 V, 0.36 C | 78%@130 cycles | |||
2 M LiPF6-EC∶DME (1∶1, by vol)+50% FEC | Li||Cu | 0.2 mA·cm-2 | CE: 98%@1066 h | 40 | |
4 M LiTFSI+0.5 M LiDFOB-FEC∶DMC(3∶7, by vol) | Li||Cu | 0.5 mA·cm-2 | CE: 98%@900 cycles | 41 | |
Li||LNMO | 3.5~4.9 V, 1 C | 88.5%@500 cycles | |||
Li soaked in FEC, 1 M LiPF6-ACN | Li||Li | 0.1 mA·cm-2 | 1500 h | 42 | |
Li||LiFePO4 | 2.2~4.2 V, 0.2 C | 82%@500 cycles | |||
Li soaked in FEC, 1 M LiPF6-EC∶DEC(2∶1, by vol) | Li||NMC | 3.0~4.3 V, 0.5 C | 68.2%@120 cycles | 43 | |
Fluorinated linear carbonate | 1 M LiPF6+0.02 M LiDFOB- FEC∶FDEC∶TTE(2∶6∶2, by vol) | Li||LiCoMnO4 | 3.0~5.3 V, 1 C | 80%@1000 cycles | 44 |
1 M LiPF6-asymFDEC∶FEC∶VC (8∶2∶0.5, by vol) | Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 98.97% | 45 | |
Li||NMC811 | 3.0~4.35 V, 0.5 C | 80%@240 cycles | |||
1 M LiPF6-FEC∶FEMC∶TTE (2∶6∶2, by vol) | Li||NMC811 | 2.7~4.3 V, 0.5 C | 90%@400 cycles | 46 |
2.1 氟代环状碳酸酯类溶剂
图1 (a) 1.2 mol/L LiPF6-FEC电解液的锂金属电极的高倍TEM图像[34]; (b) 1 mol/L LiPF6-EC∶DEC(1∶1,体积比)、(c) 1 mol/L LiPF6-FEC∶DEC(1∶1,体积比)、(d)1 mol/L LiPF6-DFEC/DEC(1∶1,体积比)电解液中锂离子溶剂化鞘动态演化示意图[38];(e) 高浓度 FEC 基电解液对 SEI 层主要贡献;(f) FEC 电解液及不含 FEC 电解液的长循环库仑效率[41];(g) 锂金属负极经 FEC 处理后形成双层膜的示意图[43]Fig. 1 (a) HR-TEM image of lithium metal anode in the electrolyte of 1.2 mol/L LiPF6-FEC[34]. Copyright 2023, American Chemical Society ; Schematic diagram of the dynamic evolution of Li+ solvated sheath in the electrolytes of (b) 1 M LiPF6-EC/DEC(1∶1, by vol), (c) 1 mol/L LiPF6-FEC/DEC(1∶1, by vol), (d) 1 mol/L LiPF6-DFEC/DEC(1∶1, by vol)[38], Copyright 2023, American Chemical Society; (e) The main contribution of FEC-based HCE to the SEI layer, Copyright 2021, Wiley-VCH GmbH; (f) Coulombic efficiency of FEC electrolytes and FEC-free electrolytes[41]. Copyright 2020, American Chemical Society; (g) The formation of a double-layer film on lithium metal anode after FEC treatment[43]. Copyright 2018, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
2.2 氟代线性碳酸酯类溶剂
3 氟代醚类溶剂
表2 不同氟代醚类电解液的电池性能Table 2 Cell performance of fluorinated ether based electrolytes |
Fluoroether solvents | Electrolyte | Batteries | Cycling Conditions | Cell Performance | Ref |
---|---|---|---|---|---|
Fluorinated cyclic ether | 1 M LiFSI-DME∶TFF (1∶2.7, by vol) | Li||Cu | 5 mA·cm-2, 0.5 mAh·cm-2 | CE: 99.4% | 51 |
Li||NMC811 | 2.8~4.3 V, 0.2 CC/0.3 CD | 75%@300 cycles | |||
1 M LiDFOB+0.4 M LiBF4-DME∶HFTFP (1∶4, by vol) | Li||NMC811 | 2.8~4.3 V, 0.2 CC/0.3 CD | 80%@190 cycles | 53 | |
2 M LiFSI-cFTOF | Li||NMC811 | 3.0~4.3 V, 0.5 C | 100%@112 cycles | 52 | |
2 M LiFSI-DTDL | Li||NMC811 | 2.8~4.2 V, 0.5 C | 84%@200 cycles | 54 | |
1.5 M LiFSI-TTD∶DME (8∶2, by vol) | Li||NMC811 | 2.8~4.7 V, 0.5 C | 80%@100 cycles | 55 | |
Fluorinated linear ether | 1 M LiFSI-E3F1 | Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 700 h | 56 |
Li||Cu | 0.5 mA·cm-2 | CE: 98.9% | |||
2 M LiFSI-TTME∶DME (4∶1, by vol) | Li||Li | 0.5 mA·cm-2, 1 mAh·cm-2 | 3200 h | 57 | |
Li||Cu | 1 mA·cm-2 | CE: 99.3% | |||
Li||LCO | 3.0~4.5 V, 0.3 C | 85%@170 cycles | |||
2 M LiFSI-PXEO-CF3 | Li||Cu | 5 mA·cm-2 | CE: 99.2% | 58 | |
Li||SPAN | 1.0~3.0 V, 4 C | 89.8%@1500 cycles | |||
2 M LiFSI-TMDMP | Li||Li | 1 mA·cm-2, 1 mA·cm-2 | 1600 h | 59 | |
Li||Cu | 1 mA·cm-2 | CE: 99.6% | |||
Li||NMC811 | 2.8~4.4 V, 0.1 C | 81%@200 cycles | |||
1 M LiFSI-FDMB | Li||NMC532 | 3.0~4.2 V, 0.3 C | 90%@420 cycles | 61 | |
1 M LiFSI-FDMH∶DME (6∶1, by vol) | Li||Cu | 1 mA·cm-2 | CE: 99.5% | 62 | |
Li||NMC532 | 3.0~4.2 V, 0.3 C | 84%@250 cycles | |||
Partial fluorinated linear ether | 1.4 M LiFSI-BDE∶DME (1∶6, by vol) | Li||Li | 0.5 mA·cm-2, 1 mAh·cm-2 | 2000 h | 65 |
Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 99.6% | |||
1 M LiFSI-BFE | Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 99.8% | 66 | |
LiFSI∶FDEE∶TTE (1∶1.6∶3, by mol) | Li||Li | 10 mA·cm-2, 1 mAh·cm-2 | 800 h | 67 | |
Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 99.4% | |||
Li||NMC811 | 2.8~4.7 V, 0.3 C | 92%@150 cycles | |||
1.2 M LiFSI-F4DEE | Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 99.5% | 68 | |
1.2 M LiFSI-F5DEE | Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 99.9% | 68 | |
Li||NMC811 | 2.8~4.4 V, 0.1 CC/0.3 CD | 80%@270 cycles | |||
2.1 M LiFSI-F2EMP | Li||Cu | 0.5 mA·cm-2, 1 mAh·cm-2 | CE: 99.35% | 69 | |
Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 1200 h |
3.1 氟代环状醚类溶剂
图5 (a) 1 mol/L LiFSI-DME循环30次后的沉积锂形态[51];(b) 1mol/L LiFSI-DME/TFF循环30次后的沉积锂形态[51];(c) D-HFTHP 中锂金属上的SEI的 Cryo-TEM 图像[53]; (d) 1 mol/L LiFSI-cFTOF电解液的拉曼光谱[52];(e) 1 mol/L LiFSI-cFTOF电解液的红外光谱[52] (f) DTDL电解液中锂离子配位结构示意图[54];(g) 1.5 mol/L LiFSI-TTD∶DME (8∶2, 体积比)电解液的拉曼光谱[55];(h) 1.5 mol/L LiFSI-TTD∶DME (8∶2, 体积比)电解液的红外光谱[55]Fig.5 Deposited Li morphology after 30 cycles at 0.75 mA cm-2 and 1.5 mAh cm-2 using different electrolytes[51] (a) 1 mol/L LiFSI-DME ; (b) 1 mol/L LiFSI-DME/TFF. Copyright 2023 , The Authors. Angewandte chemie international Edinon published by Wiley-VCH GmbH ; (c) Cryo-TEM image of SEI on lithium metal in D-HFTHP[53]. Copyright 2024, The Author(s), under exclusive licence to Springer Nature Limited; (d) Raman spectra of 1mol/L LiFSI-cFTOF electrolyte[52]; (e) FT-IR spectra of 1mol/L LiFSI-cFTOF electrolyte[52]. Copyright 2022 , The Authors. Angewandte chemie linternational Edition published by Wiley-VCH GmbH (f) Schematic diagrams of lithium-ion coordination structure in DTDL electrolyte[54]. Copyright 2022, The Author(s); (g) Raman spectra of 1.5 mol/L LiFSI-TTD∶DME (8∶2, by vol) electrolytes[55]; (h) FT-IR spectra of 1.5 mol/L LiFSI-TTD∶DME (8∶2, by vol) electrolyte[55]. Copyright 2022, American Chemical Society |
3.2 氟代线性醚类溶剂
图7 (a) EnF1系列化合物离子电导率数据图[56];(b) EnF2系列化合物离子电导率数据图[56];(c)TTME电解液的溶剂化结构[57];(d) PXEO-CF3电解液的拉曼光谱[58];(e) TFDMP与DME和DMP的静电势能对比图[59];(f) FDMH分子设计原理[62]Fig.7 (a) Ionic conductivity of EnF1 based electrolytes[56] ; (b) Ionic conductivity of EnF2 based electrolytes[56]. Copyright 2021, American Chemical Society; (c) Solvation structure of TTME electrolyte[57]. Copyright 2023, Science Press and Dalian institute ofchemical Physics, Chinese Academy of Sciences. Published by ELSEViER B.V. and Science Pres. All rights reserved; (d) Raman spectra of PXEO-CF3 electrolyte[58]. Copyright 2024, Wiley-VCH GmbH; (e) Electrostatic potential (ESP) maps of DME, DMP and TFDMP solvents with front and back views,[59]. Copyright 2023, The Author(s); (f) Diagram of the design strategy for dual-solvent electrolytes using DME as the co-solvent[62]. Copyright 2021, Wiley-VCH GmbH |
3.3 部分氟代醚类溶剂
图9 (a) BDE/DME电解液溶剂化结构示意图[65];(b) BFE 基电解液19F NMR图谱[66];(c) FDEE溶剂化结构示意图[67];(d) 氟化-1,2-二乙氧基乙烷系列电解液离子电导率[68];(e) EMP和氟化EMP电解液离子电导率[69];(f) EMP和氟化EMP电解液的 7Li 核磁共振图[69]Fig.9 (a) The proposed unique solvation structure of BDE/DME electrolyte[65]. Copyright 2022, Elsevier Ltd. All rights reserved; (b) 19F NMR of BFE before and after the salt dissolution[66]. Copyright 2023, The Author(s); (c) Solvation structure of FDEE electrolyte[67]. Copyright 2023, American Chemical Society; (d) Ionic conductivity of fluorinated 1,2-diethoxyethane based electrolytes[68]. Copyright 2022, The Author(s); (e) Ionic conductivity of EMP and fluorinated EMP electrolytes[69]; (f) 7Li NMR of EMP and fluorinated EMP electrolytes[69]. Copyright 2024, American Chemical Society |
4 其他氟代溶剂
图10 氟代羧酸酯、氟代硅氧烷、氟代腈类分子的结构示意图Fig.10 Chemical structures of fluorinated carboxylic ester, fluorinated silane and fluorinated nitrile molecules |
表3 氟代羧酸酯、氟代硅烷、氟代腈类电解液的电池性能Table 3 Cell performance of fluorinated carboxylic ester, fluorinated silane, and fluorinated nitrile |
Other fluorinated solvents | Electrolyte and Amount | Batteries | Cycling Condition | Cell Performance | Ref |
---|---|---|---|---|---|
Fluorinated carboxylic ester | 1 M LiPF6-MTFP∶FEC (9∶1, by vol) | Li||NMC811 | 4.5 V, 0.5 C | 80%@250 cycles | 71 |
Fluorinated silane | 2.2 M LiFSI-DMOTFS | Li||NMC811 | 3~4.7 V, 0.5 C | 82.8%@180 cycles | 74 |
3 M LiFSI-FMS | Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 1200 h | 75 | |
Li||Cu | 1 mA·cm-2, 1 mAh·cm-2 | CE: 99.1% | |||
1.5 M LiFSI-TFPDS | Li||LCO | 3~4.6 V, 0.5 C | 90%@320 cycles | 76 | |
Fluorinated nitrile | 0.8 M LiTFSI+0.2 M LiDFOB-FEON∶FEC (1∶3, by vol) | Li||Li | 1 mA·cm-2, 1 mAh·cm-2 | 600 h | 79 |
Li||Cu | 1 mA·cm-2, 0.5 mAh·cm-2 | CE: 98.6% |
图11 TEM测试三种氟代羧酸酯SEI层形貌[72](a) EFA-FEC基电解液、(b) EDFA-FEC基电解液、(c) ETFA-FEC基电解液;(d) FSI--2F-的可能还原分解产物以及反应能(kJ·mol-1)[74];(e) FEON基电解液的LSV[78]Fig.11 TEM images of Gr electrode cycled in (a) EFA-FEC, (b) EDFA-FEC, and (c) ETFA-FEC[72]. Copyright 2023, Wiley-VCH GmbH; (d) Possible reductive decomposition products of FSI--2F- of together with the reaction energy (kJ·mol-1)[74]. Copyright 2022, The Author(s); (e)The LSV test of FEON-based electrolyte[78]. Copyright 2022, Royal Society of Chemistry |