English
新闻公告
More
研究论文

病理生理过程中ONOO小分子荧光探针的构建及应用

  • 马婷 1, 2, 3 ,
  • 邓春宇 1, 2, 3 ,
  • 李杰 1, 2, 3 ,
  • 王周玉 , 1, 2, 3, * ,
  • 周倩 1, 2, 3, * ,
  • 余孝其 , 1, 2, 3, *
展开
  • 1 西华大学理学院,四川省小分子靶向诊疗药物工程研究中心,不对称合成与手性技术四川省重点实验室, 成都 610039)<br

余孝其 教授,博士生导师,教育部长江学者特聘教授,国家杰出青年基金获得者,新世纪百千万人才工程国家级人选,享受国务院政府特殊津贴专家,四川省学术与技术带头人。兼任中国化学会理事,中国化学会化学生物学专业委员会委员,中国化学会超分子化学专业委员会委员,四川省化学化工学会副理事长。主要从事生物荧光探针、生物医学材料化学等领域的研究。共出版专著1部、参编教材和专著6章/节;发表SCI收录论文500 余篇;获授权专利 30 余项;获教育部自然科学一等奖1项,四川省科技进步奖二等奖3项、三等奖1项,四川省教学成果一等奖1项、二等奖1项。

收稿日期: 2024-09-04

  修回日期: 2025-01-20

  网络出版日期: 2025-03-19

基金资助

国家自然科学基金项目(22307104)

四川省自然科学基金项目(2023NSFSC0637)

四川省自然科学基金项目(2023NSFSC1977)

Construction and Application of ONOO Small Molecule Fluorescent Probes in Pathophysiological Processes

  • Ting Ma 1, 2, 3 ,
  • Chunyu Deng 1, 2, 3 ,
  • Jie Li 1, 2, 3 ,
  • Zhouyu Wang , 1, 2, 3, * ,
  • Qian Zhou 1, 2, 3, * ,
  • Xiaoqi Yu , 1, 2, 3, *
Expand
  • 1 School of Science, Xihua University
  • 2 Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs
  • 3 Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, China
* Corresponding author e-mail: (Zhou-Yu Wang);zhouq@mail.xhu.edu.cn(Qian Zhou);xqyu@scu.edu.cn(Xiao-Qi Yu)

Received date: 2024-09-04

  Revised date: 2025-01-20

  Online published: 2025-03-19

Supported by

the National Natural Science Foundation of China(22307104)

Sichuan Science and Technology Program(2023NSFSC0637)

Sichuan Science and Technology Program(2023NSFSC1977)

摘要

ONOO由一氧化氮和超氧自由基在扩散控制下反应产生,是一种强氧化剂和硝化剂,会对细胞中的DNA、蛋白质和其他生物分子造成损伤。由于ONOO在生理条件下寿命短、反应活性高、浓度低且在生物系统中发挥的病理生理角色尚未完全清楚,因此开发高灵敏、高选择性的检测技术实现ONOO的实时动态监测具有十分重要的意义。本文综述了近5年ONOO荧光探针在疾病相关过程中的研究进展,揭示了ONOO在各种疾病中的潜在作用,如炎症、肿瘤、肝损伤和脑部疾病等。最后,针对ONOO探针的开发瓶颈和未来发展趋势展开讨论,这将促进ONOO探针在化学、生物学、药理学等方面的应用。

本文引用格式

马婷 , 邓春宇 , 李杰 , 王周玉 , 周倩 , 余孝其 . 病理生理过程中ONOO小分子荧光探针的构建及应用[J]. 化学进展, 2025 . DOI: 10.7536/PC240815

Abstract

ONOO, produced by the diffusion-controlled reaction of nitric oxide and superoxide radicals, is a strong oxidizing and nitrating agent that causes damage to DNA, proteins, and other biomolecules in cells. Since ONOO is characterized by its short lifetime, high reactivity, and low concentration under physiological conditions, and the pathophysiological roles it plays in biological systems are not yet fully understood, it is of great significance to develop highly sensitive and selective detection technologies to achieve real-time dynamic monitoring of ONOO. In this paper, we review the research progress of ONOO fluorescent probes in disease-related processes in the recent 5 years, revealing the potential role of ONOO in various diseases, such as inflammation, tumors, liver injury, and brain diseases. Finally, the bottlenecks in the development of ONOO probes and future trends are discussed, which will promote the application of ONOO probes in chemistry, biology, and pharmacology.

Contents

1 Introduction

2 Design strategy of ONOO fluorescent probe

3 Detection and imaging of ONOO by fluorescent probes in disease-related processes

3.1 Detection and imaging of ONOO in inflammation

3.2 Detection and imaging of ONOO in tumors

3.3 Detection and imaging of ONOO in Liver Injuries

3.4 Detection and Imaging of ONOO in Brain diseases

3.5 Detection and imaging of ONOO in other disease models

4 Conclusion and outlook

[1]
Szabó C, Ischiropoulos H, Radi R. Nat Rev Drug Discov, 2007, 6: 662-680.

[2]
Ferrer-Sueta G, Radi R. ACS Chem. Biol., 2009, 4: 161-177.

[3]
Piacenza L, Zeida A, Trujillo M, Radi R. Physiological Reviews, 2022, 102: 1881-1906.

[4]
Prolo C, Piacenza L, Radi R. Current Opinion in Chemical Biology, 2024, 80: 102459.

[5]
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Chem. Rev., 2018, 118: 1338-1408.

[6]
Tcyganov E N, Sanseviero E, Marvel D, Beer T, Tang H-Y, Hembach P, Speicher D W, Zhang Q, Donthireddy L R, Mostafa A, Tsyganova S, Pisarev V, Laufer T, Ignatov D, Ferrone S, Meyer C, Maby-El Hajjami H, Speiser D E, Altiok S, Antonia S, Xu X, Xu W, Zheng C, Schuchter L M, Amaravadi R K, Mitchell T C, Karakousis G C, Yuan Z, Montaner L J, Celis E, Gabrilovich D I. Cancer Cell, 2022, 40: 1173-1189.e6.

[7]
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A. Journal of Experimental Medicine, 2011, 208: 1949-1962.

[8]
Barker C E, Thompson S, O’Boyle G, Lortat-Jacob H, Sheerin N S, Ali S, Kirby J A. Sci Rep, 2017, 7: 44384.

[9]
Logan I E, Nguyen K T, Chatterjee T, Manivannan B, Paul N P, Kim S R, Sixta E M, Bastian L P, Marean-Reardon C, Karajannis M A, Fernández-Valle C, Estevez A G, Franco M C. Redox Biology, 2024, 75: 103249.

[10]
Franco M C, Ye Y, Refakis C A, Feldman J L, Stokes A L, Basso M, Melero Fernández De Mera R M, Sparrow N A, Calingasan N Y, Kiaei M, Rhoads T W, Ma T C, Grumet M, Barnes S, Beal M F, Beckman J S, Mehl R, Estévez A G. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:.

[11]
Jandy M, Noor A, Nelson P, Dennys C N, Karabinas I M, Pestoni J C, Singh G D, Luc L, Devyldere R, Perdomo N, Mitchell C E, Adams L, Fuse M A, Mendoza F A, Marean-Reardon C L, Mehl R A, Estevez A G, Franco M C. Redox Biology, 2022, 50: 102247.

[12]
Wiseman H, Halliwell B. Biochemical Journal, 1996, 313: 17-29.

[13]
Schieke S M, Briviba K, Klotz L O, Sies H. FEBS Letters, 1999, 448: 301-303.

[14]
Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Progress in Neurobiology, 2009, 87: 181-194.

[15]
Grivennikov S I, Greten F R, Karin M. Cell, 2010, 140: 883-899.

[16]
Shuhendler A J, Pu K, Cui L, Uetrecht J P, Rao J. Nat Biotechnol, 2014, 32: 373-380.

[17]
Prolo C, Rios N, Piacenza L, Álvarez M N, Radi R. Free Radical Biology and Medicine, 2018, 128: 59-68.

[18]
Li M L, Gong X J, Li H W, Han H, Shuang S M, Song S M, Dong C. Analytica Chimica Acta, 2020, 1106: 96-102.

[19]
Yermilov V, Rubio J, Ohshima H. FEBS Letters, 1995, 376: 207-210.

[20]
Vasilescu A, Gheorghiu M, Peteu S. Microchim Acta, 2017, 184: 649-675.

[21]
Wu X F, Shi W, Li X H, Ma H M. Acc. Chem. Res., 2019, 52: 1892-1904.

[22]
Yang J, Chi Z G, Zhu W H, Tang B Z, Li Z. Sci. China Chem., 2019, 62: 1090-1098.

[23]
Zhang J, Wang N N, Ji X, Tao Y F, Wang J M, Zhao W L. Chemistry A European J, 2020, 26: 4172-4192.

[24]
Gao L Q, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble M A, Xiao Q C, Yao S Q. Chem. Soc. Rev., 2021, 50: 1219-1250.

[25]
Yang D, Wang H L, Sun Z N, Chung N W, Shen J G. J. Am. Chem. Soc., 2006, 128: 6004-6005.

[26]
Jing X T, Yu F B, Chen L G. Progress in Chemistry, 2000, 12: 332.

[27]
Zhu B C, Zhang M, Wu L, Zhao Z Y, Liu C Y, Wang Z K, Duan Q X, Wang Y W, Jia P. Sensors and Actuators B: Chemical, 2018, 257: 436-441.

[28]
Cheng D, Peng J J, Lv Y, Su D D, Liu D J, Chen M, Yuan L, Zhang X B. J. Am. Chem. Soc., 2019, 141: 6352-6361.

[29]
Cheng J, Li D, Sun M L, Wang Y, Xu Q Q, Liang X G, Lu Y B, Hu Y Z, Han F, Li X. Chem. Sci., 2020, 11: 281-289.

[30]
Wang Z, Li X, Li Y Y, Wang Q, Lu X M, Fan Q L. Progress in Chemistry, 2022, 34: 198.

[31]
Crusz S M, Balkwill F R. Nat Rev Clin Oncol, 2015, 12: 584-596.

[32]
Zarrin A A, Bao K, Lupardus P, Vucic D. Nat Rev Drug Discov, 2021, 20: 39-63.

[33]
Wu Y Q, Shi A P, Li Y Y, Zeng H, Chen X Y, Wu J, Fan X L. Analyst, 2016, 141: 100-110.

[34]
Li Y Y, Wu Y Q, Chen L Y, Zeng H, Chen X Y, Lun W C, Fan X L, Wong W Y. J. Mater. Chem. B, 2019, 7: 7612-7618.

[35]
Wang G Y, Wang Y, Wang C C, Huang C S, Jia N Q. Analyst, 2020, 145: 828-835.

[36]
Su H H, Wang N N, Wang J M, Wang H, Zhang J, Zhao W L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 252: 119502.

[37]
Su H H, Ji X, Zhang J, Wang N N, Wang H, Liu J Y, Jiao J R, Zhao W L. Journal of Molecular Structure, 2022, 1265: 133443.

[38]
Ou P H, Ran H Y, Ye X P, Wang J Y, Pang M L, Zhao L L, Chen M Z, Li X, Ma Y P, Wang P, Chen J, Luo Q, Peng Y B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 291: 122381.

[39]
Liu F Y, Li M M, Li W X, Ren Y J, Zhang M L, Zhang H, Wang P, Wu Y L, Wang K H, Wang X Y, Chen X F, Tang J F. Bioorganic Chemistry, 2024, 147: 107362.

[40]
Gao M, Yu F B, Lv C J, Choo J, Chen L X. Chem. Soc. Rev., 2017, 46: 2237-2271.

[41]
Panieri E, Santoro M M. Cell Death Dis, 2016, 7: e2253-e2253.

[42]
Trachootham D, Alexandre J, Huang P. Nat Rev Drug Discov, 2009, 8: 579-591.

[43]
Li Z, Lu J, Pang Q, You J M. Analyst, 2021, 146: 5204-5211.

[44]
Wu Y, Zhang X, Lu X Y, Chen Y, Ju J D, Wu H W, Zhu B C, Huang S Y. Sensors and Actuators B: Chemical, 2021, 348: 130677.

[45]
Wang W W, Xiong J H, Song X J, Wang Z, Zhang F, Mao Z Q. Anal. Chem., 2020, 92: 13305-13312.

[46]
Zhang J J, Zhen X, Zeng J F, Pu K Y. Anal. Chem., 2018, 90: 9301-9307.

[47]
Zhang J R, Liu L L, Wang Y N, Wang C, Guo Y R, Yuan Z H, Jia Y, Li P, Sun S Q, Zhao G J. Analytica Chimica Acta, 2023, 1241: 340778.

[48]
Wang B Q, Kong Y T, Tian X X, Xu M. Journal of Hazardous Materials, 2024, 469: 134094.

[49]
Hoofnagle J H, Björnsson E S. N Engl J Med, 2019, 381: 264-273.

[50]
Louvet A, Mathurin P. Nat Rev Gastroenterol Hepatol, 2015, 12: 231-242.

[51]
Adams L A, Angulo P, Lindor K D. Canadian Medical Association Journal, 2005, 172: 899-905.

[52]
Stephens C, Andrade R J, Lucena M I. Current Opinion in Allergy & Clinical Immunology, 2014, 14: 286-292.

[53]
Mao G J, Gao G Q, Dong W P, Wang Q Q, Wang Y Y, Li Y, Su L, Zhang G S. Talanta, 2021, 221: 121607.

[54]
Zhou Y Q, Li P, Fan N N, Wang X, Liu X N, Wu L J, Zhang W, Zhang W, Ma C L, Tang B. Chem. Commun., 2016, 52: 64-67.

[55]
Jiang W L, Li Y F, Wang W X, Zhao Y T, Fei J J, Li C Y. Chem. Commun., 2019, 55: 14307-14310.

[56]
Deng Y Z, Feng G Q. Anal. Chem., 2020, 92: 14667-14675.

[57]
Zhao B, Zheng S, Liu Q Q, Dong C, Dong B L, Fan C H, Lu Z L, Yoon J. Sensors and Actuators B: Chemical, 2024, 410: 135659.

[58]
Cheng D, Gong X Y, Wu Q, Yuan J, Lv Y, Yuan L, Zhang X B. Anal. Chem., 2020, 92: 11396-11404.

[59]
Wang Y Z, Liu Y, Song X R, Feng Y, Jing C L, Zhang G L, Huang Y W, Liu W S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 286: 121892.

[60]
Liu X, He L H, Gong X Y, Yang Y, Cheng D, Peng J J, Wang L, Zhang X B, Yuan L. CCS Chem, 2022, 4: 356-368.

[61]
Liu R X, Jiang H J, Yang W J, Zheng Z J, Wang X M, Tian Z H, Wang D Y, Kan D F, Zhang D, Tang Z X. Analytica Chimica Acta, 2024, 1309: 342673.

[62]
Lee Y M, He W F, Liou Y C. Cell Death Dis, 2021, 12: 58.

[63]
Emerit J, Edeas M, Bricaire F. Biomedicine & Pharmacotherapy, 2004, 58: 39-46.

[64]
Sedgwick A C, Dou W T, Jiao J B, Wu L L, Williams G T, Jenkins A T A, Bull S D, Sessler J L, He X P, James T D. J. Am. Chem. Soc., 2018, 140: 14267-14271.

[65]
Chen Y L, Xu X L, Wang Q, Ding X L, Bao J W, Zhao Y Q, Sun Q, Ha M N, Ali A S, Chen Q, Gao Q H, Zhang K, Han X Y. Sensors and Actuators B: Chemical, 2024, 411: 135739.

[66]
Sun Q, Xu J J, Ji C L, Shaibani M S S, Li Z, Lim K, Zhang C W, Li L, Liu Z P. Anal. Chem., 2020, 92: 4038-4045.

[67]
Yan M, Fang H X, Wang X Q, Xu J J, Zhang C W, Xu L, Li L. Sensors and Actuators B: Chemical, 2021, 328: 129003.

[68]
Shao T, Xu X N, Wang L, Shen Y, Zhao J, Li H Z, Zhang D T, Du W, Bai H, Peng B, Li L. J. Innov. Opt. Health Sci., 2023, 16: 2250039.

[69]
Luo X Z, Cheng Z Y, Wang R, Yu F B. Anal. Chem., 2021, 93: 2490-2499.

[70]
Zhang Q, Zeng S M Z, Yuan L C, Wu C J, Wu S Y, Ren S Z, Zhao M D, Wang X M, Zhu H L, Wang Z C. Sensors and Actuators B: Chemical, 2023, 395: 134502.

[71]
Chen S Y, Vurusaner B, Pena S, Thu C T, Mahal L K, Fisher Edward A, Canary James W. Anal. Chem., 2021, 93: 10090-10098.

[72]
Sang M M, Huang Y B, Liu Z W, Li G, Wang Y, Yuan Z W, Dai C L, Zheng J R. ACS Sens., 2023, 8: 893-903.

Options
文章导航

/