English
新闻公告
More
研究论文

二维纳米通道离子筛分膜研究进展

  • 王建宇 1, 2 ,
  • 王帅 1, 2, * ,
  • 方传杰 1, 2 ,
  • 朱宝库 1, 2, 3 ,
  • 朱利平 1, 2, 3, *
展开
  • 1 浙江大学绍兴研究院大健康材料分中心,绍兴 312000
  • 2 浙江大学膜与水处理技术教育部工程研究中心,杭州 310030
  • 3 浙江大学高分子科学与工程学系,杭州 310030

朱利平 浙江大学教授、博士生导师, 膜与水处理技术教育部工程研究中心主任、高分子科学研究所副所长。中国海水淡化与水再利用学会青年专委会执行委员/委员、中国膜工业协会工程与应用专委会委员,主要研究方向为膜分离技术及其应用。

收稿日期: 2024-08-19

  修回日期: 2025-01-08

  网络出版日期: 2025-03-19

基金资助

国家自然科学基金项目(U21A20302)

Advances in Two-dimensional Nanochannel Ion Sieving Membranes

  • Jianyu Wang 1, 2 ,
  • Shuai Wang 1, 2, * ,
  • Chuanjie Fang 1, 2 ,
  • Baoku Zhu 1, 2, 3 ,
  • Liping Zhu 1, 2, 3, *
Expand
  • 1 Health Materials Sub-Center, Shaoxing Research Institute, Zhejiang University, Shaoxing 312000, China
  • 2 Engineering Research Center of Membrane and Water Treatment Technology, Ministry of Education, Zhejiang University, Hangzhou 310030, China
  • 3 Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310030, China
* Corresponding author e-mail: lpzhu@zju.edu.cn(Liping Zhu); wangshuai0008@outlook.com(Shuai Wang)

Received date: 2024-08-19

  Revised date: 2025-01-08

  Online published: 2025-03-19

Supported by

the National Natural Science Foundation of China(U21A20302)

摘要

二维纳米通道膜是由原子层厚度的二维纳米片经自组装堆叠而成的新型薄膜,其离子分离行为相较于传统分离膜具有诸多不同特性,在海水脱盐淡化、能源存储和转化、稀有元素提取与分离等领域具有重要应用潜力,引起了研究者的极大兴趣和广泛关注,成为近年来膜分离科学与技术领域的重要发展方向和研究热点。本文从二维纳米通道用于精准离子筛分的角度出发,系统总结了二维通道膜的构筑策略、性能评估方法及传质机理,综述了近几年二维纳米通道膜制备及应用的最新研究进展,对其未来发展趋势进行了展望,以期为未来二维纳米通道膜结构优化、性能提升、规模化制备及工程应用等研究提供参考和借鉴。

本文引用格式

王建宇 , 王帅 , 方传杰 , 朱宝库 , 朱利平 . 二维纳米通道离子筛分膜研究进展[J]. 化学进展, 2025 . DOI: 10.7536/PC240802

Abstract

Two-dimensional nanochannel membrane is a new membrane composed of two-dimensional nanosheets with atomic layer thickness and stacked by self-assembly. Compared with traditional separation membranes, its ion separation behavior has many unique characteristics, and has important application potential in seawater desalination, energy storage and conversion, rare element extraction and separation, and other fields. These materials have attracted great interest and wide attention of researchers. It has become an important development direction and research hotspot in the field of membrane separation science and technology in recent years. In this paper, the construction strategy, performance evaluation method and mass transfer mechanism of two-dimensional nanochannel membranes were systematically summarized from the perspective of two-dimensional nanochannel membranes used for accurate ion sieving. The latest research progress in the preparation and application of two-dimensional nanochannel membranes in recent years was reviewed, and the development trend was prospected. We hope this review can provide enlightenments for structure design and optimization, performance enhancement, large-scale preparation and engineering applications of two-dimensional nanochannel membrane in the future.

Contents

1. Introduction

2. Two-dimensional nanochannel ion sieving membrane and its construction methods

2.1 Two-dimensional nanochannel ion screening membrane

2.2 Construction method of 2D nanochannel ion sieving membrane

2.3 Characterization of structure and evaluation of properties of two-dimensional nanochannel ion sieving membranes

3. Mass transfer mechanism in two-dimensional nanochannels

3.1 Mass transfer mechanism of solvent in two-dimensional channels

3.2 Mass transfer mechanism of ions in two-dimensional channels

4. Application of two-dimensional nanochannel ion sieving membrane

4.1 Desalination of seawater

4.2 Energy conversion and storage

4.3 Extraction and separation of elements

5. Conclusion and outlook

[1]
Siria A, Bocquet M L, Bocquet L. Nat. Rev. Chem., 2017, 1: 0091.

[2]
Kuo H C, Cheng C F, Clark R B, Lin J J, Lin J L, Hoshijima M, Nguyêñ-Trân V T B, Gu Y S, Ikeda Y, Chu P H, Ross J Jr, Giles W R, Chien K R. Cell, 2001, 107(6): 801.

[3]
Alvarez P J J, Chan C K, Elimelech M, Halas N J, Villagrán D. Nat. Nanotechnol., 2018, 13(8): 634.

[4]
Kang Y, Xia Y, Wang H T, Zhang X W. Adv. Funct. Mater., 2019, 29(29): 1902014.

[5]
Andreeva D V, Trushin M, Nikitina A, Costa M C F, Cherepanov P V, Holwill M, Chen S Y, Yang K, Chee S W, Mirsaidov U, Castro Neto A H, Novoselov K S. Nat. Nanotechnol., 2021, 16(2): 174.

[6]
Sholl D S, Lively R P. Nature, 2016, 532(7600): 435.

[7]
Van der Bruggen B, Vandecasteele C. Desalination, 2002, 143(3): 207.

[8]
Gin D L, Noble R D. Science, 2011, 332(6030): 674.

[9]
Wang S F, Yang L X, He G W, Shi B B, Li Y F, Wu H, Zhang R N, Nunes S, Jiang Z Y. Chem. Soc. Rev., 2020, 49(4): 1071.

[10]
Nie L N, Goh K, Wang Y, Lee J, Huang Y J, Karahan H E, Zhou K, Guiver M D, Bae T H. Sci. Adv., 2020, 6(17): eaaz9184.

[11]
Novoselov K S, Geim A K, Morozov S V. Science, 2004, 306: 666.

[12]
Wang J, Zho H, Li S. Angew. Chem. Inter. Edi., 2023, 62: e202218321.

[13]
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335(6067): 442.

[14]
Han D, Dong X Y, Yu G L, Gao T T, Zhou K G. Adv. Membr., 2022, 2: 100045.

[15]
Tsou CH, An QF, Lo SC. J. Membr. Sci., 2015, 477: 93.

[16]
Tian M, Wang L, Wang J. ACS Sustain. Chem. Eng., 2022, 10(3): 1137.

[17]
Liao F, Xu Z, Fan Z. J. Mat. Chem. A, 2021, 9: 12236.

[18]
Shen J, Liu G P, Huang K, Chu Z Y, Jin W Q, Xu N P. ACS Nano, 2016, 10(3): 3398.

[19]
Akbari A, Sheath P, Martin S T. Nat. Commu., 2016, 7: 10891.

[20]
Huang L Z, Wu H Y, Ding L, Caro J, Wang H H. Angew. Chem. Int. Ed., 2024, 63(6): e202314638.

[21]
Deng J J, Lu Z, Ding L, Li Z K, Wei Y Y, Caro J, Wang H H. Chem. Eng. J., 2021, 408: 127806.

[22]
Wang S F, Yang L X, He G W, Shi B B, Li Y F, Wu H, Zhang R N, Nunes S, Jiang Z Y. Chem. Soc. Rev., 2020, 49(4): 1071.

[23]
Wang S, Liang S S, Chen L, Fang H P. Desalination, 2022, 528: 115601.

[24]
Liu J F, Wang S, Yang R J, Li L, Liang S S, Chen L. J. Membr. Sci., 2022, 659: 120745.

[25]
Lu Z, Wu Y, Ding L, Wei Y Y, Wang H H. Angew. Chem. Int. Ed., 2021, 60(41): 22265.

[26]
Wang S, Liang S S. Sep. Purif. Technol., 2024, 328: 125086.

[27]
Xu R M, Kang Y, Zhang W M, Pan B C, Zhang X W. Nat. Commun., 2023, 14: 4907.

[28]
Joshi R K, Carbone P, Wang F C. Science, 2014, 343: 752.

[29]
Goh K, Jiang W, Karahan H E. Adv. Fun. Mat., 2015, 25: 7348.

[30]
Wang Z Y, Tu Q S, Zheng S X, Urban J J, Li S F, Mi B X. Nano Lett., 2017, 17(12): 7289.

[31]
Wang Y, Li L, Wei Y. Angew. Chem. Inter. Edi., 2017, 56: 8974.

[32]
Boukhvalov D W, Katsnelson M I, Son Y W. Nano Lett., 2013, 13(8): 3930.

[33]
Wang F C, Zhu Y B, Wu H A. Sci. China, Phys. Mech. Astron. 2018, 48(9): 117.

( 王奉超, 朱银波, 吴恒安. 中国科学: 物理学力学天文学, 2018, 48(9): 117.)

[34]
Ries L, Petit E, Michel T. Nat. Mat., 2019, 18: 1112.

[35]
Kim S, Choi H, Kim B, Lim G, Kim T, Lee M, Ra H, Yeom J, Kim M, Kim E, Hwang J, Lee J S, Shim W. Adv. Mater., 2023, 35(43): 2206354.

[36]
Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva I V. Nature, 2015, 519(7544): 443.

[37]
Kwac K, Kim I, Pascal T A, Goddard W A, Park H G, Jung Y. J. Phys. Chem. C, 2017, 121(29): 16021.

[38]
Wen X Y, Foller T, Jin X H, Musso T, Kumar P, Joshi R. Nat. Commun., 2022, 13: 5690.

[39]
Zheng S X, Tu Q S, Urban J J, Li S F, Mi B X. ACS Nano, 2017, 11(6): 6440.

[40]
Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V. Nat. Commun., 2019, 10: 5793.

[41]
Richards L A, Schäfer A I, Richards B S, Corry B. Small, 2012, 8(11): 1701.

[42]
Corry B. MRS Bull., 2017, 42(4): 306.

[43]
He Z J, Zhou J, Lu X H, Corry B. ACS Nano, 2013, 7(11): 10148.

[44]
Hirunpinyopas W, Iamprasertkun P, Bissett M A, Dryfe R A W. Carbon, 2020, 156: 119.

[45]
Shen J, Liu G P, Han Y, Jin W Q. Nat. Rev. Mater., 2021, 6(4): 294.

[46]
Cheng C, Jiang G P, Simon G P, Liu J Z, Li D. Nat. Nanotechnol., 2018, 13(8): 685.

[47]
Kang Y, Xia Y, Wang H T, Zhang X W. Adv. Funct. Mater., 2019, 29(29): 1902014.

[48]
van der Vegt N F A, Haldrup K, Roke S, Zheng J R, Lund M, Bakker H J. Chem. Rev., 2016, 116(13): 7626.

[49]
Chen C C, Wu X L, Chen J J, Liu S Y, Wang Y Z, Wu W J, Zhang J, Wang J T, Jiang Z Y. Angew. Chem. Int. Ed., 2024, 63(29): e202406113.

[50]
Mouterde T, Keerthi A, Poggioli A R, Dar S A, Siria A, Geim A K, Bocquet L, Radha B. Nature, 2019, 567(7746): 87.

[51]
Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K, Gopinadhan K. Science, 2017, 358(6362): 511.

[52]
Sun P Z, Zhu M, Wang K L, Zhong M L, Wei J Q, Wu D H, Xu Z P, Zhu H W. ACS Nano, 2013, 7(1): 428.

[53]
Williams C D, Dix J, Troisi A, Carbone P. J. Phys. Chem. Lett., 2017, 8(3): 703.

[54]
Ai K L, Ruan C P, Shen M X, Lu L H. Adv. Funct. Mater., 2016, 26(30): 5542.

[55]
Lv Y J, Dong L, Cheng L Y, Gao T Y, Wu C, Chen X, He T, Cui Y Y, Liu W. ACS Appl. Mater. Interfaces, 2023, 15(39): 46261.

[56]
Chen J J, Liu X, Ding Z L, He Z L, Jiang H X, Zhu K Y, Li Y Z, Shi G S. Nano Lett., 2023, 23(23): 10884.

[57]
Chen H L, Liu X, Gong D, Zhu C, Liu G J, Fan J R, Wu P, Li Z, Pan Y C, Shi G S, Sun Y H, Zeng G F. Nat. Water, 2023, 1(9): 800.

[58]
Wang M D, Zhang P H, Liang X, Zhao J Y, Liu Y W, Cao Y, Wang H J, Chen Y, Zhang Z M, Pan F S, Zhang Z J, Jiang Z Y. Nat. Sustain., 2022, 5(6): 518.

[59]
Hu S, Lozada-Hidalgo M, Wang F C, Mishchenko A, Schedin F, Nair R R, Hill E W, Boukhvalov D W, Katsnelson M I, Dryfe R A W, Grigorieva I V, Wu H A, Geim A K. Nature, 2014, 516(7530): 227.

[60]
Karnik R N. Nature, 2014, 516(7530): 173.

[61]
He G, Chang C, Xu M. Adv. Fun. Mat., 2016, 25: 7502.

[62]
He G W, Xu M Z, Zhao J, Jiang S T, Wang S F, Li Z, He X Y, Huang T, Cao M Y, Wu H, Guiver M D, Jiang Z Y. Adv. Mater., 2017, 29(28): 1605898.

[63]
Qin S, Liu D, Wang G, Portehault D, Garvey C J, Gogotsi Y, Lei W W, Chen Y. J. Am. Chem. Soc., 2017, 139(18): 6314.

[64]
Huang J Q, Zhuang T Z, Zhang Q, Peng H J, Chen C M, Wei F. ACS Nano, 2015, 9(3): 3002.

[65]
Sun J, Sun Y M, Pasta M, Zhou G M, Li Y Z, Liu W, Xiong F, Cui Y. Adv. Mater., 2016, 28(44): 9797.

[66]
Wang J, Cui Z, Li S Z, Song Z Y, He M L, Huang D X, Feng Y, Liu Y Z, Zhou K, Wang X D, Wang L. Nat. Commun., 2024, 15: 608.

[67]
Ding L, Zheng M T, Xiao D, Zhao Z H, Xue J, Zhang S Q, Caro J, Wang H H. Angew. Chem. Int. Ed., 2022, 61(41): e202284162.

[68]
Shi C L, Jing Y, Jia Y Z. J. Mol. Liq., 2016, 215: 640.

[69]
Lv Y J, Dai Z Q, Chen Y, Lu Y, Zhang X S, Yu J M, Zhai W B, Yu Y, Wen Z Y, Cui Y Y, Liu W. Nano Lett., 2024, 24(9): 2782.

[70]
Wang S, Zhu L Y, Yang R J, Li M L, Dai F F, Sheng S Q, Chen L, Liang S S. J. Phys. Chem. C, 2023, 127(14): 6981.

[71]
Wu T, Wang Z, Lu Y, Liu S, Li H, Ye G, Chen J. Adv. Sci., 2021, 8: 2002717.

[72]
Liang J, Zhang X, Li H D, Wen C X, Tian L L, Chen X M, Li Z. Adv. Mater., 2024, 36(30): 2470240.

Options
文章导航

/