English
新闻公告
More
研究论文

燃烧后CO2捕获材料

  • 江佳佳 1, ,
  • 赵俊虎 2, ,
  • 喻勤 3 ,
  • 张甜 , 1, 2, 3, *
展开
  • 1 武汉理工大学材料科学与工程学院 武汉 430070
  • 2 武汉理工大学资源与环境工程学院 武汉 430070
  • 3 武汉理工大学化学化工与生命科学学院 武汉 430070

收稿日期: 2024-06-21

  修回日期: 2024-10-10

  网络出版日期: 2025-03-19

基金资助

中组部“千人计划”青年项目(40127002)

Post-combustion CO2 Capture Materials

  • Jiajia Jiang 1 ,
  • Junhu Zhao 2 ,
  • Qin Yu 3 ,
  • Tian Zhang , 1, 2, 3, *
Expand
  • 1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 2 School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • 3 School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
* Corresponding author e-mail:

These authors contributed equally to this work.

Received date: 2024-06-21

  Revised date: 2024-10-10

  Online published: 2025-03-19

Supported by

the Youth Funding Project of the "Thousand Talents Program" of the Organization Department of the Central Committee of the Communist Party of China(40127002)

摘要

工业的持续发展带来了巨大的经济效益,但也对环境造成了极大的危害。化石能源燃烧排放的超多CO2被排放到自然环境中,对环境和人类健康构成威胁。所以人们正在努力开发能够有效捕获CO2的材料。目前CO2捕获主要发生在化石燃料燃烧后,依据CO2吸附剂设计标准,多种多样的CO2捕获材料被设计开发出来,有固体吸附剂、液体吸附剂和多相吸附剂。各种吸附剂的吸附机理也不尽相同,包括吸附、吸收或两种机理共同作用。本综述聚焦于目前常见的各类吸附剂的捕获性能、吸收机理和优缺点,分别对胺溶液吸收剂、沸石基吸附剂、离子液体类吸附剂、碳基吸附剂、金属有机框架材料、共价有机框架材料、金属氧化物材料和生物聚合物纳米复合材料进行介绍,并对各类CO2吸附材料未来的发展做出展望。

本文引用格式

江佳佳 , 赵俊虎 , 喻勤 , 张甜 . 燃烧后CO2捕获材料[J]. 化学进展, 2025 , 0(0) . DOI: 10.7536/PC240608

Abstract

The sustained development of industry has brought enormous economic benefits, but it has also caused great harm to the environment. The excessive CO2 emissions from fossil fuel combustion are released into the natural environment, posing a threat to the environment and human health. So people are working hard to develop materials that can effectively capture CO2. At present, CO2 capture mainly occurs after the combustion of fossil fuels. According to the design standards for CO2 adsorbents, a variety of CO2 capture materials have been designed and developed, including solid adsorbents, liquid adsorbents, and multiphase adsorbents. The adsorption mechanisms of various adsorbents are also different, including adsorption, absorption, or a combination of both mechanisms.This review focuses on the capture performance, absorption mechanism, advantages and disadvantages of various common types of current adsorbents, and introduces amine solution absorbents, zeolite-based adsorbents, ionic liquids-based adsorbents, carbon-based adsorbents, metal-organic framework materials, covalent organic framework materials, metal-oxide materials, and biopolymer nanocomposites, respectively, with an outlook of the future development of CO2 adsorbent materials.

Contents

1 Introduction

1.1 Current status and hazards of CO2 emissions

1.2 CO2 capture technology

1.3 Criteria for designing CO2 capture materials

2 CO2 capture materials

2.1 Amine solution absorbents

2.2 Zeolites based adsorbents

2.3 Ionic liquids absorbents(ILs)

2.4 Carbon-based adsorbents

2.5 Metal organic framworks(MOF)

2.6 Covalent organic frameworks(COF)

2.7 Metal oxide sorbents

2.8 Biopolymeric nanocomposites

3 Comparison and Prospect of Capture Materials

4 Conclusion

[1]
Gunawardene O H P, Gunathilake C A, Vikrant K, Amaraweera S M. Atmosphere, 2022, 13(3): 397.

[2]
Tiwari D, Bhunia H, Bajpai P K. Journal of Environmental Management, 2018, 218: 579-592.

[3]
Fu D, Davis M E. Chemical Society Reviews, 2022, 51(22): 9340-9370.

[4]
Creamer A E, Gao B. Environmental Science & Technology, 2016, 50(14): 7276-7289.

[5]
Maniarasu R, Rathore S K, Murugan S. Energy & Environment, 2023, 34(1): 3-57.

[6]
Yaumi A L, Abu Bakar M Z, Hameed B H. Energy, 2017, 124: 461-480.

[7]
Khandaker T, Hossain M S, Dhar P K, Rahman M S, Hossain M A, Ahmed M B. Processes, 2020, 8(6).

[8]
Wang J, Yuan X, Deng S, Zeng X, Yu Z, Li S, Li K. Green Chemistry, 2020, 22(20): 3836-3845.

[9]
Karimi M, Shirzad M, Silva J A C, Rodrigues A E. Environmental Chemistry Letters, 2023, 21(4): 2041-2084.

[10]
Osman A I, Hefny M, Abdel Maksoud M I A, Elgarahy A M, Rooney D W. Environmental Chemistry Letters, 2021, 19(2): 797-849.

[11]
Wu X, Wang M, Liao P, Shen J, Li Y. Applied Energy, 2020, 257.

[12]
Liang Z, Rongwong W, Liu H, Fu K, Gao H, Cao F, Zhang R, Sema T, Henni A, Sumon K, Nath D, Gelowitz D, Srisang W, Saiwan C, Benamor A, Al-Marri M, Shi H, Supap T, Chan C, Zhou Q, Abu-Zahra M, Wilson M, Olson W, Idem R, Tontiwachwuthikul P. International Journal of Greenhouse Gas Control, 2015, 40: 26-54.

[13]
Song K S, Fritz P W, Coskun A. Chemical Society Reviews, 2022, 51(23): 9831-9852.

[14]
Meng F, Meng Y, Ju T, Han S, Lin L, Jiang J. Renewable & Sustainable Energy Reviews, 2022, 168.

[15]
Luo X, Wang C. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 33-38.

[16]
Jia T, Gu Y, Li F. Journal of Environmental Chemical Engineering, 2022, 10(5).

[17]
Wang X, Liu H, Zhang J, Chen S. Polymer Chemistry, 2023, 14(12): 1293-1317.

[18]
Chang R, Wu X, Cheung O, Liu W. Journal of Materials Chemistry A, 2022, 10(4): 1682-1705.

[19]
Cigala R M, De Luca G, Ielo I, Crea F. Polymers, 2024, 16(8).

[20]
Gao J, Yin J, Zhu F, Chen X, Tong M, Kang W, Zhou Y, Lu J. Separation and Purification Technology, 2016, 167: 17-23.

[21]
Nguyen T S, Dogan N A, Lim H, Yavuz C T. Accounts of Chemical Research, 2023, 56(19): 2642-2652.

[22]
Aghel B, Janati S, Wongwises S, Shadloo M S. International Journal of Greenhouse Gas Control, 2022, 119.

[23]
Hamidi R, Farsi M, Eslamloueyan R. Journal of Molecular Liquids, 2018, 265: 711-716.

[24]
Fytianos G, Ucar S, Grimstvedt A, Hyldbakk A, Svendsen H F, Knuutila H K. International Journal of Greenhouse Gas Control, 2016, 46: 48-56.

[25]
Khoramzadeh E, Mofarahi M, Lee C-H. Journal of Chemical and Engineering Data, 2019, 64(12): 5648-5664.

[26]
Sun M, Gu Q, Hanif A, Wang T, Shang J. Chemical Engineering Journal, 2019, 370: 1450-1458.

[27]
Gur T M. Progress in Energy and Combustion Science, 2022, 89.

[28]
Karka S, Kodukula S, Nandury S V, Pal U. Acs Omega, 2019, 4(15): 16441-16449.

[29]
Xiao Y, Zhou M, He G. Industrial & Engineering Chemistry Research, 2019, 58(31): 14380-14388.

[30]
Al-Naddaf Q, Thakkar H, Rezaei F. Acs Applied Materials & Interfaces, 2018, 10(35): 29656-29666.

[31]
Nishihara H, Kyotani T. Chemical Communications, 2018, 54(45): 5648-5673.

[32]
Zhu Y, Miyake K, Shu Y, Moroto K, Hirota Y, Uchida Y, Tanaka S, Zheng T, Katayama M, Inada Y, Morallon E, Cazorla-Amoros D, Kong C Y, Nishiyama N. Materials Today Chemistry, 2021, 20.

[33]
Salehi R N, Sharifnia S, Rahimpour F. Journal of Natural Gas Science and Engineering, 2018, 54: 37-46.

[34]
Panda D, Kumar E A, Singh S K.Journal of Co2 Utilization, 2020, 40.

[35]
Luzzi E, Aprea P, de Luna M S, Caputo D, Filippone G. Acs Applied Materials & Interfaces, 2021, 13(17): 20728-20734.

[36]
Shen J, Sun Q, Cao J, Wang P, Jia W, Wang S, Zhao P, Wang Z. New Journal of Chemistry, 2022, 46(14): 6720-6728.

[37]
Xu M, Chen S, Seo D-K, Deng S. Chemical Engineering Journal, 2019, 371: 693-705.

[38]
Wu L, Liu J, Shang H, Li S, Yang J, Li L, Li J. Microporous and Mesoporous Materials, 2021, 316.

[39]
Fashi F, Ghaemi A, Behroozi A H. Chemical Engineering Communications, 2021, 208(8): 1104-1120.

[40]
Najafi A M, Soltanali S, Ghassabzadeh H. Chemical Engineering Journal, 2023, 468.

[41]
Quan C, Jia X, Zhang K, Zhang Y, Naqvi S R, Amin N A S, Gao N. International Journal of Energy Research, 2022, 46(2): 1220-1233.

[42]
Cheung O, Bacsik Z, Fil N, Krokidas P, Wardecki D, Hedin N. Acs Omega, 2020, 5(39): 25371-25380.

[43]
Kodasma R, Fermoso J, Sanna A. Chemical Engineering Journal, 2019, 358: 1351-1362.

[44]
Wang Y, Du T, Fang X, Jia H, Qiu Z, Song Y. Materials Chemistry and Physics, 2019, 232: 284-293.

[45]
Cheng H, Song H, Toan S, Wang B, Gasem K A M, Fan M, Cheng F. Chemical Engineering Journal, 2021, 406.

[46]
Zhang Y, Josien L, Vaulot C, Simon-Masseron A, Lalevee J. Advanced Materials Technologies, 2023, 8(19).

[47]
Qiang Z, Li R, Yang Z, Guo M, Cheng F, Zhang M. Energy & Fuels, 2019, 33(7): 6641-6649.

[48]
Shi H, Yang J, Ahmad Z, Zhang H, Chen J. Separation and Purification Technology, 2023, 325.

[49]
de Jesus S S, Maciel Filho R. Renewable & Sustainable Energy Reviews, 2022, 157.

[50]
Zhang R, Ke Q, Zhang Z, Zhou B, Cui G, Lu H. International Journal of Molecular Sciences, 2022, 23(19).

[51]
Zhu X, Song M, Xu Y. Acs Sustainable Chemistry & Engineering, 2017, 5(9): 8192-8198.

[52]
Solangi N H, Hussin F, Anjum A, Sabzoi N, Mazari S A, Mubarak N M, Aroua M K, Siddiqui M T H, Qureshi S S. Journal of Molecular Liquids, 2023, 374.

[53]
Santiago R, Lemus J, Moya C, Moreno D, Alonso-Morales N, Palomar J. Acs Sustainable Chemistry & Engineering, 2018, 6(11): 14178-14187.

[54]
Zhou X, Weber J, Yuan J. Current Opinion in Green and Sustainable Chemistry, 2019, 16: 39-46.

[55]
da Luz M, Dias G, Zimmer H, Bernard F L, do Nascimento J F, Einloft S. Polymer Bulletin, 2022, 79(8): 6123-6139.

[56]
黄斌, 刘练波, 许世森. 中国电力, 2007, (03): 14-17.

[57]
Sun L, Gao M, Tang S. Chemical Engineering Journal, 2021, 412.

[58]
Zaker A ben Hammouda S, Sun J, Wang X, Li X, Chen Z. Journal of Environmental Chemical Engineering, 2023, 11(3).

[59]
Vorokhta M, Novakova J, Dopita M, Khalakhan I, Kopecky V, Svabova M. Materials Today Sustainability, 2023, 24.

[60]
Ma C, Bai J, Demir M, Yu Q, Hu X, Jiang W, Wang L. Separation and Purification Technology, 2022, 303.

[61]
Bai F, Liu X, Sani S, Liu Y, Guo W, Sun C. Separation and Purification Technology, 2022, 299.

[62]
Nagarajan L, Saravanan P, Kumaraguru K, AnnamRenita A, Rajeshkannan R, Rajasimman M. Biomass Conversion and Biorefinery, 2024, 14(8): 9595-9607.

[63]
Wang Y, Guo T, Hu X, Hao J, Guo Q. Powder Technology, 2020, 368: 227-236.

[64]
Lourenco M A O, Fontana M, Jagdale P, Pirri C F, Bocchini S. Chemical Engineering Journal, 2021, 414.

[65]
Serafin J, Ouzzine M, Cruz Jr O F, Srenscek-Nazzal J, Campello Gomez I, Azar F-Z, Rey Mafull C A, Hotza D, Rambo C R. Waste Management, 2021, 136: 273-282.

[66]
Phadungbut P, Koo-amornpattana W, Bumroongsri P, Ratchahat S, Kunthakudee N, Jonglertjunya W, Chalermsinsuwan B, Hunsom M. Separation and Purification Technology, 2022, 291.

[67]
Pimentel C H, Diaz-Fernandez L, Gomez-Diaz D, Freire M S, Gonzalez-Alvares J. Journal of Environmental Chemical Engineering, 2023, 11(6).

[68]
Guo Z, Lu X, Xin Z. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2022, 646.

[69]
Huang J, Bai J, Demir M, Hu X, Jiang Z, Wang L. Energy & Fuels, 2022, 36(11): 5825-5832.

[70]
Bai J, Huang J, Jiang Q, Jiang W, Demir M, Kilic M, Altay B N, Wang L, Hu X. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2023, 674.

[71]
Wang W, Wang Z, Jiang L, Shen X, Wang Y, Zhu R, Shen Z, Xu X, Liu Y, Li X, Wang J. Materials Today Sustainability, 2023, 21.

[72]
Cao W, Xu H, Zhang X, Xiang W, Qi G, Wan L, Gao B. Chemical Engineering Journal, 2023, 471.

[73]
Demir M, Tessema T-D, Farghaly A A, Nyankson E, Saraswat S K, Aksoy B, Islamoglu T, Collinson M M, El-Kaderi H M, Gupta R B. International Journal of Energy Research, 2018, 42(8): 2686-2700.

[74]
Kamran U, Park S-J.Journal of Co2 Utilization, 2020, 40.

[75]
Szczesniak B, Choma J. Microporous and Mesoporous Materials, 2020, 292.

[76]
Chowdhury S, Balasubramanian R. Industrial & Engineering Chemistry Research, 2016, 55(29): 7906-7916.

[77]
An L, Liu S, Wang L, Wu J, Wu Z, Ma C, Yu Q, Hu X. Industrial & Engineering Chemistry Research, 2019, 58(8): 3349-3358.

[78]
Tehrani N H M H, Alivand M S, Maklavany D M, Rashidi A, Samipoorgiri M, Seif A, Yousefian Z. Chemical Engineering Journal, 2019, 358: 1126-1138.

[79]
Jalilov A S, Ruan G, Hwang C-C, Schipper D E, Tour J J, Li Y, Fei H, Samuel E L G, Tour J M. Acs Applied Materials & Interfaces, 2015, 7(2): 1376-1382.

[80]
Kueh B, Kapsi M, Veziri C M, Athanasekou C, Pilatos G, Reddy K S K, Raj A, Karanikolos G N. Energy & Fuels, 2018, 32(11): 11718-11730.

[81]
Younas M, Rezakazemi M, Daud M, Wazir M B, Ahmad S, Ullah N, Inamuddin, Ramakrishna S. Progress in Energy and Combustion Science, 2020, 80.

[82]
Shreya M, Manu L. Journal of Environmental Chemical Engineering, 2022, 10(6).

[83]
Kokcam-Demir U, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Chemical Society Reviews, 2020, 49(9): 2751-2798.

[84]
Tao R, Liu H, Xiang P, Lin Y, Zhou J, Zhou C, Zhao Y, Tian Z, Zhang Q. Journal of Porous Materials, 2023, 30(6): 2129-2137.

[85]
Gaikwad R, Gaikwad S, Han S. Journal of Industrial and Engineering Chemistry, 2022, 111: 346-355.

[86]
Yang F, Ge T, Zhu X, Wu J, Wang R. Separation and Purification Technology, 2022, 287.

[87]
Jun H J, Yoo D K, Jhung S H.Journal of Co2 Utilization, 2022, 58.

[88]
Li Z, Liu P, Ou C, Dong X. Acs Sustainable Chemistry & Engineering, 2020, 8(41): 15378-15404.

[89]
Zhang R, Huang J-H, Meng D-X, Ge F-Y, Wang L-F, Xu Y-K, Liu X-G, Meng M-M, Lu Z-Z, Zheng H-G, Huang W. Dalton Transactions, 2020, 49(17): 5618-5624.

[90]
Gao C, Mu X-B, Yuan W-Y, Zhang P, Wang Y, Zhai Q-G. Journal of Solid State Chemistry, 2023, 322.

[91]
Guclu Y, Erer H, Demiral H, Zorlu Y, Altintas C, Keskin S, Semerci F. Journal of Solid State Chemistry, 2023, 319.

[92]
Gaikwad S, Kim S-J, Han S. Journal of Industrial and Engineering Chemistry, 2020, 87: 250-263.

[93]
Gaikwad R, Gaikwad S, Han S. Journal of Environmental Chemical Engineering, 2023, 11(6).

[94]
Jabbar S Q, Janani H, Janani H. Journal of Polymers and the Environment, 2022, 30(10): 4210-4224.

[95]
Lei L, Cheng Y, Chen C, Kosari M, Jiang Z, He C. Journal of Colloid and Interface Science, 2022, 612: 132-145.

[96]
Guclu Y, Erer H, Demiral H, Altintas C, Keskin S, Tumanov N, Su B-L, Semerci F. Acs Applied Materials & Interfaces, 2021, 13(28): 33188-33198.

[97]
Amesimeku J, Zhao Y, Li K, Gu J. Microporous and Mesoporous Materials, 2023, 360.

[98]
Esfahani H J, Shahhosseini S, Ghaemi A. Scientific Reports, 2023, 13(1).

[99]
Wang S-M, Liu H-R, Ni S, Yang Q-Y. Chinese Journal of Chemistry, 2023, 41(7): 763-768.

[100]
Cui H, Ye Y, Liu T, Alothman Z A, Alduhaish O, Lin R-B, Chen B. Inorganic Chemistry, 2020, 59(23): 17143-17148.

[101]
Yu S, Zhao X, Zhang J, Liu S, Yuan Z, Liu X, Liu B, Yi X. Cellulose, 2022, 29(12): 6783-6796.

[102]
Zhou X, Shi S, Ding B, Jia H, Chen P, Du T, Wang Y. Environmental Science and Pollution Research, 2023, 30(46): 102803-102817.

[103]
Yu M-H, Zhang P, Feng R, Yao Z-Q, Yu Y-C, Hu T-L, Bu X-H. Acs Applied Materials & Interfaces, 2017, 9(31): 26177-26183.

[104]
Côté A P, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751): 1166-1170.

[105]
Furukawa H, Yaghi O M. Journal of the American Chemical Society, 2009, 131(25): 8875-8883.

[106]
Ozdemir J, Mosleh I, Abolhassani M, Greenlee L F, Beitle R R, Jr., Beyzavi M H. Frontiers in Energy Research, 2019, 7.

[107]
Li H, Dilipkumar A, Abubakar S, Zhao D. Chemical Society Reviews, 2023, 52(18): 6294-6329.

[108]
Wang W, Zhouab M, Yuan D. Journal of Materials Chemistry A, 2017, 5(4): 1334-1347.

[109]
Chen Y, Hu X, Guo J, Guo Z, Zhan H, Du S. European Polymer Journal, 2022, 171.

[110]
Zhu H, Lin W, Li Q, Hu Y, Guo S, Wang C, Yan F. Acs Applied Materials & Interfaces, 2020, 12(7): 8614-8621.

[111]
Zeng Y, Zou R, Zhao Y. Advanced Materials, 2016, 28(15): 2855-2873.

[112]
Liu F, Chen S, Gao Y. Journal of Colloid and Interface Science, 2017, 506: 236-244.

[113]
Dautzenberg E, Li G, De Smet L C P M. Acs Applied Materials & Interfaces, 2023.

[114]
Song J, Wang Z, Liu Y, Tuo C, Wang Y, Fang Q, Qiu S. Chemical Research in Chinese Universities, 2022, 38(3): 834-837.

[115]
Seob Song K, Fritz P W, Abbott D F, Nga Poon L, Caridade C M, Gandara F, Mougel V, Coskun A. Angewandte Chemie-International Edition, 2023, 62(38).

[116]
Zhang H, Liu S, Wang L, Fang H, Yue X, Wang Z, Wei S, Liu S, Lu X. Separation and Purification Technology, 2024, 333.

[117]
Xiong X-H, Zhang L, Wang W, Zhu N-X, Qin L-Z, Huang H-F, Meng L-L, Xiong Y-Y, Barboiu M, Fenske D, Hu P, Wei Z-W. Acs Applied Materials & Interfaces, 2022.

[118]
Wei S, Xin H, Wang M, Xu S, Zhai W, Liu S, Wang L, Liu S, Wang Z, Lu X. Advanced Theory and Simulations, 2022, 5(12).

[119]
Li X, Su Q, Luo K, Li H, Li G, Wu Q. Materials Letters, 2021, 282.

[120]
Yin M, Wang L, Tang S. Acs Catalysis, 2023, 13(19): 13021-13033.

[121]
Gao C, Li J, Yin S, Sun J, Wang C. Nature Communications, 2020, 11(1).

[122]
Das P, Mandal S K. Chemistry of Materials, 2019, 31(5): 1584-1596.

[123]
Sun R, Wang X, Wang X, Tan B. Angewandte Chemie-International Edition, 2022, 61(15).

[124]
Wang J, Wang L, Wang Y, Yang F, Li J, Guan X, Zong J, Zhou F, Huang J, Liu Y-N. Chemical Engineering Journal, 2022, 438.

[125]
Lin K Y, El-Mahdy A F M. Materials Chemistry and Physics, 2022, 281.

[126]
Li Z, Sheng L, Wang H, Wang X, Li M, Xu Y, Cui H, Zhang H, Liang H, Xu H, He X. Journal of the American Chemical Society, 2021, 143(1): 92-96.

[127]
Li H, Chen F, Guan X, Li J, Li C, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Journal of the American Chemical Society, 2021, 143(7): 2654-2659.

[128]
Reitz M, Junk M, Ströhle J, Epple B. International Journal of Greenhouse Gas Control, 2016, 54.

[129]
Zhang C, Li Y, Chu Z, Fang Y, Han K, He Z. Separation and Purification Technology, 2024, 329.

[130]
Strohle J, Hilz J, Epple B. Journal of Environmental Chemical Engineering, 2020, 8(1).

[131]
Ma X, Li Y, Zhang C, Wang Z. Process Safety and Environmental Protection, 2020, 141: 380-389.

[132]
Dong J, Tang Y, Nzihou A, Weiss-Hortala E.Journal of Co2 Utilization, 2020, 39.

[133]
Guo H, Yan S, Zhao Y, Ma X, Wang S. Chemical Engineering Journal, 2019, 359: 542-551.

[134]
Sun J, Wang W, Yang Y, Cheng S, Guo Y, Zhao C, Liu W, Lu P. Fuel, 2020, 266.

[135]
Hashemi S M, Karami D, Mahinpey N. Fuel, 2020, 269.

[136]
Gao N, Chen K, Quan C. Fuel, 2020, 260.

[137]
Kroedel M, Oing A, Negele J, Landuyt A, Kierzkowska A, Bork A H, Donat F, Mueller C R. Nanoscale, 2022, 14(45): 16816-16828.

[138]
Hu Y, Guo Y, Sun J, Li H, Liu W. Journal of Materials Chemistry A, 2019, 7(35): 20103-20120.

[139]
Guo Y, Tan C, Wang P, Sun J, Li W, Zhao C, Lu P. Chemical Engineering Journal, 2020, 379.

[140]
Lee S C, Cha S H, Kwon Y M, Park M G, Hwang B W, Park Y K, Seo H M, Kim J C. Korean Journal of Chemical Engineering, 2016, 33(12): 3448-3455.

[141]
Pang H, Xu H, Sun A, Xiao G. Applied Surface Science, 2022, 598.

[142]
Raza S, Orooji Y, Ghasali E, Hayat A, Karimi-Maleh H, Lin H.Journal of Co2 Utilization, 2023, 67.

[143]
Quan C, Zhou Y, Wang J, Wu C, Gao N.Journal of Co2 Utilization, 2023, 68.

[144]
Li X, Jiao C, Zhang X, Tian Z, Xu X, Liang F, Wang G-h, Jiang H. Journal of Cleaner Production, 2022, 350.

[145]
Tshikovhi A, Mishra S B, Mishra A K. International Journal of Biological Macromolecules, 2020, 152: 616-632.

[146]
Zhang X-F, Feng Y, Wang Z, Jia M, Yao J. Journal of Membrane Science, 2018, 568: 10-16.

[147]
Mohd N H, Kargarzadeh H, Miyamoto M, Uemiya S, Sharer N, Baharum A, Teh L P, Ahmad I, Yarmo M A, Othaman R. Journal of Materials Research and Technology-Jmr&T, 2022, 17.

[148]
Dutta S, Bhaumik A, Wu K C W. Energy & Environmental Science, 2014, 7(11): 3574-3592.

[149]
Shen J, Yuan Y, Salmon S. Acs Sustainable Chemistry & Engineering, 2022, 10(23): 7772-7785.

[150]
Li Y, Zhang X, Chen X, Tang K, Meng Q, Shen C, Zhang G. Acs Applied Materials & Interfaces, 2019, 11(13): 12605-12612.

[151]
Du J, Yang W, Xu L, Bei L, Lei S, Li W, Liu H, Wang B, Sun L. Chemical Engineering Journal, 2024, 488.

[152]
Gunawardene O H P, Gunathilake C A, Vikrant K, Amaraweera S M. Atmosphere, 2022, 13(3).

[153]
Zhao H, Luo X, Zhang H, Sun N, Wei W, Sun Y. Greenhouse Gases-Science and Technology, 2018, 8(1): 11-36.

[154]
Zhang C, Xue X, Liu J, Lin J, Zhang X, Kasemchainan J, Gao H, Wang G, Shu X. Chemical Engineering Journal, 2023, 464.

[155]
Yang D, Gates B C. Journal of Physical Chemistry C, 2024, 128(21): 8551-8559.

[156]
Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B. Nature Communications, 2012, 3.

[157]
Zhao M, Yang Y, Gu X-S. Inorganic Chemistry Communications, 2023, 152.

Options
文章导航

/