English
新闻公告
More
综述

水凝胶纺织复合材料

  • 郭婉茹 1 ,
  • 李政 , 1, 2, * ,
  • 刘兵 3 ,
  • 巩继贤 1 ,
  • 张松楠 1 ,
  • 郑国保 4
展开
  • 1 天津工业大学纺织科学与工程学院 先进纺织复合材料教育部重点实验室 天津 300387
  • 2 国家先进印染技术创新中心 泰安 271001
  • 3 宁夏神聚农业科技开发有限公司 中卫 755000
  • 4 宁夏农林科学院农业生物技术研究中心 银川 750002

李政 工学博士、教授、博士生导师。主要研究方向:水凝胶及纺织复合材料。主持/参与国家863计划、国家重点研发计划、国家自然科学基金等项目30余项。在国内外期刊发表论文100余篇。获“纺织之光”2014年度科技进步一等奖、北京科学技术二等奖。授权发明专利30余项。

收稿日期: 2023-10-07

  修回日期: 2024-02-27

  网络出版日期: 2024-06-27

基金资助

宁夏回族自治区重点研发计划社发领域项目(重点)(2022BEG02006)

天津市重点研发计划科技支撑重点项目(20YFZCSN00130)

黑龙江省中央引导地方科技发展资金成果转移转化类项目(ZY23CG35)

宁夏回族自治区柔性引进科技创新团队项目(2021RXTDLX08)

Hydrogel-Based Textile Composites

  • Wanru Guo 1 ,
  • Zheng Li , 1, 2, * ,
  • Bing Liu 3 ,
  • Jixian Gong 1 ,
  • Songnan Zhang 1 ,
  • Guobao Zheng 4
Expand
  • 1 Key Laboratory of Advanced Textile Composites of Ministry of Education, School of Textiles Science and Engineering, Tiangong University, Tianjin 300387, China
  • 2 National Innovation Center of Advanced Dyeing and Finishing Technology, Taian 271001, China
  • 3 Ningxia Shenju AG Science & Technology, Zhongwei 755000, China
  • 4 Research center of agricultural and biological technologies, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
* e-mail: ;

Received date: 2023-10-07

  Revised date: 2024-02-27

  Online published: 2024-06-27

Supported by

Ningxia Key Research and Development Project(2022BEG02006)

Tianjin Key Research and Development Project(20YFZCSN00130)

Central Government of Heilongjiang Province Guides Funds(ZY23CG35)

Ningxia Autonomous Region Flexible Introduction of Science and Technology Innovation Team(2021RXTDLX08)

摘要

水凝胶材料因优异的亲水、生物相容性及可调节的仿生特性等备受关注,但其固有的非均匀微观结构和低密度分子链使得其力学性能较差,限制了其实际应用,制备出机械强度高又有韧性的水凝胶材料一直是本领域研究的难点。由于复合材料不断向功能化和智能化的方向发展,将高分子水凝胶引入纺织领域制备凝胶基纺织复合材料不仅能改善凝胶材料的缺陷,还可提升纺织材料的性能,扩宽其潜在的应用前景。本文综述了水凝胶纺织复合材料的研究进展,重点介绍了水凝胶基纺织复合材料的设计策略及其力学性能、抗菌性能等方面的增强,讨论了复合材料在油水分离、医用敷料、可穿戴电子设备和阻燃防护等方面的应用进展,并对未来研究方向进行了展望。

本文引用格式

郭婉茹 , 李政 , 刘兵 , 巩继贤 , 张松楠 , 郑国保 . 水凝胶纺织复合材料[J]. 化学进展, 2024 , 36(6) : 914 -927 . DOI: 10.7536/PC231002

Abstract

Hydrogel materials are widely used due to their excellent hydrophilicity, biocompatibility, adjustable biomimetic properties, etc. However, their inherent non-uniform microstructure and low-density molecular chains make their mechanical properties poor, which limits their practical applications. The preparation of hydrogel materials with high mechanical strength yet toughness has been a challenge for research in this field. As composites are constantly developing in the direction of functionalization and intelligence, the introduction of polymer hydrogels into the textile field for the preparation of gel-based textile composites not only improves the defects of gel materials, but also gives textiles excellent properties and broadens their potential application prospects. This paper reviews the research progress of hydrogel textile composites, focusing on the design strategy of hydrogel-based textile composites and their enhanced mechanical and antimicrobial properties, discusses the application progress of the composites in the fields of oil-water separation, medical dressings, wearable electronic devices, and flame-retardant protection, and the future research direction is also prospected.

Contents

1 Introduction

2 Methods to prepare hydrogel textile composites

2.1 Sol-gelatinization

2.2 Graft modification treatment

2.3 Lamination

2.4 Hydrogel fiber weaving method

3 Application of hydrogel textile composites

3.1 Oil-water separation

3.2 Medical Dressings

3.3 Wearable electronic devices

3.4 Flame retardant protective products

3.5 Others

4 Conclusion and outlook

1 引言

水凝胶是一种具有三维网络立体结构的聚合物材料,含有大量羧基、羟基等亲水性基团,能在内部保存大量水分[1~3]。1960年,Wichterl等首次提出了水凝胶的制备方法,以甲基丙烯酸羟乙酯为单体,二甲基丙烯酸乙烯为交联剂制备出史上第一种水凝胶[4]。作为一种新型材料,水凝胶因其亲水性、良好的生物相容性以及可调节的仿生特性,成为组织工程、软体机器人、药物输送等应用领域的首选材料[5,6]。然而,与生物组织相比,水凝胶固有的非均匀微观结构和低密度聚合物网络使其力学性能相对较差,在加工和使用过程中可能会产生易碎、断裂等问题,严重限制了其作为结构材料的应用[7]。因此,制备出机械强度高又有韧性的水凝胶材料一直是一个亟待解决的难题[8]
为解决这个问题,研究人员采用了多种策略,一方面是从水凝胶自身的结构设计出发,将不可逆共价交联、可逆物理交联或可拉伸网络引入到一个聚合物基质中。可逆交联结构可以通过凝胶形变耗散能量,并在应力消除时进行重组,共价交联可将应力分布在整个网络中,保持凝胶形状,确保卸载后恢复原始状态[9]。据此已经制备出多种高强度水凝胶,包括双网络水凝胶[10]、滑环水凝胶[11,12]、纳米复合水凝胶[13]、疏水缔合水凝胶[14]及高分子微球水凝胶[15,16]等。另一方面是将水凝胶与其他材料复合制备凝胶基复合材料。由于复合材料不断向功能化和智能化的方向发展,纳米粒子、纤维、织物等也被用于构建复合水凝胶结构来增强其力学性能[17]
目前,纺织材料增强水凝胶属于一个新的热点方向。采用纺织材料与水凝胶结合构建复合结构,为提高水凝胶的力学强度提供了一种新思路。水凝胶作为基质提升复合材料的性能,纺织材料承担施加的载荷并保护结构免受机械损伤,这可以改善凝胶材料的缺陷,同时赋予纺织品抗紫外线、自清洁、抗菌、阻燃等特殊性质,显示出潜在的应用前景[18]。本文综述了近年来水凝胶纺织复合材料的制备方法及其在油水分离、医用敷料、可穿戴电子设备和阻燃防护等领域的最新研究进展,提出了将水凝胶与纺织材料结合的研究中存在的问题,并对未来研究方向进行了展望(图1)。
图1 水凝胶纺织复合材料的性能

Fig. 1 Properties of hydrogel textile composites

2 水凝胶纺织复合材料制备策略

制备水凝胶纺织复合材料需要综合考虑纺织品及水凝胶材料的特性,以协调两者之间的结合性能,达到增效目的。目前,水凝胶与纺织品的结合方法主要有如下几种(见表1):
(1)溶胶原位凝胶化:将水凝胶前驱体溶液通过浸渍、喷涂或旋涂等技术涂覆于织物上,直接在织物上进行原位凝胶化[19]
(2)接枝改性处理:将功能性单体加入聚合物中,利用光、热、高能射线及引发剂等使聚合物材料表面产生活性自由基,引发功能性单体接枝聚合。
(3)层压法:采用粘结加压工艺处理水凝胶材料,使其与织物进行结合。
(4)水凝胶纤维织造法:选择不同加工方法制备凝胶纤维,然后通过非织造或编织、机织和针织等纺织技术制备凝胶纺织材料。
表1 水凝胶纺织复合材料的制备

Table 1 Preparation of hydrogel textile composites

Method Content Hydrogel material Other materials Ref
Sol-gel method Dip method The sol-gel immersion technique was used to enhance the nonwoven cotton by immersion in the cellulose solution to form a cellulose hydrogel/nonwoven cotton composite material. Cellulose hydrogel Cotton nonwoven 20
Wool nonwovens were immersed in an aqueous sodium alginate solution and then passed through a calcium chloride solution to form hydrogel composites. Sodium alginate Wool nonwoven 21
Soaking strategy was employed and nonwoven fabrics were introduced to preparation of the hydrogel composites. Gelatin, chitosan Polylactic acid nonwoven 22
The polyvinyl alcohol and sodium alginate mixed solution were evenly injected into the three-dimensional cotton fiber network, and the PVA-SA hydrogel was enhanced by freeze-thaw cycle and high temperature annealing. Poly (vinyl
alcohol), Na-alginate
Cotton 23
Coating The zwitterionic hydrogel-coated cotton fabrics were prepared by stepwise coating and post-gel route. PSBMA/PVA/Borax Cotton fabric 25
Hydroxyethyl cellulose, poly(acrylic acid) Cotton fabric 26
The dihydrolipoic acid-modified sulfobetaine-derived starch hydrogel coating was covalently immobilized on the PDA/PET surface via Michael addition reaction. Sulfobetaine-derived starch The PET surface modified with PDA 27
Graft modification Chemical grafting The PET fabric surface was graft polymerized by activated acrylic acid and then soybean isolate protein hydrogel was coated on the fabric surface. Soy protein isolate PET fabric 29
Nanohydrogels were synthesized by one-step method, and SCGN nanohydrogels were grafted to the surface of cotton fabric by chemical grafting. NCO-SCG Nanohydrogel Cotton fabric 30
Light grafting Pretreatment with argon plasma, light-induced surface graft polymerization, and PNIPAAm hydrogels were grafted onto polypropylene non-woven fabrics and PET surfaces. Poly(N-isopropylacrylamide) Polypropylene non-woven, PET 33
Bifunctional groups were introduced into the PET surface by the aminolysis reaction of allylamines. The grafted polymer networks were obtained after UV-induced radical photopolymerization by varying acrylate monomer types. N-isopropylacrylamide PET fabric 34
The hydrogel with different structures were obtained by introducing resorcinol acrylic diglycidyl ester into PET surface through dip rolling and baking methods, and initiating free radical polymerization on PET fabric surface under UV light. Polyacrylamide, polyacrylic acid, poly (N-isopropylacrylamide) PET fabric 35
Plasma grafting Three low-temperature plasma gases (oxygen, nitrogen, and argon) were used to activate the surface of cotton fibers to prepare PN/CS hydrogel textiles. Poly(N-isopropylacrylamide), Chitosan Cotton fabric 36
The surface of PET fabric was modified by plasma treatment, and nano gel was synthesized by free radical polymerization to prepare composite materials. N-isopropylacrylamide PET fabric 37
The double network composite hydrogel was enhanced by plasma graft PLA fused-blown nonwoven fabric and polyethylene glycol dimaleate. Polyethylene glycol dimaleate Polylactic acid non-woven 39
Laminating A method was reported to combine hydrogels with elastomers via a glass fiber fabric interphase. Polyampholyte, Polydimethylsiloxane Glass fiber fabric 40
This study constructed a multiscale gel-fabric soft composite synergistically toughened by Pluronic/PMEA hydrogel, hydroxyapatite nanoparticles (HAP NPs) and aramid fabric. Pluronic F127 Diacrylate, Methoxyethyl acrylate Aramid fabric 41
Hydrogel fiber weaving method Nonweaving method This study selected ethanol-soluble PA as the spinning polymer and fabricate the green electrospun EPA fibrous membranes. The composite material was formed by uniformly coating the polyacrylate onto the EPA fibrous membranes. Fluorinated polyacrylate Electrostatic spun polyamide fiber membrane 48
Hydrogel composite materials based on hydroxypropyl cellulose has been produced using the nonwoven solution blown technique followed by thermal cross-linking with citric acid. Hydroxypropyl cellulose /
(nonwoven fabrics)
50
The gelatin hydrogel nonwoven fabrics were prepared by the solution blow spinning method. Gelatin /
(nonwoven fabrics)
51
Weaving method 3D fabric-enhanced hydrogel composite materials composed of acrylamide and sodium alginate are expected to be used for cartilage replacement. Acrylamide, sodium alginate / 52
The PVA yarn is dissolved in the fabric and transformed into cross-linked gel structure, which penetrates between yarns in the form of matrix to obtain hydrogel composites. Polyvinyl alcohol Cotton 53
regenerated cellulose fiber 56
The HOGFs were designed via a wet-spinning strategy. Owing to the good knittable feature, the HOGFs can be readily woven to adjusted 2D textiles to function. Poly(ethylene glycol) diacrylate, N-(2-hydroxyethyl) acrylamide, SA / 57
The composite fibers, Ecoflex-polyacrylamide fibers (EPFs), are created through the combination of heterogeneous elastomers and strong interfacial coupling. Acrylamide / 58
A continuous dry-wet spinning method was developed to prepare hydrogel fibers. By tuning the contents of acrylamide and N-acryloylglycinamide, the hydrogel precursor exhibits thermally reversible sol-gel transition. Acrylamide, N-acryloylglycinamide / 59
The hydrogel was compounded with an elastic polyacrylamide hydrogel to produce a hydrogel core sheath fiber, and blended with a liquid metal core sheath fiber to produce a smart fabric. Mineral hydrogel, polyacrylamide, metal fibre / 60

2.1 溶胶原位凝胶化

溶胶原位凝胶化是织物表面改性的一种方法,通过在前驱物溶剂(无机盐或有机化合物)内发生水解或醇解作用形成稳定的三维空间网络结构(溶胶体系),经凝胶化反应在纤维或者织物表面形成无机或有机/无机杂化涂层。目前,溶胶原位凝胶化在织物功能性整理和纺织品性能改善方面发挥了重要作用,常用的方法主要为溶胶凝胶浸渍法和涂层技术。纺织材料原位凝胶化过程可分为五个阶段,即水解、凝结(凝胶化)、凝胶老化、应用和固化,如图2所示[19]
图2 纺织材料溶胶原位凝胶化过程的示意图[19]

Fig. 2 Schematic representation of the process of sol-gel in situ gelation of textile materials[19]

溶胶凝胶浸渍法是将纤维或织物直接浸入水凝胶前驱体溶液中,在织物上原位成胶的一种方法。Ahmad等[20]采用溶胶凝胶浸渍法,将非织造棉浸入纤维素溶液中对其进行增强,制备的纤维素基水凝胶非织造复合材料具有优异的力学性能。在此基础上,他们[21]将羊毛非织造布浸入海藻酸钠水溶液中,然后在氯化钙溶液中进行凝胶化,制备了一种新型可生物降解的海藻酸钠水凝胶与羊毛非织造布复合材料。与纯羊毛非织造布相比,水凝胶非织造布的拉伸强度和渗透性显著提高。此外,Wang等[22]采用浸渍法,选择壳聚糖和明胶制备水凝胶复合材料,引入聚乳酸无纺布作为支撑骨架。水凝胶与无纺布通过柠檬酸离子交联相互纠缠,使系统中的应力分散均匀,改善了天然高分子水凝胶的力学性能。Zhang等[23]将棉织物浸入聚乙烯醇(PVA)和海藻酸钠(SA)混合溶液中,通过冻融循环和高温退火得到棉织物增强的PVA-SA水凝胶,该材料的力学性能明显优于纯棉织物或PVA凝胶(图3)。
图3 棉织物增强物理交联PVA-SA水凝胶的制备[23]

Fig. 3 The preparation of physically cross-linked PVA-SA hydrogels with cotton fabric reinforced[23]

溶胶凝胶涂层技术是将预先制备好的水凝胶前体溶液均匀涂覆在织物表面,通过辐射或添加交联剂等交联方法,在织物上形成具有特定功能的胶体层的技术[24]。Liu等[25]根据两性离子水凝胶的性质,将制备的聚甲基丙烯酸磺基甜菜碱-丙烯酸羟乙酯/聚乙烯醇/硼砂水凝胶聚合物前驱体溶液均匀地涂覆在棉织物表面,然后进行冻融循环处理,交联形成动态硼酸酯键,通过分步涂层-凝胶化制备两性离子凝胶涂层棉织物。在此基础上,他们[26]采用相同方法将羟乙基纤维素和聚丙烯酸原位聚合得到了一种纤维素基水凝胶(AHCH),采用丝网印刷装置将凝胶前驱体溶液均匀地涂覆在棉织物上,制备出具有良好力学性能的水凝胶基纺织(AHCH@CF)复合材料。Yao等[27]将聚多巴胺(PDA)沉积在聚对苯二甲酸乙二醇酯(PET)表面(PDA/PET),并开发了一种二氢硫辛酸改性磺基甜菜碱衍生淀粉(SB-ST-D)水凝胶涂层。通过迈克尔加成反应将SB-ST-D共价固定在PDA/PET表面上,形成二硫键,得到水凝胶纺织复合材料。

2.2 接枝改性处理

目前常用的材料表面接枝改性的方法主要有化学接枝法、紫外光诱导接枝法、等离子体诱导接枝法等。

2.2.1 化学接枝法

化学接枝法指采用化学改性将官能团接枝到纤维或者织物上,使改性后的织物形成利于与水凝胶结合的活性位点,赋予纤维及纺织品特殊的性能[28]。Norouzi等[29]通过活化丙烯酸(AA)对PET织物表面接枝聚合,再将大豆分离蛋白(SPI)水凝胶涂覆在织物表面,水凝胶和改性PET织物表面生成共价键,改善了织物与水凝胶连接性能。Han等[30]采用自由基聚合法将苯乙烯(St)、聚己内酯-甲基丙烯酸羟乙酯(PCL-HEMA)和聚六亚甲基胍盐酸盐(M-PHGC)等单体聚合,一步法合成了SCG纳米水凝胶,使用异氰酸酯对其改性制备得到NCO-SCG纳米凝胶,并通过化学接枝法将其接枝到棉织物表面,整理后的抗菌织物具有良好的抗菌性与热稳定性(图4)。
图4 制备NCO-SCG纳米凝胶及化学接枝法制备凝胶织物过程示意图[30]

Fig. 4 Schematic diagram of the process of preparing NCO-SCG nanogels and chemical grafting[30]

2.2.2 紫外光接枝法

紫外光接枝法主要通过紫外光照射使高分子表面产生自由基,引发自由基接枝共聚[31]。这种方法成本低廉,产物纯净,但采用此方法制备凝胶纺织品的报道还很少[32]。Chen等[33]采用氩等离子体预处理与紫外光诱导表面接枝聚合法,将聚(N-异丙基丙烯酰胺)(PNIPAAm)水凝胶接枝到了聚丙烯无纺布上。最近,PNIPAAm水凝胶改性的PET纺织品也被制备出来,Lorusso等[34]将烯丙胺通过氨解反应与PET表面共价结合,然后紫外光诱导自由基聚合后获得接枝聚合物网络,成功将PNIPAAm水凝胶接枝到羧化的PET织物表面(图5)。与之不同,Dai等[35]则使用简单的浸轧和焙烘法将间苯二酚丙烯酸二缩水甘油酯(RDA)改性到PET织物表面,通过紫外光诱导不同丙烯酸酯单体发生自由基聚合反应,得到三个具有不同结构的水凝胶层,即聚丙烯酰胺(PAAM)、聚丙烯酸(PAAC)和PNIPAAM,说明紫外光接枝法可用于在PET织物表面获得水凝胶层。
图5 利用紫外光辐射将水凝胶固定在PET织物上的合成路线图[34]

Fig. 5 Roadmap for the synthesis of hydrogel fixation to the PET fabric using UV radiation[34]

2.2.3 等离子体接枝法

等离子体接枝法可通过等离子体在纤维表面产生各种活性基团,使接枝单体更易引入到材料表面,实现纺织材料功能化。目前,常用于增加纤维表面的化学反应性,增强涂层与聚合物基质间的附着力及提高材料亲水性。Tourrette等[36]使用三种低温等离子体气体(氧气、氮气和氩气)来改性棉纤维表面,增加纤维表面上官能团的数量,通过蚀刻加大了纤维的粗糙度,导致纤维和微凝胶颗粒之间接触增大,从而加强了PNIPAAm/壳聚糖水凝胶(PN/CS)在织物表面上的附着。Štular等[37]为了使水凝胶保持pH响应性的同时,最大程度地将其沉积到织物上,选取氨气和氧气两种等离子体气体组合,对PET织物进行等离子体表面改性。使用氧等离子体可增加聚合物表面能,在各种高分子材料上实现涂层沉积,氨等离子体实现聚合物的氨基功能化和弱蚀刻[38],达到pH响应的效果。Li等[39]结合非织造材料优势,采用等离子体接枝聚乳酸熔喷布和聚乙二醇二马来酸酯对复合水凝胶进行增强,构建了互穿水凝胶复合非织造布结构。

2.3 层压法

层压法是指将织物与功能性薄膜之间进行粘结加压工艺处理,使其成为具有特定功能的复合材料的方法。Hubbard等[40]研制了一种以玻璃纤维(GF)织物为界面,使两性聚电解质水凝胶(PA)与弹性体(PDMS)物理结合的复合材料。由于GF织物与软压层的相互作用,无需化学处理即可实现不同材料的牢固结合,并大幅提高复合材料的力学性能。此方法也可制备各种力学性能可调的凝胶复合材料,Li等[41]将聚醚F127二丙烯酸酯(F127DA)溶解在水溶液中形成聚合物胶束,同时羟基磷灰石纳米粒子与丙烯酸甲氧基乙酯(PMEA)进行原位共聚,制备出一种聚合物胶束与纳米粒子双交联的纳米水凝胶。将水凝胶层压到芳纶织物上,利用凝胶-织物协同增韧的机理,开发了具有良好韧性和抗穿刺性能的水凝胶织物复合材料。

2.4 水凝胶纤维织造法

聚合物和纺织技术的发展为制备水凝胶纺织复合材料提供了多种选择,可以通过选择适合的加工或改性方法制备水凝胶纤维,并进一步加工成凝胶纺织品。如通过静电纺丝法直接纺制纤维膜[42],或通过湿法、干法纺丝等制备水凝胶纤维,然后结合现有的编织、机织、针织或非织造等纺织技术制备水凝胶纺织复合材料。目前,常见凝胶纤维的制备工艺如表2[43]
表2 常见凝胶纤维制造技术[43]

Table 2 Common gel fiber manufacturing techniques[43]

Setup Concept Ref
Electro-spinning The polymer dissolved in an appropriate solvent is injected by a needle towards a collection plate. Due to the high applied electric field, potential difference generated between the syringe and the plate, the polymer is attracted by the collecting plate, and the polymer solution is converted into nanofibers. 44
Wet-Spinning The polymer is dissolved in an appropriate solvent and later injected through a fiery into a coagulation bath containing a non-solvent liquid. In the coagulation bath, continuous polymerization of the filaments occurs. After the formation of the fibers, they are extracted from the coagulation bath by means of rollers-induced capture. 45
Melt-Spinning The solid polymer is heated above its melting point within the extruder and is then expelled through a die, solidifying on cooling. In a pick-up, the fibers are then recovered and mechanically stretched. 46
Dry-Spinning The polymer is dissolved in a suitable solvent. The initial solution is injected through the spinneret and through a heating column that causes the solvent to evaporate. Consequently, the polymer solidifies, and dry fibers are attained. 47

2.4.1 非织造法

自20世纪90年代以来,静电纺丝法已成为制备纳米凝胶纤维最直接有效的方法之一。目前,以明胶、透明质酸及丝素等生物高分子为原料的静电纺丝膜力学性能较差,可通过化学交联等方法促进纤维中相关基团的反应,提高力学性能。Zhou等[48]选择醇溶性聚酰胺(EPA)作为纺丝聚合物,通过静电纺丝和浸渍技术制备了具有两亲性的聚酰胺纤维膜。同时,将含氟聚丙烯酸酯(WFPA)均匀涂覆在EPA纤维表面,使纤维膜具有优良的键合结构(图6)。
图6 (a)智能纤维膜制造程序示意图;(b)纤维膜性能示意图[48]

Fig. 6 (a) Schematic diagram of smart fiber membrane manufacturing process; (b) Schematic diagram of fiber membrane performance[48]

相较于静电纺丝,溶液吹塑法结合了熔融吹制的可扩展性和静电纺丝的多功能性,制备的凝胶纤维的结构和性能得到了显著改善,成本也大大降低[49]。Yang等[50]首次提出了使用无纺溶液吹塑技术开发了一种超多孔的羟丙基纤维素(HPC)水凝胶纺织材料。采用柠檬酸热交联非织造纤维,HPC中的羟基与交联剂中的羧酸基团之间形成交联酯键,获得了更稳定的结构。此外,Nakamura等[51]通过高速空气喷嘴泵进行溶液吹塑纺丝,制备了一种明胶水凝胶无纺布(GHNF),并将其作为载体膜在多层细胞片中应用。

2.4.2 织造技术

织造技术是指把两根或者两根以上的纱线依照一定的规律交织成一个整体织物结构的成型工艺。目前,已用该方法开发出三维编织模式,以增强水凝胶基质。Arjmandi等[52]将水凝胶前驱体溶液与N,N-亚甲基双丙烯酰胺进行混合,在织物织造过程中完成凝胶化,制备了一种由丙烯酰胺和海藻酸钠构成的三维织物增强水凝胶复合材料,提高了织物的负载能力和水凝胶基体的耐磨性。Koc等[53]首次采用机织工艺一步法制备了织物增强水凝胶结构,以PVA纱线和棉为经纱、纯PVA纱线为纬纱,采用硼砂溶液对制备的PVA/棉织物处理,得到了PVA/棉机织物。PVA可在织物中溶解并转化为交联的凝胶结构[54,55],以基体形式渗透到纱线中,从而得到了棉纱线增强复合水凝胶材料,拉伸性能显著提高。在此基础上,他们[56]将PVA纤维与再生纤维素纤维混合机织(图7),以PVA与粘胶为材料制备了织物增强水凝胶复合材料,水凝胶的力学性能显著提高。
图7 (a)纤维增强水凝胶复合材料制备;(b)粘胶织物和粘胶织物增强水凝胶复合材料的扫描电镜图[56]

Fig. 7 (a) A Schematic representation of the preparation of the fiber-reinforced hydrogel composites; (b) Scanning electron micrographs of viscose fabric and viscose fabric reinforced hydrogel composites[56]

Zhang等[57]采用湿纺工艺和溶剂置换策略制备了吸湿有机凝胶纤维(HOGFs),可编织到二维吸湿装置中,用于大气集水。目前,复合凝胶纤维通常可实现可拉伸性和可设计性,但疲劳性和滞后性仍是当前难以解决的问题。Li等[58]选择PAAm作为模型异质材料,通过湿法纺丝法制备了一种仿动脉的异质分层结构(HHS),添加引发剂二苯甲酮将两个聚合物网络连接成一个整体,制备出可连续化生产的导电、高弹性、抗疲劳水凝胶-弹性复合纤维,可以将其编织成织物并应用于可穿戴设备。凝胶纤维的快速发展对纤维的力学性能提出了更高的要求,Shuai等[59]报道了一种连续的干湿纺丝法来制备可拉伸、导电和自修复的水凝胶纤维。通过调整丙烯酰胺(AAm)和N-丙烯酰基甘氨酰胺(NAGA)的含量,水凝胶前体表现出热可逆的溶胶-凝胶转变,确保了纺纱过程的成功。
Wu等[60]报道了一种通过熵介导的聚合物-簇相互作用实现的新型热致硬化矿物水凝胶材料,将该水凝胶与弹性聚丙烯酰胺水凝胶复合制备了兼具高拉伸、高回弹和可热致硬化的水凝胶芯鞘纤维。将其与液态金属芯鞘纤维混编后,可实现织物软硬状态的快速切换(图8)。
图8 熵驱动热致硬化水凝胶及智能织物[60]

Fig. 8 Entropy-driven thermosetting hydrogels and smart fabrics[60]

3 水凝胶纺织复合材料的应用

水凝胶纺织复合材料具有良好的机械性能、超疏水性、抗菌性及阻燃性等,是一种理想的高分子复合材料。含有特定基团的长链或单体合成的水凝胶可以响应不同温度、pH及电场环境,应用于油水分离、医用敷料、智能可穿戴电子设备和阻燃防护品等多个领域(见表3)。
表3 水凝胶纺织复合材料的相关应用

Table 3 The application of hydrogel textile composites

Researcher Content Application Ref
Liu The zwitterionic hydrogel-coated cotton fabrics were prepared by stepwise coating and post-gel route. Oil-water separation 25
Liu A novel Ag/AgCl nanoparticles hybrid cellulose-based hydrogel (AHCH) was successfully prepared, it was coated on a piece of cotton fabric through the facile sol-gel coating method. Oil-water separation 26
You A natural polymer-based hydrogel prepared by konjac glucomannan was coated on glass fabric. Oil-water separation 63
Cai The method of a super hydrophilic fabric composed of basalt fiber and KGM was reported. The composite shows stable super hydrophobic property in water. Oil-water separation 70
Dai A guar gum self-assembled hydrogel for oil-water separation was prepared and coated on cotton fabric by coating method. Oil-water separation 71
Türkoğlu A hydrogel dressing supported by regenerated cellulose non-woven fabric was developed, which has the characteristics of rapid and effective treatment of high swelling wounds. Wound dressing 80
Benltoufa Chitosan hydrogel has been synthetized and applied on cellulosic fabric to impart antimicrobial behavior. It is suitable for medical, surgical and transdermal treatment applications. Wound dressing 81
Ahmad The study fabricated cellulose hydrogel using the sol-gel technique and reinforced it with nonwoven cotton for sustainable wound dressing application. Wound dressing 20
Wang The sandwich-like composite hydrogel wound dressings were developed by intercalating nonwoven fabrics as the middle layer, gelatin and chitosan hydrogel loaded with Centella asiatica as the base materials. Wound dressing 22
Xu A touch sensing fabric system composed of non-woven cellulose fabric was proposed, wearable electronics 87
Kang A flexible and stretchable supercapacitor was assembled by direct interfacial gelation of reduced graphene oxide with carbon nanotubes on a stretchable fabric surface. wearable electronics 88
Xu A breathable paper-cut ionic e-textile with two functions of sensing (touch and strain) was designed by integrating silk fabric and paper-cut ionic hydrogel. wearable electronics 89
Song A designed hybrid crosslinking strategy continuously wet-spins hydrogel fibers, which are transformed into organohydrogel fibers by simple solvent replacement. wearable electronics 90
Li The composite fibers, Ecoflex-polyacrylamide fibers (EPFs), are created through the combination of heterogeneous elastomers and strong interfacial coupling. wearable electronics 58
Illeperuma A new flame retardant material was developed by laminating hydrogel and fabric. flame-resistant dress 96
Yu Hydrogel fabric laminate was developed by using a thermal laminate-sensitive PNIPAAm/SA hydrogel on the surface of the cotton fabric. flame-resistant dress 97
A PNIPAAm/SA/PVA composite hydrogel fabric laminate with high strength and antibacterial properties was prepared by adding PVA as the main component of the hydrogel. flame-resistant dress 92
Nie PAAM/SiO2 nanocomposite hydrogel was filled into the fabric to form a semi interpenetrating structure at the interface, and flame retardant gel/textile composites were prepared. flame-resistant dress 98
Qiu A bullet-proof bicontinuous hydrogel (BH)/ultrahigh-molecular weight polyethylene fabric (UPF) composite was reported. flexible protective materials 101
Li HAP NPs were copolymerized in situ with elastomeric monomers to form hydrogels and the optimal angle was selected to laminate the aramid fabrics. flexible protective materials 41
Li The double-network composite hydrogel is reinforced by plasma grafted polylactic acid
melt-blown non-woven fabric and polyethylene glycol dimaleate.
Adsorption 39
Zhou a novel Janus photothermal hydrogel-fabric was developed by firmly formatting surface hydrophobized porous photothermal hydrogel on a commercial cotton fabric in large area. seawater desalination 105

3.1 油水分离

油水分离技术是一种基于特殊可湿性材料的有效污水处理技术[61~63]。近年来,具有超亲水性和超疏油性的水凝胶材料备受关注[64]。两性离子水凝胶由于分子链中同时存在阳离子和阴离子基团,能够在恶劣环境中保持稳定,已被广泛用于油水分离领域[65,66]。Zhu等[67]采用表面接枝法制备了一种两性离子纳米水凝胶接枝聚偏氟乙烯(PVDF)微滤膜,由于两性离子的存在,该膜对水包油乳液分离表现出优异的耐污染性能,经过多次水包油乳液过滤循环,渗透通量回收率接近100%。Liu等[25]研制了一种聚甲基丙烯酸磺基甜菜碱-丙烯酸羟乙酯/聚乙烯醇/硼砂两性离子水凝胶涂层棉织物,具有优异的水下超疏油性和优异的防污能力。即使在50次连续循环后,水凝胶纺织品仍表现出优异的油水分离效率。然而,这些用于油水分离的水凝胶都是合成聚合物,难以降解[68]。在此研究基础上,他们[26]采用具有生物相容性的纤维素成功制备了一种新型纳米粒子杂化水凝胶,通过简单的原位凝胶化法,将其涂覆在一块棉织物上(AHCH@CF)。对于各种油水混合物,它表现出优异的油水分离功能,分离效率约为99.5%,水通量高达约15 246 L-1·m-2·h-1。在50次循环后,分离效率仍然可以保持在99.0%以上,为高效和持久的油水分离应用提供了新的候选材料。魔芋葡甘露聚糖(KGM)具有良好的成膜性与生物相容性[69],You等[63]将KGM制备的天然聚合物水凝胶直接涂覆于工程材料玻璃纤维织物上,无需其他化学试剂。所研制的水凝胶纺织复合材料不仅具有良好的油水分离性,同时可在分离过程中去除水中的有机染料和重金属。Cai等[70]研发了一种由玄武岩纤维(BF)和KGM组成的超亲水性织物的制备方法。KGM在碱性条件下脱乙酰形成水凝胶(DA-KGM),可在BF织物上形成涂层。该材料即使在碱、酸和有机溶液时仍具有超亲水性和超疏油性,有望在恶劣环境中使用。此外,Dai等[71]制备了一种用于油水分离的瓜尔胶自组装水凝胶,采用涂层法在棉织物上涂覆瓜尔胶溶液,浸入高碘酸钠中,通过高碘酸钠的区域选择性氧化诱导瓜尔胶凝胶化。结果表明,水凝胶涂层棉织物能够选择性地分离不同的含油废水,对硅油、菜籽油和环己烷的分离效率分别为98.11%、97.53%和99.47%。

3.2 医用敷料

医用敷料可以避免细菌及微生物作用,加快伤口愈合。目前已经开发多种敷料用于促进伤口修复,包括传统纱布、绷带以及新开发的纳米纤维、泡沫和水凝胶等[72~74]。水凝胶因其良好的药物输送能力和高孔隙率等特性,已成为最具竞争力的候选材料[75,76]。目前的水凝胶敷料大多是透气性差的薄膜,在长时间佩戴后可能会导致炎症。与其他形式的敷料相比,纺织品具有极好的延伸性和抗压缓冲能力,能够更好地承受皮肤的形变和张力。因此,水凝胶和纺织品面料的结合可以克服传统敷料的不足[77]。天然高分子材料制备的水凝胶,如海藻酸钠、明胶、壳聚糖等,已被广泛应用于医用敷料领域[78,79]。Türkoğlu等[80]开发了一种再生纤维素无纺布支撑的水凝胶敷料。将壳聚糖和海藻酸钠与聚乙二醇交联,在非织造布上形成水凝胶。所制备的材料具有快速、有效治疗肿胀性创面的特点,可作为多层复合敷料的吸收层促进伤口愈合。Benltoufa等[81]将壳聚糖水凝胶沉积在通过阳离子和阴离子基团功能化的棉织物上,使其在保持基本物理和力学性能的同时抑制细菌生长。无纺布由于其优异的吸收性能和多孔性,是纺织基水凝胶伤口敷料的最佳支撑材料之一。Ahmad等[20]将非织造棉浸入纤维素溶液制备了水凝胶非织造棉复合材料,具有良好的吸水性和透气性。同时负载有二氧化钛颗粒,获得了抗菌性能,实现伤口敷料应用。与纯棉无纺布相比,纤维素基水凝胶无纺布复合材料的液体吸收能力显著提高。此外,Wang等[22]将壳聚糖和明胶引入聚乳酸无纺布中制备了一种夹心型复合水凝胶创面敷料,具有较高的力学性能、吸水性和水蒸气透过率(3419± 197 g∙m-2∙d-1),药物缓释性能好(释放时间216 h,最大累积释放量达到74%)。因此,水凝胶与纺织品结合可以改善水凝胶的机械性能,降低织物的粘合性能,增强复合材料的药物递送性能,在伤口愈合和药物释放方面具有很大的应用潜力[43]

3.3 可穿戴电子设备

近年来,各种智能可穿戴电子设备,尤其是人机交互系统、实时健康监测设备和高度灵活的显示器,取得了巨大发展[82,83]。这些电子设备需要具有灵活性、优异的可拉伸性及在显著变形下保持稳定的功能[84,85]。高离子电导率的水凝胶具有多种附加功能,能够在各种极端工作环境中应用,以制备超柔性纺织品[86]。Xu等[87]采用非织造纤维素织物包裹导电聚丙烯酰胺-氯化锂(PAAM-LiCl)水凝胶,组装成超薄(1 mm)夹层触摸感应织物。该材料表现出低检测阈值(50 Pa)、高耐久性(100 k次)和极高的触摸定位精度。他们还将触摸感应织物集成到服装中,开发出一种智能触摸感应手套,可以实现远程指挥等人机交互。Kang等[88]通过还原氧化石墨烯(rGO)与碳纳米管(CNT)在可拉伸织物表面上直接原位凝胶化,开发了一种柔性可拉伸的超级电容器。形成的CNT-rGO凝胶复合材料具有多孔结构,可实现出色的电解质可及性,即使在高达50%的应变下,也能保持90.0%的高容量。然而,大多数可穿戴电子设备缺乏透气性阻碍了其在实际生活中的应用。Xu等[89]通过将丝绸织物和剪纸形离子水凝胶结合,设计了一种水凝胶电子纺织品,可以精确地执行触摸传感和应变感知的功能,具有优异的响应时间(3 ms)、较大的工作应变范围(>100%)及长期稳定性(>10 000次循环),突破了传统可穿戴离子电子设备的瓶颈,在未来的可穿戴表皮电子产品中具有广阔的应用前景。
与传统薄膜的电子设备相比,基于纤维的电子器件具有许多优势,良好的可编织性使其可以被编织成各种3D形状,以适应不规则表面,将其集成到纺织品中可以检测不同方向的应变。Song等[90]制备了一种新型有机水凝胶导电纤维,以海藻酸盐和末端官能化的聚乙二醇(PEG)预聚物为原料,构建双网络,实现了水凝胶纤维的连续纺制工艺(图9)。所得的有机水凝胶纤维可以在-80 ℃下工作,且能在自然环境中长期稳定保存,在循环加载和卸载过程中表现出优异的弹性和可忽略的滞后性,这是传统导电纤维难以实现的。Li等[58]通过仿生动脉的异质分层结构,制备出可连续化生产的导电、高弹性、抗疲劳水凝胶-弹性体复合纤维。所设计的纤维可拉伸至500%,电导率为3.2 mS/cm,并且在10 000 次加载循环后无滞后或疲劳现象。
图9 有机水凝胶纤维的设计和制造。(a)有机水凝胶纤维中交联聚合物网络的分子设计以及水凝胶纤维的湿纺过程和分子演化示意图;(b)水凝胶纤维通过置换溶剂制备为有机水凝胶纤维的化学过程;(c)在连续卷筒线轴上收集的单根长纤维的照片;(d)有机水凝胶纤维针织物的示意图和照片[90]

Fig.9 Design and fabrication of organohydrogel fibers. (a) Molecular design of hybrid crosslinked polymeric network in organohydrogel fibers and schematic of the wet-spinning process and molecular evolution of hydrogel fibers. (b) Schematic of the preparation of organohydrogel fibers from hydrogel fibers by displacement solvent. (c) Photograph of a long single fiber collected on a continuously winding drum spool. (d) Schematic and photograph of an organohydrogel-fiber knitted textile [90]

3.4 阻燃防护品

每年由自然和人类活动引起的火灾频发,轻便有效的个人防护装备,如防火毯、衣服和隔热手套等阻燃纺织品尤为重要,但防火面料价格昂贵无法广泛使用[91]。水凝胶可以作为相变剂促进蒸发、吸收热量和冷却温度,在织物表面形成防火层从而达到阻燃效果[92,93]。PNIPAAm是一种热敏聚合物,临界溶液温度较低(32 ℃),当温度超过临界溶解温度时,所合成的水凝胶可以通过热响应收缩快速释水[94,95]。Illeperuma等[96]制备了一种阻燃复合织物层压体,以SA和PNIPAAm为原材料在紫外光照射下合成水凝胶,并将其层压在芳纶织物上,作为阻燃防护装备。水凝胶保水能力是作为耐火材料的又一关键因素,当其内部水分蒸发后便无法发挥作用。为解决这个问题,Yu等[97]通过在棉织物表面层压热敏型PNIPAAm/SA水凝胶,开发了一种新型水凝胶织物层压板,将CaCl2掺入复合水凝胶中提高防火水凝胶的保水性能。结果表明,可水化盐的存在成功延长了水凝胶的保水时间,在1 200 ℃下水凝胶织物层合板能够维持30 min不燃烧。但水凝胶力学性能差是限制其作为阻燃材料使用的一个主要缺陷,他们[92]在此研究基础上加入PVA水凝胶制备了一种具有高强度的PNIPAAm/SA/PVA复合水凝胶织物层压板。PNIPAAm、SA和PVA之间产生的强氢键作用以及它们之间形成的互穿聚合物网络(IPN)结构,赋予了水凝胶优异的力学性能,在阻燃防护服装领域具有很大的潜力。Nie等[98]开发了一种简单的浇铸方法,将PAAM/SiO2纳米复合水凝胶填充到织物中,在界面形成半互穿结构,制备阻燃凝胶/纺织复合材料(FR-GT),界面韧性达到272 J/m2。由于水的蒸发散热,即使在高温环境中,水凝胶也能持续保持形态至水分完全蒸发,达到阻燃效果。

3.5 其他

柔性防护材料是近年来防护领域研究的热点。现有防护材料多由芳纶或超高分子量聚乙烯织物复合层叠而成,极大增加了复合材料的厚度和弯曲强度,且在一定程度上限制了穿戴者的灵活度和舒适性[99,100]。因此,亟需设计和制备一种具有优异防护能力且舒适轻便的柔性防护材料。Qiu等[101]通过调节聚合物链的氢键相互作用,制备了具有聚合物硬相和聚合物软相的双连续水凝胶(BH)。将BH与亲水改性的超高分子量聚乙烯织物(UPF)复合,开发了一种水凝胶/高性能织物柔性防护材料(BH-UPF)。BH-UPF可阻拦质量为2.8 g,冲击速度约300 m/s的子弹。与相同面密度的纯超高分子量聚乙烯织物相比,BH-UPF的凸起变形深度减少了69%,在柔性防护领域具有一定的应用潜力。Li等[41]利用高性能纤维材料和高强度凝胶结合界面优势,提出了一种软质复合材料的设计策略,制备出了凝胶-织物协同增韧、可自修复的软质防刺复合材料。复合材料的抗穿刺、抗顶破和抗撕裂性能分别为纯芳纶织物的15倍、18倍和42倍,其最大载荷远高于纯芳纶织物和纯水凝胶的最大载荷的加和,为构建具有高韧性和优异抗穿刺性材料提供了一种简单有效的方法。
纤维或织物复合水凝胶材料也被应用在重金属吸附领域。织物具有比表面积大和孔隙率高等优势,能够在解决水凝胶吸附材料强度低、难再生等缺陷的同时提升吸附效率和吸附量。Li等[39]结合非织造材料优势,以等离子体处理的非织布为骨架与水凝胶复合,制备了一种具有高效吸附速率和结构稳定的水凝胶复合吸附材料,复合材料对金属离子Pb(Ⅱ)和Ni(Ⅱ)的吸附速率分别提升25%和33%,最大吸附容量达到416.07和243.10 mg/g,经5次吸附-解吸后仍有90%的吸附效率,对重金属离子的处理具有重要意义。
织物型光热转换材料具有优异的力学强度和柔韧性,可用于制备和组装各种二维或三维特殊结构的高效光热蒸发器件,但其蒸发速率存在理论极限[102]。研究人员发现光热水凝胶具有较强的活化水效应,可有效降低水的蒸发焓[103,104]。Zhou等[105]通过刷涂、三元交联、冷冻冰溶解等方法,在棉布上形成由生物质衍生石墨烯(BDG)和聚乙烯醇(PVA)组成的多孔水凝胶层,结合了织物型光热材料的优异力学性能和光热水凝胶的活化水效应,设计得到一种大面积的水凝胶-织物耦合蒸发器,使水的蒸发焓显著降低到1980 kJ/m2。进一步地,在蒸发器的水凝胶表面喷涂了一层薄的聚二甲基硅氧烷(PDMS),赋予其表面疏水性,构建得到Janus结构。该设计突破了平面光热材料在太阳能蒸发过程中的性能极限,获得长时间稳定的蒸发性能,有望促进太阳能蒸发技术在海水淡化和废水处理中的应用。

4 结论与展望

本文对水凝胶基纺织复合材料的制备策略和应用进行了综述。水凝胶基纺织复合材料通过不同的结合策略协调了两种材料的优势,合成了一类多功能(高强度、高韧性、抗菌、防紫外线、阻燃和自清洁等)的新型复合材料,为水凝胶和纺织品的发展提供了一条新的思路。然而,目前对水凝胶纺织复合材料的研究仍存在一些亟待解决的问题:(1)由于水凝胶与纺织品间的结构差异,如何提高结合牢度仍是该复合材料制备的难点。(2)如何将水凝胶的功能及智能特性与纺织品结合,衍生出新型的功能、智能型凝胶纺织复合材料是未来的发展方向。(3)如何同时实现水凝胶智能纺织品的高拉伸和自修复性能是未来亟待解决的难题。(4)水凝胶基纺织复合材料合成方法的简单化与易于产业化还待进一步探索。
[1]
Zhao X H, Chen X Y, Yuk H, Lin S T, Liu X Y, Parada G. Chem. Rev., 2021, 121(8): 4309.

[2]
Fijul Kabir S M, Sikdar P P, Haque B, Rahman Bhuiyan M A, Ali A, Islam M N. Prog. Biomater., 2018, 7(3): 153.

DOI PMID

[3]
Yu Q L, Li Z, Dou C Y, Zhao Y P, Gong J X, Zhang J F. Prog. Chem., 2020, 32(S1): 179

(于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. 化学进展, 2020, 32(2):179.).

[4]
Wichterle O, Lím D. Nature, 1960, 185(4706): 117.

[5]
Wang Y, He G D, Li Z, Hua J C, Wu M Q, Gong J X, Zhang J F, Ban L T, Huang L. Polymers, 2018, 10(2): 112.

[6]
Fan H L, Gong J P. Macromolecules, 2020, 53(8): 2769.

[7]
Lin X, Zhao X W, Xu C Z, Wang L L, Xia Y Z. J. Polym. Sci., 2022, 60(17): 2525.

[8]
Xue B, Bashir Z, Guo Y C, Yu W T, Sun W X, Li Y R, Zhang Y Y, Qin M, Wang W, Cao Y. Nat. Commun., 2023, 14: 2583.

[9]
He Q, Huang Y, Wang S. Adv. Funct. Mater., 2018, 28(5):1705069.

[10]
Kang B, Lang Q L, Tu J, Bu J, Ren J J, Lyu B, Gao D G. Polymers, 2022, 14(5): 966.

[11]
Chen Z H, Fan S T, Qiu Z J, Nie Z J, Zhang S X, Zhang S, Li B J, Cao Y. Polym. Chem., 2021, 12(21): 3142.

[12]
Feng L, Jia S S, Chen Y, Liu Y. Chem., 2020, 26(62): 14080.

[13]
Merino S, Martín C, Kostarelos K, Prato M, Vázquez E. ACS Nano, 2015, 9(5): 4686.

DOI PMID

[14]
Sheikholeslami P, Muirhead B, Baek D S H, Wang H, Zhao X, Sivakumaran D, Boyd S, Sheardown H, Hoare T. Exp. Eye Res., 2015, 137: 18.

DOI PMID

[15]
Liu J, Jiang L, Liu A, He S, Shao W. Sens. Actuat. B Chem., 2022, 357: 131434.

[16]
Cui Y X, Tong Y N, Liu W D, L Z, Gong J X, Qiao C S. Journal of Materials Engineering, 2023, 51 (09):37

(崔烨璇, 仝雅娜, 刘伟东, 李政, 巩继贤, 乔长晟. 材料工程, 2023, 51 (09):37.)

[17]
Tonsomboon K, Butcher A L, Oyen M L. Mater. Sci. Eng. C, 2017, 72: 220.

[18]
Zhang Z B, Wang X, Li H Y, Liu G C, Zhao K Y, Wang Y J, Li Z, Huang J Y, Xu Z W, Lai Y K, Qian X M, Zhang S N. J. Colloid Interface Sci., 2024, 653: 1040.

[19]
Periyasamy A P, Venkataraman M, Kremenakova D, Militky J, Zhou Y. Materials, 2020, 13(8): 1838.

[20]
Ahmad F, Mushtaq B, Butt F A, Zafar M S, Ahmad S, Afzal A, Nawab Y, Rasheed A, Ulker Z. Polymers, 2021, 13(23): 4098.

[21]
Ahmad F, Mushtaq B, Butt F A, Rasheed A, Ahmad S. Cellulose, 2021, 28(12): 7941.

[22]
Wang L L, Li D W, Shen Y, Liu F, Zhou Y Q, Wu H P, Liu Q S, Deng B Y. Int. J. Biol. Macromol., 2021, 192: 350.

[23]
Zhang R, Wu Y, Lin P, Jia Z F, Zhang Y J, Liu F Z, Yu B, Zhou F. Adv. Eng. Mater., 2020, 22(11): 2000508.

[24]
Zhao C W, Zhou L, Mu C A, Yang W T. Adv. Colloid Interface Sci., 2020, 285: 102280.

[25]
Liu H Y, Yang L, Dou B J, Lan J W, Shang J J, Lin S J. Sep. Purif. Technol., 2021, 279: 119789.

[26]
Liu H Y, Shang J J, Wang Y F, Wang Y Z, Lan J W, Dou B J, Yang L, Lin S J. Polymer, 2022, 255: 125146.

[27]
Yao M M, Sun H, Guo Z C, Sun X, Yu Q Y, Wu X J, Yu C J, Zhang H T, Yao F L, Li J J. Chem. Eng. J., 2021, 421: 129702.

[28]
Majumder S, Ranjan Dahiya U, Yadav S, Sharma P, Ghosh D, Rao G, Rawat V, Kumar G, Kumar A, Srivastava C. Biomolecules, 2020, 10(5): 710.

[29]
Norouzi M R, Ghasemi-Mobarakeh L, Gharibi H, Meamar R, Ajalloueian F, Chronakis I S. Int. J. Polym. Mater. Polym. Biomater., 2019, 68(12): 714.

[30]
Han H, Zhu J, Wu D Q, Li F X, Wang X L, Yu J Y, Qin X H. Adv. Funct. Mater., 2019, 29(12):1806594.

[31]
Loste J, Lopez-Cuesta J M, Billon L, Garay H, Save M. Prog. Polym. Sci., 2019, 89: 133.

[32]
Laun J, Vorobii M, de los Santos Pereira A, Pop-Georgievski O, Trouillet V, Welle A, Barner-Kowollik C, Rodriguez-Emmenegger C, Junkers T. Macromol. Rapid Commun., 2015, 36(18): 1681.

[33]
Chen K S, Tsai J C, Chou C W, Yang M R, Yang J M. Mater. Sci. Eng. C, 2002, 20(1-2): 203.

[34]
Lorusso E, Ali W, Hildebrandt M, Mayer-Gall T, Gutmann J S. Polymers, 2019, 11(8): 1329.

[35]
Dai X H, Yu X, Zheng J, Yang X X, Pan J J, Zhang X T, Min J. J. Appl. Polym. Sci., 2022, 139(7): e51634.

[36]
Tourrette A, De Geyter N, Jocic D, Morent R, Warmoeskerken M M C G, Leys C. Colloids Surf. A Physicochem. Eng. Aspects, 2009, 352(1-3): 126.

[37]
Štular D, Primc G, Mozetič M, Jerman I, Mihelčič M, Ruiz-Zepeda F, Tomšič B, Simončič B, Gorjanc M. Prog. Org. Coat., 2018, 120: 198.

[38]
Junkar I, Vesel A, Cvelbar U, Mozetič M, Strnad S. Vacuum, 2009, 84(1): 83.

[39]
Li T T, Wang Z K, Ren H T, Peng H K, Zhang X, Jiang Q, Lou C W, Lin J H. Sci. Total Environ., 2021, 758: 143640.

[40]
Hubbard A M, Cui W, Huang Y W, Takahashi R, Dickey M D, Genzer J, King D R, Gong J P. Matter, 2019, 1(3): 674.

[41]
Li T T, Xing M F, Gao B, Ren H T, Peng H K, Zhang X Y, Lin J H, Lou C W. Compos. Part B Eng., 2021, 216: 108856.

[42]
Ma Y, Gong J, Li Q, Liu X, Qiao C, Zhang J, Zhang S, Li Z. Small, 2024, 10.1002/smll.202310046.

[43]
Teixeira M O, Antunes J C, Felgueiras H P. Antibiotics, 2021, 10(3): 248.

[44]
Padil V V T, Cheong J Y, AkshayKumar K P, Makvandi P, Zare E N, Torres-Mendieta R, Wacławek S, Černík M, Kim I D, Varma R S. Carbohydr. Polym., 2020, 247: 116705.

[45]
Puppi D, Chiellini F. Polym. Int., 2017, 66(12): 1690.

[46]
Jia J, Yao D G, Wang Y J. Text. Res. J., 2014, 84(6): 593.

[47]
Vadood M, Semnani D, Morshed M. J. Appl. Polym. Sci., 2011, 120(2): 735.

[48]
Zhou W, Yu X, Li Y, Jiao W L, Si Y, Yu J Y, Ding B. ACS Appl. Mater. Interfaces, 2021, 13(1): 2081.

[49]
Sadri B, Gao W. Appl. Phys. Rev., 2023, 10(3):031303.

[50]
Yang Nilsson T, Andersson Trojer M. Soft Matter, 2020, 16(29): 6850.

DOI PMID

[51]
Nakamura K, Saotome T, Shimada N, Matsuno K, Tabata Y. Tissue Eng. Part C Meth., 2019, 25(6): 344.

[52]
Arjmandi M, Ramezani M, Bolle T, Köppe G, Gries T, Neitzert T. Compos. Part A Appl. Sci. Manuf., 2018, 115: 123.

[53]
Koc U, Eren R, Aykut Y. Polym. Polym. Compos., 2021, 29(2): 117.

[54]
Dixit A, Bag D S, Kalra S J S. Polymer, 2017, 119: 263.

[55]
Koc U, Aykut Y, Eren R. J. Ind. Text., 2022, 51(4_suppl): 6315S.

[56]
Koc U, Aykut Y, Eren R. J. Text. Inst., 2022, 113(5): 906.

[57]
Zhang C, Xiao P, Zhang D, Ni F, Gu J, Liu Q, Kuo S, Chen T. Adv. Fiber Mater., 2023, 5(2):588.

[58]
Li S M, Xu J W, Mu Y, Wang P, Zhu H, Liu B H, Chen Z, Han Z L, Qu S X. Adv. Fiber Mater., 2023, 5(5): 1643.

[59]
Shuai L, Guo Z H, Zhang P P, Wan J M, Pu X, Wang Z L. Nano Energy, 2020, 78: 105389.

[60]
Wu J, Wu B, Xiong J, Sun S, Wu P. Angew. Chem. Int. Edit., 2022, 61(34):e202204960.

[61]
Song R, Zhang N S, Dong H, Wang P, Ding H, Wang J, Li S Y. Sep. Purif. Technol., 2022, 289: 120723.

[62]
Long Q W, Chen J X, Wang Z, Zhang Z, Qi G X, Liu Z Q. Sep. Purif. Technol., 2021, 254:117517.

[63]
You H, Jin Y Z, Chen J C, Li C M. Chem. Eng. J., 2018, 334: 2273.

[64]
Gao S J, Sun J C, Liu P P, Zhang F, Zhang W B, Yuan S L, Li J Y, Jin J. Adv. Mater., 2016, 28(26): 5307.

[65]
Salimi P, Aroujalian A, Iranshahi D. Sep. Purif. Technol., 2021, 258: 117939.

[66]
Liang B, Zhang G Y, Zhong Z X, Sato T, Hozumi A, Su Z H. Chem. Eng. J., 2019, 362: 126.

DOI

[67]
Zhu Y Z, Wang J L, Zhang F, Gao S J, Wang A Q, Fang W X, Jin J. Adv. Funct. Mater., 2018, 28(40): 1804121.

[68]
Wang H Q, Li J C, Yu X, Zhao X Y, Zeng X H, Xu F, Tang X, Sun Y, Lin L. Cellulose, 2021, 28(2): 949.

[69]
Jian W J, Siu K C, Wu J Y. Carbohydr. Polym., 2015, 134: 285.

[70]
Cai D L, Ma P C. Compos. Commun., 2019, 14:1.

[71]
Dai L, Cheng T, Wang Y, Wang B B, Duan C, Ke H Z, Ni Y H. Sep. Purif. Technol., 2019, 225: 129.

[72]
Brumberg V, Astrelina T, Malivanova T, Samoilov A. Biomedicines, 2021, 9(9): 1235.

[73]
Op 't Veld R C, Walboomers X F, Jansen J A, Wagener F A D T G. Tissue Eng. Part B Rev., 2020, 26(3): 230.

[74]
Dou C Y, Li Z, Luo Y, Gong J X, Li Q J, Zhang J F, Zhang Q S, Qiao C S. Int. J. Biol. Macromol., 2022, 202: 438.

[75]
Yang Y Z, Li Z, Huang Y F, Gong J X, Qiao C S, Zhang J F. Prog. Chem., 2021, 33(5): 726

(杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. 化学进展, 2021, 33(05):726.).

[76]
Dou C Y, Li Z, He G D, Gong J X, Liu X M, Zhang J F. Prog. Chem., 2018, 30(8): 1161

(窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. 化学进展, 2018, 30(8):1161.).

DOI

[77]
Jiang S H, Deng J J, Jin Y H, Qian B, Lv W Q, Zhou Q Q, Mei E H, Neisiany R E, Liu Y H, You Z W, Pan J. Bioact. Mater., 2023, 21: 313.

[78]
Zhang H, Sun X Y, Wang J, Zhang Y L, Dong M N, Bu T, Li L H, Liu Y N, Wang L. Adv. Funct. Mater., 2021, 31(23): 2100093.

[79]
Liang Y P, He J H, Guo B L. ACS Nano, 2021, 15(8): 12687.

[80]
Türkoğlu G C, Sarıışık A M, Karavana S Y. Int. J. Polym. Mater., 2021, 70(13):916.

[81]
Benltoufa S, Miled W, Trad M, Ben Slama R, Fayala F. Carbohydr. Polym., 2020, 227: 115352.

[82]
Li M M, Chen X, Li X T, Dong J, Zhao X, Zhang Q H. ACS Appl. Mater. Interfaces, 2021, 13(36): 43323.

[83]
Shi X, Zuo Y, Zhai P, Shen J H, Yang Y, Gao Z, Liao M, Wu J X, Wang J W, Xu X J, Tong Q, Zhang B, Wang B J, Sun X M, Zhang L H, Pei Q B, Jin D Y, Chen P N, Peng H S. Nature, 2021, 591(7849): 240.

[84]
Chen Z L, Yao Y, Lv T, Yang Y L, Liu Y N, Chen T. Nano Lett., 2022, 22(1): 196.

[85]
Cheng B C, Wu P Y. ACS Nano, 2021, 15(5): 8676.

[86]
Cao X G, Jiang C M, Sun N, Tan D C, Li Q K, Bi S, Song J H. J. Sci. Adv. Mater. Devices, 2021, 6(3): 338.

[87]
Xu R D, Qu L J, Tian M W. Soft Matter, 2021, 17(40): 9014.

[88]
Kang S H, Lee G Y, Lim J, Kim S O. ACS Omega, 2021, 6(30): 19578.

[89]
Xu R D, She M H, Liu J X, Zhao S K, Liu H, Qu L J, Tian M W. Adv. Fiber Mater., 2022, 4(6): 1525.

[90]
Song J C, Chen S, Sun L J, Guo Y F, Zhang L Z, Wang S L, Xuan H X, Guan Q B, You Z W. Adv. Mater., 2020, 32(8): 1906994.

[91]
Qi P, Chen F, Li Y C, Li H F, Gu X Y, Sun J, Zhang S. Adv. Fiber Mater., 2023, 5(3): 731.

[92]
Yu Z C, Liu J R, He H L, Ma S N, Yao J Y. Carbohydr. Polym., 2021, 255: 117485.

[93]
Liu Y X, Liu X W, Duan B, Yu Z H, Cheng T, Yu L Y, Liu L, Liu K. J. Phys. Chem. Lett., 2021, 12(10): 2587.

[94]
Yang L, Fan X G, Zhang J, Ju J. Polymers, 2020, 12(2): 389.

[95]
Fan S L, Li Z Z, Fan C, Chen J, Huang H M, Chen G L, Liu S G, Zhou H M, Liu R T, Feng Z F, Zhang Y J, Hu H Y, Huang Z Q, Qin Y B, Liang J. J. Hazard. Mater., 2022, 433: 128808.

[96]
Illeperuma W R K, Rothemund P, Suo Z G, Vlassak J J. ACS Appl. Mater. Interfaces, 2016, 8(3): 2071.

[97]
Yu Z C, Liu J R, Suryawanshi A, He H L, Wang Y S, Zhao Y H. Cellulose, 2021, 28(4): 2581.

[98]
Nie Y L, Mugaanire I T, Guo Y, Wang R L, Hou K, Zhu M F. Prog. Nat. Sci. Mater. Int., 2021, 31(1): 33.

[99]
Lepage M L, Takaffoli M, Simhadri C, Mandau R, Gashti M P, Nazir R, Mohseni M, Li W, Liu C, Bi L T, Falck G, Berrang P, Golovin K, Milani A S, DiLabio G A, Wulff J E. ACS Appl. Polym. Mater., 2021, 3(11): 6008.

[100]
Fan T, Sun Z, Zhang Y Y, Li Y Q, Chen Z K, Huang P, Fu S Y. Compos. Part B Eng., 2022, 242: 110106.

[101]
Qiu Y, Wu L, Liu S J, Yu W. ACS Appl. Mater. Interfaces, 2023, 15(7): 10053.

[102]
Liu Z X, Zhong Q P, Wu N Y, Zhou H Z, Wang L X, Zhu L Q, Jiang N, Zhu B, Chen Z G, Zhu M F. Desalination, 2021, 509: 115072.

[103]
Guo Y H, Zhou X Y, Zhao F, Bae J, Rosenberger B, Yu G H. ACS Nano, 2019, 13(7): 7913.

[104]
Zhou X Y, Zhao F, Guo Y H, Rosenberger B, Yu G H. Sci. Adv., 2019, 5(6): eaaw5484.

[105]
Zhou H F, Han L, Yang M, Wu X H, Li J Y, Ma H J, Zhang B W. Desalination, 2023, 556: 116567.

文章导航

/