过渡金属配合物催化炔烃和亲核试剂的羰化反应
收稿日期: 2020-06-11
修回日期: 2020-08-10
网络出版日期: 2020-12-22
基金资助
国家自然科学基金面上项目(21972045)
Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes
Received date: 2020-06-11
Revised date: 2020-08-10
Online published: 2020-12-22
Supported by
the National Natural Science Foundation of China(21972045)
羰化反应(氢甲酰化反应、羰化羧酸化反应、羰化酯化反应、羰化酰胺化反应等)是制备醛(/醇)、羧酸、羧酸酯、酰胺等高附加值含氧羰基化合物有效的途径,具有反应原子经济性高、目标羰基化合物选择性高、反应条件较氧化过程更温和可控的优势。羰化反应的原料包括烯烃、炔烃、卤代烃、醇等有机化合物。其中,在过渡金属催化剂作用下,炔烃与不同的亲核试剂(水、醇、胺等)通过发生(单/双)羰化反应可以100%原子经济性地合成(不饱和/饱和)羰基化合物(如羧酸、羧酸酯、酰胺),制得的羧酸、羧酸酯、酰胺等羰基化合物不仅在医药、农业、日化工业中有广泛用途,还是聚合、Aldol 缩合和Micheal加成等有机反应中过程反应的重要原料。因此,过渡金属催化的炔烃羰化反应成为均相催化领域受到广泛关注的研究内容。本文从不同类型的炔烃羰化反应和反应中所用羰源等方面综述了近十年来该领域的研究现状并展望其发展前景。
郭文迪 , 刘晔 . 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021 , 33(4) : 512 -523 . DOI: 10.7536/PC200636
Carbonylation(such as hydroformylation, alkoxycarbonylation, hydroxycarbonylation, aminocarbonylation) provides an effective way to synthesize the high value-added carbonyl compounds such as aldehydes(/alcohols), carboxylic acids, carboxylate esters, amides etc., which is advantageous with high atom-economy, excellent selectivities, and mild conditions in comparison to the oxidation. The raw materials involved in carbonylation are comprised of alkenes, alkynes, halohydrocarbons, alcohols etc. Thereinto, with CO or CO-surrogates as carbonyl source, carbonylation of alkyne with different nucleophiles(such as water, alcohols, amines) over transition-metal catalysts, is one of the most attractive processes to produce the corresponding carbonyl compounds like carboxylic acids, carboxylate esters and amines with 100% atom-economy. The obtained carbonyl compounds are widely applied in the production of pharmaceuticals, foods, and cosmetics as well as organic synthesis like polymerization, Aldol condensation and Micheal addition. In this review, the research status on carbonylation of alkynes in recent decade, in terms of reaction types and carbonyl sources, are summarized and prospected.
Contents
1 Introduction
2 Alkoxycarbonylation of alkynes
3 Aminocarbonylation of alkynes
4 Hydroxycarbonylation of alkynes
5 Double carbonylation of alkynes
6 CO surrogates in carbonylation of alkynes
6.1 Formates as CO source
6.2 Formic acid as CO source
6.3 Metal-carbonyl compounds as CO source
7 Conclusion and outlook
Key words: carbonylation; alkynes; transition metal complexes; nucleophiles
The authors have declared that no competing interests exist.
[1] |
Kalck P, Urrutigoïty M. Inorganica Chimica Acta, 2015, 431: 110.
|
[2] |
Mu Q C, Nie Y X, Bai X F, Chen J, Yang L, Xu Z, Li L, Xia C G, Xu L W. Chem. Sci., 2019, 10(40): 9292.
|
[3] |
Bai X F, Mu Q C, Xu Z, Yang K F, Li L, Zheng Z J, Xia C G, Xu L W. ACS Catal., 2019, 9(2): 1431.
|
[4] |
Cao J, Zheng Z J, Xu Z, Xu L W. Coord. Chem. Rev., 2017, 336: 43.
|
[5] |
Johnson J R, Cuny G D, Buchwald S L. Angew. Chem. Int. Ed., 1995, 34: 1760.
|
[6] |
Ishii Y, Miyashita K, Kamita K, Hidai M. J. Am. Chem. Soc., 1997, 119: 6448.
|
[7] |
Fang X J, Zhang M, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2013, 52(17): 4645.
|
[8] |
Kiss G. Chem. Rev., 2001, 101(11): 3435.
|
[9] |
Wu X F, Fang X J, Wu L P, Jackstell R, Neumann H, Beller M. Acc. Chem. Res., 2014, 47(4): 1041.
|
[10] |
Drent E, Arnoldy P, Budzelaar P H M. J. Organomet. Chem., 1993, 455(1/2): 247.
|
[11] |
Reetz M T, Demuth R, Goddard R. Tetrahedron Lett., 1998, 39(39): 7089.
|
[12] |
Scrivanti A, Beghetto V, Campagna E, Matteoli U. J. Mol. Catal. A: Chem., 2001, 168(1/2): 75.
|
[13] |
Green M J, Cavell K J, Edwards P G, Tooze R P, Skelton B W, White A H. Dalton Trans., 2004,(20): 3251.
|
[14] |
Shuttleworth T A, Miles-Hobbs A M, Pringle P G, Sparkes H A. Dalton Trans., 2017, 46(1): 125.
|
[15] |
Qi H M, Huang Z J, Wang M L, Yang P J, Du C X, Chen S W, Li Y H. J. Catal., 2018, 363: 63.
|
[16] |
Yang D, Liu L, Wang D L, Lu Y, Zhao X L, Liu Y. J. Catal., 2019, 371: 236.
|
[17] |
Akao M, Sugawara S, Amino K, Inoue Y. J. Mol. Catal. A: Chem., 2000, 157(1/2): 117.
|
[18] |
Núñez Magro A A, Robb L M, Pogorzelec P J, Slawin A M Z, Eastham G R, Cole-Hamilton D J. Chem. Sci., 2010, 1(6): 723.
|
[19] |
El Ali B, Tijani J, El-Ghanam A M. J. Mol. Catal. A: Chem., 2002, 187(1): 17.
|
[20] |
El Ali B, Tijani J. Appl. Organometal. Chem., 2003, 17(12): 921.
|
[21] |
Sha F, Alper H. ACS Catal., 2017, 7(3): 2220.
|
[22] |
Li Y, Alper H, Yu Z K. Org. Lett., 2006, 8(23): 5199.
|
[23] |
Wang D L, Guo W D, Liu L, Zhou Q, Liang W Y, Lu Y, Liu Y. Catal. Sci. Technol., 2019, 9: 1334.
|
[24] |
Gao B, Huang H M. Org. Lett., 2017, 19(22): 6260.
|
[25] |
Driller K M, Prateeptongkum S, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2011, 50(2): 537.
|
[26] |
Huang Z, Dong Y N, Li Y D, Makha M, Li Y H. ChemCatChem, 2019, 11: 5236.
|
[27] |
Ji X L, Gao B, Zhou X B, Liu Z J, Huang H M. J. Org. Chem., 2018, 83(17): 10134.
|
[28] |
Wang D L, Guo W D, Zhou Q, Liu L, Lu Y, Liu Y. ChemCatChem, 2018, 10(19): 4264.
|
[29] |
Jin X, Meng K, Zhang G, Liu M, Song Y, Song Z, Yang C. Green Chem., 2021, 23(1): 51.
|
[30] |
Sarkar B R, Chaudhari R V. Catal. Surv. from Asia, 2005, 9(3): 193.
|
[31] |
Tang C M, Zeng Y, Cao P, Yang X G, Wang G Y. Catal. Lett., 2009, 129(1/2): 189.
|
[32] |
Tang C M, Zeng Y, Yang X G, Lei Y C, Wang G Y. J. Mol. Catal. A: Chem., 2009, 314(1/2): 15.
|
[33] |
Williams D B G, Shaw M L, Hughes T. Organometallics, 2011, 30(18): 4968.
|
[34] |
Yang D, Liu H, Liu L, Guo W D, Lu Y, Liu Y. Green Chem., 2019, 21(19): 5336.
|
[35] |
Liu J W, Dong K W, Franke R, Neumann H, Jackstell R, Beller M. J. Am. Chem. Soc., 2018, 140(32): 10282.
|
[36] |
Yang D, Liu H, Wang D L, Luo Z J, Lu Y, Xia F, Liu Y. Green Chem., 2018, 20(11): 2588.
|
[37] |
Guo W D, Liu L, Yang S Q, Chen X C, Lu Y, Vo-Thanh G, Liu Y. ChemCatChem, 2020, 12(5): 1376.
|
[38] |
Inoue S, Yokota K, Tatamidani H, Fukumoto Y, Chatani N. Org. Lett., 2006, 8(12): 2519.
|
[39] |
Abell A D, Oldham M D. J. Org. Chem., 1997, 62(5): 1509.
|
[40] |
Reddy P Y, Kondo S, Toru T, Ueno Y. J. Org. Chem., 1997, 62(8): 2652.
|
[41] |
Driller K M, Klein H, Jackstell R, Beller M. Angew. Chem. Int. Ed., 2009, 48(33): 6041.
|
[42] |
Liu H Z, Lau G P S, Dyson P J. J. Org. Chem., 2015, 80(1): 386.
|
[43] |
Yang J, Liu J W, Jackstell R, Beller M. Chem. Commun., 2018, 54(76): 10710.
|
[44] |
Sayago F J, Laborda P, Calaza M I, JimÉnez A I, Cativiela C. Eur. J. Org. Chem., 2011, 2011(11): 2011.
|
[45] |
Wu X S, Zhao Y, Ge H B. J. Am. Chem. Soc., 2015, 137(15): 4924.
|
[46] |
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan K V, Das P. Org. Biomol. Chem., 2019, 17(21): 5212.
|
[47] |
Dai J, Ren W L, Wang H N., Shi Y N. Org. Biomol. Chem., 2015, 13: 8429.
|
[48] |
Na Y, Ko S, Hwang L K, Chang S. Tetrahedron Lett., 2003, 44(24): 4475.
|
[49] |
Katafuchi Y, Fujihara T, Iwai T, Jun T R, Tsuji Y. Adv. Synth. Catal., 2011, 353(2/3): 475.
|
[50] |
Hou J, Xie J H, Zhou Q L. Angew. Chem. Int. Ed., 2015, 54: 6302.
|
[51] |
Hou J, Yuan M L, Xie J H, Zhou Q L. Green Chem., 2016, 18(10): 2981.
|
[52] |
Fu M C, Shang R, Cheng W M, Fu Y. ACS Catal., 2016, 6(4): 2501.
|
[53] |
Nagarsenkar A, Prajapti S K, Guggilapu S D, Nagendra Babu B. Org. Lett., 2015, 17(18): 4592.
|
/
〈 |
|
〉 |