English
新闻公告
More
化学进展 2007, Vol. 19 Issue (11): 1806-1812 前一篇   后一篇

• •

双光子荧光探针研究及其应用*

黄池宝1,2 樊江莉1 彭孝军1** 孙世国1   

  1. (1. 大连理工大学化工学院 精细化工国家重点实验室 大连 116012; 2. 韶关大学英东生物工程学院 农业工程系 韶关 512005)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-11-14 发布日期:2007-11-25
  • 通讯作者: 彭孝军

Progress and Application of Two-Photon Fluorescent Probes

Huang Chibao1,2; Fan Jiangli1; Peng Xiaojun1**; Sun Shiguo1   

  1. (1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116012, China; 2. Department of Agricultural Engineering, Yingdong Bioengineering College, Shaoguang University, Shaoguan 512005, China)
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-11-14 Published:2007-11-25
  • Contact: Peng Xiaojun
双光子荧光显微成像兼具诸如近红外激发、暗场成像、避免荧光漂白和光致毒、定靶激发、高横向分辨率与纵向分辨率、降低生物组织吸光系数及降低组织自发荧光干扰等特点而显著地优于单光子荧光显微成像,为生命科学研究提供了更为锐利的工具。而用于像离子的含量及其对生理的影响、离子参与的生理活动机制、离子与分子的作用、特定分子的分布及其相互作用等方面研究的双光子荧光探针,是实现成像的关键。双光子荧光探针的研究旨在促进双光子荧光显微镜应用的发展,促进生命科学、医学科学的快速发展,同时也带动双光子荧光探针所隶属的化学这一学科的发展。因此对双光子荧光探针的研究具有重要的理论和实践意义。该文综述了双光子荧光显微成像的优点、双光子荧光探针设计的原理及双光子荧光探针在离子分析方面的应用,并展望了这类荧光探针的发展趋势与应用前景。
Two-photon fluorescence imaging with such properties as NIR(near infrared) photons as excitation source, imaging in the black background, avoidance of photodamage and photobleaching, fixed target excitation, high transverse and lognitudinal resolutions, small absorption coefficient of light in tissue, lower tissue auto-fluorescence, etc. is superior to one-photon fluorescence imaging, and might be a powerful tool for life science studies. Two-photon fluorescence probes applied to studies on the contents of ions and the effects of their contents upon physiology, physiological action merchanisms of ions, interplays between ions and molecules, distributions of specific molecules and their interactions, and so on plays an important role in imaging. The aim of the studies on two-photon fluorescence probes is to promote the developments of the applications for two-photon fluorescence microscopies, of life science and medicine, and of chemistry to which two-photon fluorescence probes are subject. Undoubtedly, the developments and applications of two-photon fluorescence probes are significantly meaningful in theory and practice. The advantages of two-photon fluorescence imaging, the principles of design for two-photon fluorescent probes and their applications in ions analyses were reviewed. In particular, the research progress, developing trends and prospects in the future are also discussed.

中图分类号: 

()

[ 1 ] Gêppert-Mayer M. Ann. Phys. , 1931 , 9 : 273 —273
[ 2 ] Kaiser W, Garrett C G B. Phys. Rev. Lett . , 1961 , 123 (1) :229 —231
[ 3 ] Denk W, Strickler J H , Webb W W. Science , 1990 , 248(4951) : 73 —76
[ 4 ] Albota M, Beljonne D , Xu C. et al . Science , 1998 , 281 (5383) :1653 —1656
[ 5 ] Shen Y Z, Jakubczyk D , Xu F , Swiatkiewicz J , Prasad P N.Appl . Phys. Lett . , 2000 , 76 (1) : 1 —3
[ 6 ] Ventelon L , Charier S , Moreaux L , Mertz J , Blanchard-Desce M.Angew. Chem. Int . Ed. , 2001 , 40 (11) : 2098 —2101
[ 7 ] Helmchen F , Denk W. Curr. Opin. Neurol . , 2002 , 12 (5) :593 —601
[ 8 ] Huang Z L , Li N , Lei H , Qiu Z R , Wang H Z, Zhong Z P , Zhou Z H. Chem. Commun. , 2002 , (20) : 2400 —2401
[ 9 ] Liu Z Q , Fang Q , Wang D , Xue G, Yu W T, Shao Z S , JiangM H. Chem. Commun. , 2002 , (23) : 2900 —2901
[10] Plakhotnik T, Walser D , Pirotta M, Renn A , Wild U P. Science ,1996 , 271 (5256) : 1703 —1705
[11] Baker G A , Pandey S , Bright F V. Anal . Chem. , 2000 , 72(22) : 5748 —5752
[12] Van Orden A , Cai H , Goodwin PM, Keller R A. Anal . Chem. ,1999 , 71 (11) : 2108 —2116
[13] Baker G A , Munson C A , Bukowski E J , Baker S N , Bright F V.Appl . Spectrosc. , 2002 , 56 : 455 —463
[14] Zugel S A , Burke B J , Regnier F E , Lytle F E. Anal . Chem. ,2000 , 72 (22) : 5731 —5735
[15] Wei J , Gostkowski M L , Gordon M J , Shear J B. Anal . Chem. ,1998 , 70 (16) : 3470 —3475
[16] Parthenopoulos D A , Rentzepis P M. Science , 1989 , 245 (4920) :843 —845
[17] Kim O K, Lee K S , Woo H Y, Kim K S , He G S , Swiatkiewicz J , Prasad P N. Chem. Mater. , 2000 , 12 (2) : 284 —286
[18] Abbotto A , Beverina L , Bozio R , Bradamante S , Ferrante C ,Pagani GA , Signorini R. Adv. Mater. , 2000 , 12 (24) : 1963 —1967
[19] Kawata S , Sun H B , Tanaka T, Takada K. Nature , 2001 , 412(6848) : 697 —698
[20] He G S , Swiatkiewicz J , Jiang Y, Prasad P N , Reinhardt B A ,Tan L S , Kannan R. J . Phy. Chem. A , 2000 , 104 ( 20) :4805 —4810
[21] Nie S , Chiu D T, Zare R N. Science , 1994 , 266 ( 5187) :1018 —1021
[22] Helmchen F , Svoboda K, Denk W, Tank D W. Nature Neuroscience , 1999 , 2 (11) : 989 —996
[23] Maiti S , Shear J B , Williams R M, Zipfel W R , Webb W W.Science , 1997 , 275 (5299) : 530 —532
[24] Svoboda K, Denk W, Kleinfeld D , et al . Nature , 1997 , 385 :161 —161
[25] Silva P D , Gunaratne H Q N , Gunnlaugsson T, Huxley A J M,McCoy C P , Rademacher J T, Rice T E. Chem. Rev. , 1997 ,97 : 1515 —1566
[26] Zhang C , Dalton L R , Oh M C , Zhang H , Steier W H. Chem.Mater. , 2001 , 13 (9) : 3043 —3050
[27] Cho B R , Son K H , Lee S H , Song Y S , Lee Y K, Jeon S J ,Choi J H , Lee H , Cho M. J . Am. Chem. Soc. , 2001 , 123(41) : 10039 —10045
[28] Cao D X, Fang Q , Wang D , Liu Z Q , Xue G, Xu GB , Yu W T. Eur. J . Org. Chem. , 2003 , 2003 (18) : 3628 —3636
[29] Day P N , Nguyen K A , Pachter R. J . Phys. Chem. B , 2005 ,109 (5) : 1803 —1814
[30] Yao S , Belfield K D. J . Org. Chem. , 2005 , 70 (3) : 5126 —5132
[31] Yang W J , Kim C H , Jeong M Y, Lee S K, Piao M J , Jeon S J ,Cho B R. Chem. Mater. , 2004 , 16 (14) : 2783 —2789
[32] Bartholomew G P , Rumi M, Pond S J K, Perry J W, Tretiak S ,Bazan G C. J . Am. Chem. Soc. , 2004 , 126 (37) : 11529 —11542
[33] Pond S J K, Tsutsumi O , Rumi M, Kwon O , Zojer E , Brédas J L , Marder S R , Perry J W. J . Am. Chem. Soc. , 2004 , 126(30) : 9291 —9306
[34] Yang W J , Kim D Y, Kim C H , Jeong M Y, Lee S K, Jeon SJ ,Cho B R. Org. Lett . , 2004 , 6 (9) : 1389 —1392
[35] Yoo J , Yang S K, Jeong M Y, Ahn H C , Jeon S J , Cho B R.Org. Lett . , 2003 , 5 (5) : 645 —648
[36] Chung S J , Rumi M, Alain V , Barlow S , Perry J W, Marder S R. J . Am. Chem. Soc. , 2005 , 127 (31) : 10844 —10845
[37] Pond S J K, Tsutsumi O , Rumi M, Kwon O , Zojer E , Bredas J L , Marder S R , Perry J W. J . Am. Chem. Soc. , 2004 , 126(30) : 9291 —9306
[38] Kim H M, Jeong M Y, Ahn H C , Jeon S J , Cho B R. J . Org.Chem. , 2004 , 69 (17) : 5749 —5751
[39] Ahn H C , Yang S K, Kim H M, Li S , Jeon S J , Cho B R.Chem. Phys. Lett . , 2005 , 410 (4/6) : 312 —315
[40] KimJ S , Kim H J , Kim H M, Kim S H , Lee J W, Kim S K,Cho B R. J . Org. Chem. , 2006 , 71 (21) : 8016 —8022
[41] Liu Z Q , Shi M, Li F Y, Fang Q , Chen Z H , Yi T, Huang C H.Org. Lett . , 2005 , 7 (24) : 5481 —5487
[42] Werts M H W, Gmouh S , Mongin O , Pons T, Blanchard-Desce M. J . Am. Chem. Soc. , 2004 , 126 (50) : 16294 —1629

[1] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[5] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[6] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[9] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[10] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[11] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[12] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[13] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[14] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[15] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
阅读次数
全文


摘要

双光子荧光探针研究及其应用*