English
新闻公告
More
化学进展 1999, Vol. 11 Issue (03): 247- 前一篇   后一篇

• 综述与评论 •

分子间相互作用的量子化学研究方法*

朱维良;蒋华良;陈凯先; 嵇汝运   

  1. (中国科学院上海药物研究所 上海 200031;苏州大学化学系 苏州 215006)
  • 收稿日期:1998-08-01 修回日期:1998-12-01 出版日期:1999-09-24 发布日期:1999-09-24
  • 通讯作者: 蒋华良;陈凯先

Quantum Chemistry Calculation Methods of the Intermolecular Interactions

Zhu Weiliang;Jiang Hualiang;Chen Kaixian;Ji Ruyun   

  1. (State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica,Chinese Academy of Sciences, Shanghai 200031, China; Department of Chemistry, Suzhou University, Suzhou 215006)
  • Received:1998-08-01 Revised:1998-12-01 Online:1999-09-24 Published:1999-09-24
  • Contact: Jiang Hualiang;Chen Kaixian

分子间相互作用是一类十分重要的作用, 这类作用的实验和理论研究越来越受到化学家、生物学家、材料科学家等的重视。本文综述了这种相互作用的量子化学研究现状和特点, 主要集中于常见的3 种量子化学方法。并对该领域的研究前景作了展望。

The intermolecular interaction is of importance in chemistry, biology and materials science. Chemists, biologists, materials scientists now pay more attention to the experimental and theoretical investigations of this kind of interaction. In this review , the characteristics and features of the investigation for intermolecular in teractions were introduced, mainly focusing on three practical computational methods, and a perspective in this research field was also discussed.

()

[ 1 ] Jeffrey G A , Saenger W , Hydrogen Bondingin Biological Structures, Springer-Verlag Berlin Heidelberg, New York, 1991, 1—5.
[ 2 ] Robertson J M , Nature, 1935, 136, 755- 756.
[ 3 ] Pauling L , The Natureofthe Chemical Bond , Cornell Univ Press, Ithaca, New York, 1939.
[ 4 ] Pauling L , Corey R B, Branson H R , Proc. Nat. Acad. Sci. U. S. A . , 1951, 37, 205- 211.
[ 5 ] Watson J D, Crick F H C, Nature, 1953, 171, 737- 738.
[ 6 ] Jeffrey G A , Saenger W , Hydrogen Bondingin Biological Structures, Springer-Verlag Berlin Heidelberg, New York, 1991, 8- 9.
[ 7 ] Lehn J M , Chem. Scr. , 1988, 28, 237- 262.
[ 8 ] London F, Z Physik , 1930, 63, 245- 279.
[ 9 ] 封继康(Feng J K) , 化学通报(Chem. Bu ll. ) , 1995, 10, 25—28.
[ 10 ] Gaw J F, Yamaguchi Y, Vincent M A , Schaefer III H F, J. Am. Chem. Soc. , 1984, 106, 3133-3138.
[ 11 ] Pine A S, Lafferty W J , J. Chem. Phys. , 1983, 78, 2154—2162.
[ 12 ] MichaelW D, Dykstra C E, Lisy J M , J. Chem. Phys. , 1984, 81, 5998- 6006.
[ 13 ] Deakyne C A , Meot-Ner M , J. Am. Chem. Soc. , 1985, 107, 474- 479.
[ 14 ] Schwenke D W , Truh lar D G, J. Chem. Phys. , 1985, 82, 2418- 2426.
[ 15 ] Frisch M J , Pop le J A , Bene J E, J. Phys. Chem. , 1985, 89, 3664- 3669.
[ 16 ] Frisch M J , Bene J E D, Bink ley J S, Schaefer IIIH F, J. Chem. Phys. , 1986, 84, 2279- 2289.
[ 17 ] Bene J E D, J. Chem. Phys. , 1987, 86, 2110- 2113.
[ 18 ] Bene J E D, J. Phys. Chem. , 1988, 92, 2874- 2880.
[ 19 ] Pine A S, Fraser G T , J. Chem. Phys. , 1988, 89, 6636- 6643.
[ 20 ] Zhang C Y, David L F, Do ll J D, J. Chem. Phys. , 1989, 91, 2489- 2497.
[ 21 ] Bene J E D, J. Comput. Chem. , 1989, 10, 603- 615.
[ 22 ] Latajka Z, Ratajczak H, J. Mol. Struct. , 1989, 194, 89- 105.
[ 23 ] van Duijneveldt-vande Rijdt J G C M , van Duijneveldt F B, J. Mol. Struct. , 1982, 89, 185- 201.
[ 24 ] Rzepa H S, Yi M Y, J. Chem. Soc. Perkin Trans. I I , 1990, 943- 951.
[ 25 ] Vos R J , Hendriks R, van Duijneveldt F B, J. Comput. Chem. , 1990, 11, 1- 18.
[ 26 ] Chalasinski G, Szczesniak M M , Kukawaska-Tarnawska B, J. Chem. Phys. , 1991, 94, 6677-6685.
[ 27 ] Hannachi Y, SilbiB, Bouteiller Y, J. Chem. Phys. , 1992, 97, 1911- 1918.
[ 28 ] Feller D, J. Chem. Phys. , 1992, 96, 6104- 6114.
[ 29 ] van Duijneveldt-vande Rijdt J G C M , van Duijneveldt F B, J. Chem. Phys. , 1992, 97, 5019-5030.
[ 30 ] Chakravorty J S, Davidsoa E D, J. Phys. Chem. , 1993, 97, 6373- 6383.
[ 31 ] Racine S C, Davisdon E R, J. Phys. Chem. , 1993, 97, 6367- 6372.
[ 32 ] Rodham D A , Suzuki S, Suenram R D, Lovas F J , Dasgupta S, Goddard III W A , Blake G A ,Nature, 1993, 362, 735- 737.
[ 33 ] Novoa J J , Planas M , Whangbo M H, Willians J M , Chem. Phys. , 1994, 186, 175- 183.
[ 34 ] Kim K S, Lee J Y, Lee S J , Ha Y K, Kim D H, J. Am. Chem. Soc. , 1994, 116, 7399- 7400.
[ 35 ] Chalasinski G, Szczesniak M M , Chem. Rev. , 1994, 94 (7) , 1723- 1767.
[ 36 ] Lee Y J , Lee S J , Chloi H S, Cho J S, Kim K S, Ha T K, Chem. Phys. Lett. , 1995, 232, 67- 71.
[ 37 ] Rablen P R, Hartwig J F, J. Am. Chem. Soc. , 1995, 118, 4648- 4653.
[ 38 ] 卞江(Bian J ) , 陈志达(Chen Z D) , 吴瑾光(Wu J G) , 化学通报(Chem. Bull. ) , 1997, 4, 12- 17.
[ 39 ] Hutson J M , J. Phys. Chem. , 1992, 96, 4237- 4247.
[ 40 ] Willey D R, Choong V E, De Lucia F C, J. Chem. Phys. , 1992, 96, 898- 902.
[ 41 ] Cohen R C, Saykally R J , J. Chem. Phys. , 1993, 98, 6007- 6030.
[ 42 ] Halberstast N , Sema S, Roncero Om , Janda K C, J. Chem. Phys. , 1992, 97, 341- 354.
[ 43 ] Benebenti L , Casavecchia P, Volpi G G, Bieler C R, Janda K C, J. Chem. Phys. , 1993, 98, 178-185.
[ 44 ] Bohac E J , Marshal M D, Miller R E, J. Chem. Phys. , 1992, 97, 4890- 4900.
[ 45 ] Tao F M , Pan Y K, J. Phys. Chem. , 1991, 95, 9811- 9816.
[ 46 ] Tao F M , Pan Y K, J. Phys. Chem. , 1992, 96, 5815- 5816.
[ 47 ] Tao F M , Klemperer W , J. Chem. Phys. , 1992, 97, 440- 451.
[ 48 ] Tao F M , J. Chem. Phys. , 1994, 100, 4947- 4954.
[ 49 ] Tao F M , Klemperer W , J. Chem. Phys. , 1994, 101, 1129- 1145.
[ 50 ] Racine S C, Davidson E R, J. Phys. Chem. , 1993, 97, 6367- 6372.
[ 51 ] Quack M , Suhm M A , J. Chem. Phys. , 1991, 95, 28- 59.
[ 52 ] Scheiner S, Annu. Rev. Phys. Chem. , 1994, 45, 23- 56.
[ 53 ] Chakravorty S J , Davidson E R, J. Phys. Chem. , 1993, 97, 6373- 6383.
[ 54 ] Tao F M , Klemperer W , J. Chem. Phys. , 1993, 99, 5976- 5982.
[ 55 ] Handy N S, Hynes J T , Bogdan Letal. , Quantum Mechanical Simulation Methods for Studying Biological Systems (eds. Bicout D J , Field M J ) , Les Houches Workshop , 1995, 1- 27.
[ 56 ] Zhu W L , Jiang H L , Chen J Z, Gu J D, Chen K X, Cao Y, Ji R Y, Sci. Chin. (Ser. B ) , 1998,41, 616- 622.
[ 57 ] Gu J D, Jiang H L , Zhu W L , Chen J Z, Chen K X, Ji R Y, J. Mol. Struct. (TH EOCH EM ) ,1999,inpress.
[ 58 ] 朱维良(Zhu W L ) , 蒋华良(Jiang H L ) , 陈建忠(Chen J Z) , 顾健德(Gu J D) , 刘东祥(Liu D X) ,林茂伟(Lin M W ) , 陈凯先(Chen K X) , 嵇汝运(Ji R Y) , 化学学报(Acta Chim Sinica) , 1998,56, 233- 237.
[ 59 ] 蒋华良(Jiang H L ) , 朱维良(Zhu W L ) , 谭小健(Tan X J ) , 顾健德(Gu J D) , 陈建忠(Chen J Z) ,林茂伟(Lin M W ) , 陈凯先(Chen K X) , 嵇汝运(Ji R Y) , 中国科学(B 辑) (Science in China,Series B ) , 1998, 28, 404- 409.

[1] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[2] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[3] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[4] 张鹏, 郭心洁, 张倩, 丁彩凤. 有机染料聚集在光化学传感中的应用[J]. 化学进展, 2020, 32(2/3): 286-297.
[5] 侯瑞, 李桂群, 张岩, 李明俊, 周桂明, 柴晓明. 基于超分子聚合物的自修复材料[J]. 化学进展, 2019, 31(5): 690-698.
[6] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[7] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[8] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[9] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[10] 范鸿川, 杨东, 段鹏飞. 超分子组装体系中基于三重态-三重态湮灭的上转换发光[J]. 化学进展, 2018, 30(7): 879-887.
[11] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[12] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[13] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[14] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[15] 陈盼盼, 史兵兵*. 基于大环主体构筑的超分子载药体系[J]. 化学进展, 2017, 29(7): 720-739.