English
新闻公告
More
化学进展 2023, Vol. 35 Issue (12): 1864-1880 DOI: 10.7536/PC230404 前一篇   后一篇

• 综述 •

稀土掺杂卤化铅钙钛矿的制备、性能与辐射探测器

陈威燃, 马林*(), 赵婷, 严铮洸, 肖家文, 王振中, 韩晓东*()   

  1. 北京工业大学固体微结构与性能北京市重点实验室 北京 100020
  • 收稿日期:2023-04-07 修回日期:2023-09-17 出版日期:2023-12-24 发布日期:2023-11-30
  • 作者简介:

    马林 北京工业大学师资博士后。主要研究方向:有机钙钛矿单晶生长与结晶动力学研究;半导体载流子输运研究;载流子复合机制研究。在Nature Communications,APL Materials等期刊发表多篇SCI论文。荣获北京市优秀博士毕业论文,北京工业大学优秀毕业生、北京工业大学优秀博士毕业论文、北京工业大学优秀共产党员等荣誉。

  • 基金资助:
    国家自然科学基金面上项目(12174016); 国家重点研发计划(2021YFA1200201); 北京市卓青项目(BJJWZYJH01201910005018); 北京市博士后工作经费资助项目(Q6009A03202301)

Rare EarthDoped Lead Halide Perovskites: Synthesis, Properties and RadiationDetectors

Weiran Chen, Lin Ma*(), Ting Zhao, Zhengguang Yan, Jiawen Xiao, Zhenzhong Wang, Xiaodong Han*()   

  1. Institute of Microstructure and Property of Advanced Materials, Beijing Key Lab of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology,Beijing 100124, China, Beijing 100020, China
  • Received:2023-04-07 Revised:2023-09-17 Online:2023-12-24 Published:2023-11-30
  • Contact: *e-mail: malin2022@bjut.edu.cn(Lin Ma);xdhan@bjut.edu.cn(Xiaodong Han)
  • Supported by:
    National Natural Science Foundation of China(12174016); National Key R&D Program of China(2021YFA1200201); Beijing Outstanding Young Scientists Projects(BJJWZYJH01201910005018); Beijing Postdoctoral Research Foundation(Q6009A03202301)

近年来卤化铅钙钛矿由于优异的半导体特性,在光伏器件、光电探测器等领域展现了优异的性能,成为材料科学的研究热点。稀土元素掺杂卤化铅钙钛矿是改善其性能的一种有效途径。本文从材料制备、掺杂结构与性能、辐射探测器等方面综述了稀土掺杂卤化铅钙钛矿的最新研究进展。稀土掺杂引入了新的发光中心和能级,产生新的发光特性、提高了钙钛矿晶体的结晶度和半导体性能。因此,稀土掺杂可以进一步提高卤化铅钙钛矿辐射探测器的性能。

In recent years, lead halide perovskites have shown excellent performance in photovoltaic devices and photodetectors due to its excellent semiconductor properties and have become a hot spot in materials science.Doping rare earth elements is a promising way to improve the performances of lead halide perovskites. In this paper, we review the latest research progress of rare earths doped lead halide perovskite materials in the preparation, structures, properties, as well as radiation detectors. The doped rare earths introduce new luminescent centers and energy levels for new luminescence properties, improving the crystallinity and semiconductor performances of perovskite crystals. Therefore, rare earth doping can further improve the performance of lead halide perovskite radiation detectors.

Contents

1 Introduction

2 Growth and structure of rare earth doped lead halides perovskites

2.1 Rare earth ions and rare earth doped lead halides perovskites

2.2 Synthesis of rare earth-doped lead halides perovskites

2.3 Effect of rare earth ions on the growth and structure of perovskite

2.4 Composition distribution and doping sites of rare earth ions in lead halide perovskite

3 Luminescence properties of rare earth doped lead halides perovskites

3.1 Introducing the luminous centers of rare earth ions

3.2 Enhanced emission of perovskite matrix

4 Semiconductor electrical properties of rare earth doped lead halides perovskites

4.1 Theoretical study on electrical doping of lead perovskite halide by rare earth ions

4.2 Experimental study on electrical doping of lead perovskite halide by rare earth ions

5 Application of rare earth Ions doped lead halides perovskite crystals in radiation detection

5.1 Brief introduction of perovskite radiation detection

5.2 Rare earth doped lead perovskite halide radiation radiation detector

6 Conclusion and prospect

()
图1 钙钛矿(ABX3)晶体结构
Fig. 1 The crystal structure of perovskites (ABX3)
图2 典型的钙钛矿晶体合成手段。 (a) 旋涂法, (b) 气相沉积法, (c) 机械化学研磨法, (d) 沉淀法, (e) 布里奇曼法, (f) 水热法, (g) 反溶剂蒸发辅助结晶法, (h) 逆温结晶法, (i) 热注入法, (j) 配体辅助沉淀法合成纳米晶体
Fig. 2 Typical synthesis methods for perovskite crystals. (a) Spin coating method, (b) Vapor deposition method, (c) Mechanochemical synthesis method, (d) Precipitation method, (e) Bridgman method, (f) Hydrothermal method, (g) Antisolvent vapor-assisted method, AVC, (h) Inverse temperature crystallization method, ITC, (i) Thermal injection method, HI, (j) Ligand assisted precipitation method, LARP
图3 (a) CsPbCl3:Yb3+ 的掺杂局部的晶体结构模型[61]; (b) CsPbCl3:Sm3+纳米晶和无掺杂CsPbCl3纳米晶样品的Pb2+的高分辨XPS谱图[67] ;(c) CsPbCl3:2.1%Yb3+纳米晶与(d) CsPbCl3:5.7%Yb3+纳米晶的HRTEM图像,标尺为5 nm[63]
Fig. 3 (a) Crystal structure model of the doped region of CsPbCl3: Yb3+[61]. Copyright 2019, American Chemical Society (b) High-resolution XPS analysis corresponding to Pb4f5/2 and 4f7/2 for undoped and CsPbCl3:Sm3+ NCs[67]. Copyright 2020, American Chemical Society (c) HRTEM images of CsPbCl3:2.1%Yb3+ and (d) CsPbCl3:5.7%Yb3+ NCs.Scale bar: 5 nm[63]. Copyright 2018, American Chemical Society
表1 稀土掺杂卤化铅钙钛矿的发光性能
Table 1 Luminescence properties of lead halide perovskite doped with rare earth
Perovskite Rare-earth Ion Form of Crystal Synthesis Mothod Emisson of Rare-earth ion/Excitation Wavelength(nm) Emisson of Perovskite as Host (nm) PLQY (Max) Response under X-ray ref
CsPbCl3 / Nano
Crystal
Hot-Injection / No report ~54.08% No report 88

CsPbCl3
Dy3+ Single Crystal Vertical Bridgman 576.5/455 No report 57% No report 33
CsPbCl3 Er3+ Single Crystal Vertical Bridgman 3500/660
4500,2750,1550/800
No report No report No report 34
CsPbCl3 Yb3+ Single Crystal Vertical Bridgman 982/375 420 No report No report 35
CsPbCl3 Yb3+ Single Crystal Hydrothermal 980/365 450 137% Light yield:
112 000 ph/MeV
Detection limit:
176.5 nGyair/s
89
CsPbCl3 Yb3+ Powder Precipitation 1000/405 406 No report Light yield:
102 000 ph/MeV
24
CsPbCl3 Y3+ Nano
Crystal
Surface Treatment / 404 60% No report 78
CsPbCl3 Ce3+, Sm3+, Eu3+, Tb3+,Dy3+, Er3+, Yb3+ Nano
Crystal
Hot Injection 430 (Ce3+);
560,605,640 (Sm3+);
588,620,696 (Eu3+),
489,550 (Tb3+);
481,572 (Dy3+);
523,548 (Er3+);
982(Yb3+)/365
410 24.3 (Ce3+);
14.1 (Sm3+);
27.2 (Eu3+);
31.2 (Tb3+);
27.6 (Dy3+);
15.1 (Er3+);
142.7(Yb3+)
No report 45
CsPb(Br/Cl)3 Nd3+, Sm3+, Eu3+, Tb3+,Dy3+,Yb3+ Nano
Crystal
Ion Exchange 890, 1058, 1350 (Nd3+);
564, 600, 650, 710 (Sm3+);
590, 616, 700 (Eu3+);
490, 545, 585, 620 (Tb3+);
475, 575, 660, 750 (Dy3+);
980 (Yb3+)/330
410~415 2%~3% No report 47
CsPb(Cl1-xBrx)3 Yb3+ Film Spin Coated 990/375 490 193% No report 90
MAPbBr3 Eu2+ NanoCrystal LARP 440,456/350 522 90% No report 46
MAPbBr3 Er3+ Single Crystal AVC None/420 542 No report No report 39
MAPbI3 Yb3+,Yb3+/Er+ Single Crystal Hydrothermal 980(Yb3+);980,1540(Yb3+/Er3+)/530 830 No report Planar Au/MAPbI3/Au for direct detected model:
1.16×106 μC G y a i r - 1·cm-2
(-3 V bias)
41
NMA2PbBr4 Eu3+ Film Spin Coated 576, 589, 611, 648, 697 /350 389,564 9% No report 70
PEA2PbCl4 Eu3+ Powder Hot Injection 592,613/365 350 83% No report 71
PEA2PbBr4 Yb3+ Micro
Crystal
Hot Injection 997/340 414 No report No report 72
CsPbCl3 La3+ Single Crystal Vertical Bridgman / 420 No report Weaker luminescence
intensity under X-ray
32
CsPbBr3 Ce3+ Nano
Crystal
Hot Injection None/340 525 No report Light yield:
33 000 ph/MeV
spatial resolution :862 nm
91
CsPbI3 La3+ Nano
Crystal
Hot Injection / 687 99.3% No report 73
CsPbI3 Ce3+ Nano
Crystal
Hot Injection None/365 678 99% No report 74
CsPbBr3 Ce3+ Nano
Crystal
Hot Injection None/365 510 89% No report 75
CsPbBr3 Nd3+ Nano
Crystal
LARP None/365 459 90% No report 66
图4 (a) CsPbCl3:Dy3+单晶在575 nm(Dy3+6H15/2 → 4I15/2 )发射波段的激发光谱[33];(b) CsPbCl3:Yb3+/Er3+/Dy3+/Tb3+/Eu3+/Sm3+/Ce3+纳米晶体在365nm激发下的发射光谱[45]; (c) 不同浓度Ce3+ 掺杂CsPbBr3:Ce3+纳米晶体的归一化光致发光光谱; (d) Ce3+掺杂CsPbBr3提出的辐射复合增强模型,灰色虚线代表浅层缺陷能级,绿色虚线代表导带上的额外电子态[76]
Fig. 4 (a) Excitation spectra of CsPbCl3:Dy3+ SC at 575nm (Dy3+6H15/2 → 4I15/2 )emission band[33]. Copyright 2020, The Optical Society (b) Emission spectra of CsPbCl3:Yb3+/Er3+/Dy3+/Tb3+/Eu3+/Sm3+/Ce3+ NCs at 365 nm excitation[45]. Copyright 2017, American Chemical Society (c) Normalized PL spectra of CsPbBr3:Ce3+ NCs doping with different concentrations of Ce3+. (d) The luminescence enhancement model of Ce3+ doped CsPbBr3. The gray dotted line represents the shallow defect energy level and the green dotted line represents the additional electronic states in the conduction band[76]. Copyright 2019, American Chemical Society
图5 (a) MAPbI3单晶的局部经CeI3颗粒处理后退火后,KPFM下的CPD测量结果[55]; (b) Sm(acac)3掺杂CsPbI2Br太阳能电池的各功能层能带结构图[86]; (c) 无掺杂MAPbBr3单晶与 (d) ErCl3掺杂的MAPbBr3单晶的暗电流电流-电压曲线[39]
Fig. 5 (a) CPD measurement via KPFM of MAPbI3 SC partly treat by CeI3 particles followed by followed by thermal annealing[55]. Copyright 2021, Nature Publishing Group (b) The energy band structure diagram of Sm(acac)3-doped CsPbI2Br solar cell[86]. Copyright 2020, AIP Publishing (c) The dark current-voltage curves of undoped MAPbBr3 SC and (d) ErCl3-doped MAPbBr3 SC[39]. Copyright 2020, American Chemical Society
图6 (a) 固体材料吸收射线的主要作用过程机理;(b) 闪烁探测晶体与半导体探测材料的探测原理示意图;(c) CsPbClxBr3-x: Yb3+ SCs中闪烁体转换机理简图[102]; (d) 基于MAPbI3的p-i-n型光伏器件结构图[103]; (e) CsPbBr3闪烁体基射线探测器[104]
Fig. 6 (a) The principal mechanism by which radiation is absorbed by solid materials; (b) Schematic diagram of the detection principle of scintillation detection crystals and semiconductor detection materials; (c) A sketch of the scintillators conversion mechanism in CsPbClxBr3-x: Yb3+ SCs[102]; (d) Schematic of layer stacking of the MAPbI3-based p-i-n photodiode[103]; (e) CsPbBr3 scintillator based ray detector[104]
图7 (a) CsPbBr3:Ce3+钙钛矿复合薄膜的光学照片;(b) CsPbBr3:Ce3+钙钛矿复合薄膜的横截面SEM照片;(c) CsPbBr3:Ce3+钙钛矿复合薄膜在X射线下的对LOGO的成像效果;(d) 不同浓度稀土掺杂的CsPbBr3:Ce3+的光产额变化[91]
Fig. 7 (a) Optical image of the CsPbBr3:Ce3+scintillator film without protective layer. (b) SEM image of the side of scintillator film. (c) the image effect of CsPbBr3:Ce3+ perovskite composite film on LOGO under X-ray. (d) the light yield changes of rare earth doped CsPbBr3:Ce3+ at different concentrations[91]. Copyright 2022 Wiley-VCH.
图8 (a) 无掺杂MAPbI3和MAPbI3:RE3+的平面电极X射线探测器件结构图; (b) 1V偏压下无掺杂MAPbI3和MAPbI3:RE3+的光电流强度与辐射剂量率关系; (c) 无掺杂 MAPbI3和MAPbI3: RE3+X射线探测器件的在2.41 mGyair/s剂量下不同偏置电压设定下的灵敏度[41]
Fig. 8 (a) Illustration of parallel device structures of undoped MAPbI3 and MAPbI3:RE3+ Single crystals; (b) The relationship between photocurrent intensity and radiation dose rate of undoped MAPbI3 and MAPbI3:RE3+ at 1 V bias; (c) Bias-dependent sensitivity of the detectors at a 2.41 mGyair/s dose rate[41]. Copyright 2020, American Chemical Society
[1]
Tailor N K, Kar S, Mishra P, These A, Kupfer C, Hu H L, Awais M, Saidaminov M, Dar M I, Brabec C, Satapathi S. ACS Mater. Lett., 2021, 3(7): 1025.
[2]
Lin H R, Zhou C K, Tian Y, Siegrist T, Ma B W. ACS Energy Lett., 2018, 3(1): 54.

doi: 10.1021/acsenergylett.7b00926     URL    
[3]
Yuan Z, Zhou C K, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B W. Nat. Commun., 2017, 8: 14051.

doi: 10.1038/ncomms14051    
[4]
Li X T, Hoffman J M, Kanatzidis M G. Chem. Rev., 2021, 121(4): 2230.

doi: 10.1021/acs.chemrev.0c01006     URL    
[5]
DuanD W, Ge C Y, Rahaman M Z, Lin C, Shi Y M, Lin H R, Hu H L, Wu T. NPG Asia Mater., 2023, 15: 1.

doi: 10.1038/s41427-022-00453-w    
[6]
Sun S Q, Lu M, Gao X P, Shi Z F, Bai X E, Yu W W, Zhang Y. Adv. Sci., 2021, 8(24): 2102689.

doi: 10.1002/advs.v8.24     URL    
[7]
MitziD B. J. Chem. Soc.,Dalton Trans., 2001(1): 1.
[8]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131(17): 6050.

doi: 10.1021/ja809598r     URL    
[9]
Im J H, Lee C R, Lee J W, Park S W, Park N G. Nanoscale, 2011, 3(10): 4088.

doi: 10.1039/c1nr10867k     URL    
[10]
Ling Y C, Yuan Z, Tian Y, Wang X, Wang J C, Xin Y, Hanson K, Ma B W, Gao H W. Adv. Mater., 2016, 28(2): 305.

doi: 10.1002/adma.v28.2     URL    
[11]
Xing G C, Mathews N, Lim S S, Yantara N, Liu X F, SabbaD, Grätzel M, Mhaisalkar S, Sum T C. Nat. Mater., 2014, 13(5): 476.

doi: 10.1038/nmat3911    
[12]
Chen Q S, Wu J, Ou X Y, Huang B L, Almutlaq J, Zhumekenov A A, Guan X W, Han S Y, Liang L L, Yi Z G, Li J A, Xie X J, Wang Y, Li Y, FanD Y, TehD B L, All A H, Mohammed O F, Bakr O M, Wu T, Bettinelli M, Yang H H, Huang W, Liu X G. Nature, 2018, 561(7721): 88.

doi: 10.1038/s41586-018-0451-1    
[13]
Heo J H, ShinD H, Park J K, KimD H, Lee S J, Im S H. Adv. Mater., 2018, 30(40): 1801743.

doi: 10.1002/adma.v30.40     URL    
[14]
Zhang S Y. Spectroscopy of Rare Earth Ions:Spectral Properties And Spectral Theory. Beijing: Science Press, 2008.
(张思远. 稀土离子的光谱学:光谱性质和光谱理论. 北京: 科学出版社, 2008.).
[15]
Zhang Y. Rare Earth Functional Materials. Beijing: Chemical Industry Press, 2015.
(张胤. 稀土功能材料. 北京: 化学工业出版社, 2015.).
[16]
Yan Y L, Cao J M, Meng F N, Wang N, Gao L G, Ma T L. Prog. Chem., 2019, 31(07): 1031.
(闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 化学进展, 2019, 31(07): 1031.).
[17]
Duan J L, Zhao Y Y, Yang X Y, Wang YD, He B L, Tang Q W. Adv. Energy Mater., 2018, 8(31): 1802346.

doi: 10.1002/aenm.v8.31     URL    
[18]
Zeng Z C, Xu Y S, Zhang Z S, Gao Z S, Luo M, Yin Z Y, Zhang C, Xu J, Huang B L, Luo F, Du Y P, Yan C H. Chem. Soc. Rev., 2020, 49(4): 1109.

doi: 10.1039/C9CS00330D     URL    
[19]
Crane M J, KroupaD M, Roh J Y, Anderson R T, Smith MD, GamelinD R. ACS Appl. Energy Mater., 2019, 2(6): 4560.

doi: 10.1021/acsaem.9b00910     URL    
[20]
Jiang F. Research on optic property in the ions-doped all inorganic perovskite. Master’s Thesis,Hunan University,China, 2020.
(姜峰. 基于离子掺杂全无机钙钛矿的发光特性研究. 硕士学位论文,湖南大学, 2020.).
[21]
Leupold N, Panzer F. Adv. Funct. Mater., 2021, 31(14): 2007350.

doi: 10.1002/adfm.v31.14     URL    
[22]
Aleksanyan E, Aprahamian A, Mukasyan A S, Harutyunyan V, Manukyan K V. J. Mater. Sci., 2020, 55(20): 8665.

doi: 10.1007/s10853-020-04617-3    
[23]
Stefanski M, Ptak M, Sieradzki A, Strek W. Chem. Eng. J., 2021, 408: 127347.

doi: 10.1016/j.cej.2020.127347     URL    
[24]
Dagnall K A, Conley A M, Yoon L U, Rajeev H S, Lee S H, Choi J J. ACS Omega, 2022, 7(24): 20968.

doi: 10.1021/acsomega.2c01712     URL    
[25]
Jurisch M, Eichler S, Bruder M. Vertical bridgman growth of binary compound semiconductors. In: Rudolph P (ed) Handbook of Crystal Growth (Second Edition). Boston: Elsevier, 2015. 331.
[26]
JuD X, Zheng X P, Yin J, Qiu Z W, Türedi B, Liu X L, Dang Y Y, Cao B Q, Mohammed O F, Bakr O M, Tao X T. ACS Energy Lett., 2019, 4(1): 228.

doi: 10.1021/acsenergylett.8b02113     URL    
[27]
Saidaminov M I, Abdelhady A L, Murali B, Alarousu E, Burlakov V M, Peng W, Dursun I, Wang L F, He Y, Maculan G, Goriely A, Wu T, Mohammed O F, Bakr O M. Nat. Commun., 2015, 6: 7586.

doi: 10.1038/ncomms8586     pmid: 26145157
[28]
ShiD, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben P A, Mohammed O F, Sargent E H, Bakr O M. Science, 2015, 347(6221): 519.

doi: 10.1126/science.aaa2725     URL    
[29]
Bari M, Wu H A, Bokov A A, Ali R F, Tailor H N, Gates BD, Ye Z G. CrystEngComm, 2021, 23(18): 3326.

doi: 10.1039/D0CE01690J     URL    
[30]
Stoumpos C C, Malliakas CD, Peters J A, Liu Z F, Sebastian M, Im J, Chasapis T C, Wibowo A C, ChungD Y, Freeman A J, Wessels B W, Kanatzidis M G. Cryst. GrowthDes., 2013, 13(7): 2722.
[31]
Zhang P, Sun Q H, Xu YD, Li X A, Liu L, Zhang GD, Tao X T. Cryst. GrowthDes., 2020, 20(4): 2424.
[32]
Watanabe K, Koshimizu M, Yanagida T, Fujimoto Y, Asai K. Jpn. J. Appl. Phys., 2016, 55(2S): 02BC20.
[33]
Hommerich U, Uba S, Kabir A, Trivedi S B, Yang C, Brown E E. Opt. Mater. Express, 2020, 10(8): 2011.

doi: 10.1364/OME.398498     URL    
[34]
Brown E E, Fleischman ZD, McKay J, Hommerich U, Kabir A A, Riggins J, Trivedi S, Dubinskii M. J. Opt. Soc. Am. B, 2022, 40(1): A1.

doi: 10.1364/JOSAB.470152     URL    
[35]
Roh J YD, Smith MD, Crane M J, BinerD, Milstein T J, Krämer K W, GamelinD R. Phys. Rev. Mate., 2020, 4(10): 105405.
[36]
Velázquez M, Ferrier A, PÉchev S, Gravereau P, Chaminade J P, Portier X, MoncorgÉ R. J. Cryst. Growth, 2008, 310(24): 5458.

doi: 10.1016/j.jcrysgro.2008.10.003     URL    
[37]
Ma L, Yan Z G, Zhou X Y, Pi Y Q, Du Y P, Huang J E, Wang K W, Wu K, Zhuang C Q, Han XD. Nat. Commun., 2021, 12: 2023.

doi: 10.1038/s41467-021-22193-1    
[38]
Wang S, Chen Y A, Yao J J, Zhao G X, Li L Z, Zou G F. J. Mater. Chem. C, 2021, 9(20): 6498.

doi: 10.1039/D1TC00408E     URL    
[39]
Rong S S, Xiao Y Q, Jiang J X, Zeng Q G, Li Y B. J. Phys. Chem. C, 2020, 124(16): 8992.

doi: 10.1021/acs.jpcc.0c01959     URL    
[40]
Nandihalli N, GregoryD H, Mori T K. Adv. Sci., 2022, 9(25): 2106052.

doi: 10.1002/advs.v9.25     URL    
[41]
Zi L, Xu W, Sun R, Li Z M, Zhang J W, Liu L, Wang N, Wang Y E, Ding N, Hu J H, Lu S Y, Zhu H C, Song H W. Chem. Mater., 2022, 34(16): 7412.

doi: 10.1021/acs.chemmater.2c01549     URL    
[42]
Chen X Y, Xu J, Xu Y S, Luo F, Du Y P. Inorg. Chem. Front., 2019, 6: 2226.

doi: 10.1039/C9QI00512A     URL    
[43]
Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nano Lett., 2015, 15(6): 3692.

doi: 10.1021/nl5048779     pmid: 25633588
[44]
Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S, Dong Y P. ACS Nano, 2015, 9(4): 4533.

doi: 10.1021/acsnano.5b01154     pmid: 25824283
[45]
Pan G C, Bai X E, YangD W, Chen X, Jing P T, Qu S N, Zhang L J, ZhouD L, Zhu J Y, Xu W, Dong B A, Song H W. Nano Lett., 2017, 17(12): 8005.

doi: 10.1021/acs.nanolett.7b04575     URL    
[46]
Liu L J, Li J T, McLeod J A. Nanoscale, 2018, 10(24): 11452.

doi: 10.1039/C8NR01656A     URL    
[47]
Debnath G H, Bloom B P, Tan S S, WaldeckD H. Nanoscale, 2022, 14(16): 6037.

doi: 10.1039/D2NR00490A     URL    
[48]
Sun R. Doctor’sDissertation of Jilin University,China, 2023.
(孙蕊. 吉林大学博士学位论文, 2023.).
[49]
Dong Y R, Zeng P, Yu Y, Xie Y J, Yang B L, Liang R Q, Ou Q R, Zhang S Y. Adv. Electron. Mater., 2020, 6(3): 1901162.

doi: 10.1002/aelm.v6.3     URL    
[50]
Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun LD, Yan C H. Science. 2019, 363(6424): 265.

doi: 10.1126/science.aau5701     URL    
[51]
Yang Y Q, Wu J H, Wang X B, Guo Q Y, Liu X P, Sun W H, Wei Y L, Huang Y F, Lan Z, Huang M L, Lin J M, Chen H W, Wei Z H. Adv. Mater., 2020, 32(7): 1904347.

doi: 10.1002/adma.v32.7     URL    
[52]
Wu X F, Sun J, Shao H, Zhai Y, Li L F, Chen WD, Zhu J Y, Dong B, Xu L, ZhouD L, Xu W, Song H W, Bai X. Chem. Eng. J., 2021, 426: 131310.

doi: 10.1016/j.cej.2021.131310     URL    
[53]
Lei J, Chang L Y, Dong Z H, Liu L J. Mater. Res. Bull., 2021, 137: 111191.

doi: 10.1016/j.materresbull.2020.111191     URL    
[54]
Wang Q, Wang X M, Yang Z, Zhou N H, Deng Y H, Zhao J J, Xiao X, Rudd P, Moran A, Yan Y F, Huang J S. Nat. Commun., 2019, 10: 5633.

doi: 10.1038/s41467-019-13580-w     pmid: 31822670
[55]
Lin Y Z, Shao Y C, Dai J, Li T, Liu Y, Dai X Z, Xiao X, Deng Y H, Gruverman A, Zeng X C, Huang J S. Nat. Commun., 2021, 12: 7.

doi: 10.1038/s41467-020-20110-6    
[56]
Ma J P, Chen Y M, Zhang L M, Guo S Q, Liu JD, Li H, Ye B J, Li Z Y, Zhou Y, Zhang B B, Bakr O M, Zhang J Y, Sun H T. J. Mater. Chem. C, 2019, 7(10): 3037.

doi: 10.1039/C9TC00237E     URL    
[57]
Stefanski M, Boiko V, Ptak M, Strek W. J. Alloys Compd., 2022, 905: 164216.

doi: 10.1016/j.jallcom.2022.164216     URL    
[58]
Song Z L, Xu W, Wu Y J, Liu S N, Bi W B, Chen X F, Song H W. Small, 2020, 16(40): 2001770.

doi: 10.1002/smll.v16.40     URL    
[59]
Liu Y N, Pan G C, Wang R, Shao H, Wang H, Xu W, Cui H N, Song H W. Nanoscale, 2018, 10(29): 14067.

doi: 10.1039/C8NR03581D     URL    
[60]
He L J, Meng J L, Feng J, Liu X J, Zhang H J. Inorg. Chem. Front., 2020, 7(23): 4669.

doi: 10.1039/D0QI01077D     URL    
[61]
Milstein T J, KroupaD M, GamelinD R. Nano Lett., 2018, 18(6): 3792.

doi: 10.1021/acs.nanolett.8b01066     pmid: 29746137
[62]
Li X Y, Duan S, Liu H C, Chen G Y, Luo Y, Ågren H. J. Phys. Chem. Lett., 2019, 10(3): 487.
[63]
Zhou L, Liu T R, Zheng J, Yu K, Yang F, Wang N, Zuo Y H, Liu Z, Xue C L, Li C B, Cheng B W, Wang Q M. J. Phys. Chem. C, 2018, 122(47): 26825.

doi: 10.1021/acs.jpcc.8b07906     URL    
[64]
Cao Q X, Ilyas A, Zhang S A, Ju Z J, Sun F L, Liu T Y, Yang Y, Lu Y H, Liu X F, Deng R R. Nanoscale, 2021, 13(26): 11552.

doi: 10.1039/D1NR02508B     URL    
[65]
Wang K, Zheng L Y, Zhu T, Yao X, Yi C, Zhang X T, Cao Y, Liu L, Hu W P, Gong X. Nano Energy, 2019, 61: 352.

doi: 10.1016/j.nanoen.2019.04.073    
[66]
Xie Y J, Peng B, Bravić I, Yu Y, Dong Y R, Liang R Q, Ou Q R, Monserrat B, Zhang S Y. Adv. Sci., 2020, 7(20): 2001698.

doi: 10.1002/advs.v7.20     URL    
[67]
Sun R, Lu P, ZhouD L, Xu W, Ding N, Shao H, Zhang Y, LiD Y, Wang N, Zhuang X M, Dong B A, Bai X E, Song H W. ACS Energy Lett., 2020, 5(7): 2131.

doi: 10.1021/acsenergylett.0c00931     URL    
[68]
Kluherz K T, Mergelsberg S T, SommerD E, Roh J YD, Saslow S A, BinerD, Krämer K W, Dunham S T, de Yoreo J J, GamelinD R. Phys. Rev. Mate., 2022, 6(7): 074601.
[69]
Ferro S M, Wobben M, Ehrler B. Mater. Horiz., 2021, 8(4): 1072.

doi: 10.1039/D0MH01470B     URL    
[70]
CortecchiaD, MrÓz W, Folpini G, Borzda T, Leoncino L, Alvarado-Leaños A L, Speller E M, Petrozza A. Chem. Mater., 2021, 33(7): 2289.

doi: 10.1021/acs.chemmater.0c04097     pmid: 33867665
[71]
XuD, Sun C, Han J C, Zhang H, Tao J Q, Wei T, Fan C, Zhang Z H, Bi W G. J. Alloys Compd., 2022, 902: 163841.

doi: 10.1016/j.jallcom.2022.163841     URL    
[72]
Mondal B, Poovathan A, Sheikh T, Nag A. ChemNanoMat, 2022, 8(8): e202200104.
[73]
Xia W L, Ren Z W, Zheng Z S, Luo C Z, Li J E, Ma W C, Zhou X, Chen Y. Nanoscale, 2023, 15(3): 1109.

doi: 10.1039/D2NR06317D     URL    
[74]
Shu B W, Chang Y J, Zhang J H, Cheng X P, YuD B. Nano Res., 2021, 14(10): 3352.

doi: 10.1007/s12274-021-3649-8    
[75]
Yao J S, Ge J, Han B N, Wang K H, Yao H B, Yu H L, Li J H, Zhu B S, Song J Z, Chen C, Zhang Q, Zeng H B, Luo Y, Yu S H. J. Am. Chem. Soc., 2018, 140(10): 3626.

doi: 10.1021/jacs.7b11955     URL    
[76]
Yin J, Ahmed G H, Bakr O M, BrÉdas J L, Mohammed O F. ACS Energy Lett., 2019, 4(3): 789.

doi: 10.1021/acsenergylett.9b00209     URL    
[77]
Milstein T J, Roh J YD, Jacoby L M, Crane M J, SommerD E, Dunham S T, GamelinD R. Chem. Mater., 2022, 34(8): 3759.

doi: 10.1021/acs.chemmater.2c00132     URL    
[78]
Ahmed G H, El-Demellawi J K, Yin J, Pan J, VelusamyD B, Hedhili M N, Alarousu E, Bakr O M, Alshareef H N, Mohammed O F. ACS Energy Lett., 2018, 3(10): 2301.

doi: 10.1021/acsenergylett.8b01441     URL    
[79]
Euvrard J, Yan Y F, MitziD B. Nat. Rev. Mater., 2021, 6(6): 531.

doi: 10.1038/s41578-021-00286-z    
[80]
Xu X W, Wang Y Q, Meng H X, Zhu T S, YanD, Zhu W J, Liu S J, Zhao Q A. Matter, 2022, 5(7): 2086.

doi: 10.1016/j.matt.2022.05.030     URL    
[81]
Lyons J L. Chem. Mater., 2021, 33(15): 6200.

doi: 10.1021/acs.chemmater.1c01898     URL    
[82]
Mannodi-Kanakkithodi A, Park J S, Jeon N, CaoD H, GosztolaD J, Martinson A B F, Chan M K Y. Chem. Mater., 2019, 31(10): 3599.

doi: 10.1021/acs.chemmater.8b04017    
[83]
Marchenko E I, Fateev S A, Eremin N N, Chen Q, Goodilin E A, Tarasov A B. ACS Mater. Lett., 2021, 3(9): 1377.
[84]
Freitas A L M, Tofanello A, Bonadio A, Souza J A. J. Mater. Sci., 2022, 33(23): 18327.
[85]
Liu J L, Wang S Y, Chen M Y, Jiang P, Cao L X, Li W H, Ran H B, Hu Y E, Han H W, Tang Y W. Sol. RRL, 2022, 6(9): 2200361.

doi: 10.1002/solr.v6.9     URL    
[86]
Yang Y, HanD W, Yang Y, Yi S W, Yuan Q A, ZhouD Y, Feng L. APL Mater., 2020, 8(7): 071102.

doi: 10.1063/5.0011918     URL    
[87]
Parveen S, Das M, Ghosh S, Giri P K. Nanoscale, 2022, 14(17): 6402.

doi: 10.1039/D2NR01063A     URL    
[88]
Zhang Y Q, Cheng X Y, TuD T, Gong Z L, Li R F, Yang Y J, Zheng W, Xu J, Deng S Q, Chen X Y. Angew. Chem. Int. Ed., 2021, 60(17): 9693.

doi: 10.1002/anie.v60.17     URL    
[89]
Zi L, Song J A, Wang N, Wang T Y, Li W, Zhu H C, Xu W, Song H W. Laser Photonics Rev., 2023, 17(5): 2200852.

doi: 10.1002/lpor.v17.5     URL    
[90]
KroupaD M, Roh J Y, Milstein T J, Creutz S E, GamelinD R. ACS Energy Lett., 2018, 3(10): 2390.

doi: 10.1021/acsenergylett.8b01528     URL    
[91]
Wu X C, Guo Z, Zhu S A, Zhang B B, Guo S M, Dong X H, Mei L Q, Liu R X, Su C J, Gu Z J. Adv. Sci., 2022, 9(17): 2200831.

doi: 10.1002/advs.v9.17     URL    
[92]
Wang M, Deng K M, Meng L X, Li L A. Small Meth., 2020, 4(2): 1900652.

doi: 10.1002/smtd.v4.2     URL    
[93]
Wu X W, Li H W, Wang K, Sun X W, Wang LD. RSC Adv., 2018, 8(20): 11095.

doi: 10.1039/C7RA12754E     URL    
[94]
Shen L N, Chen R, ZhangD, Yilmazoglu U C, Gu K, Sarmiento J S, Zhu T, Zheng L Y, Zheng J E, Wang H, Liu C M, Gong X. Adv. Funct. Mater., 2022, 32(47): 2207911.

doi: 10.1002/adfm.v32.47     URL    
[95]
Zhao Y P, Yavuz I, Wang M H, Weber M H, Xu M J, Lee J H, Tan S, Huang T Y, MengD, Wang R, Xue J J, Lee S J, Bae S H, Zhang A N, Choi S G, Yin Y F, Liu J, Han T H, Shi Y T, Ma H R, Yang W X, Xing Q Y, Zhou Y F, Shi P J, Wang S S, Zhang E, Bian J M, Pan X Q, Park N G, Lee J W, Yang Y. Nat. Mater., 2022, 21(12): 1396.

doi: 10.1038/s41563-022-01390-3    
[96]
Jin P, Tang Y J, LiD W, Wang Y, Ran P, Zhou C Y, Yuan Y, Zhu W J, Liu T Y, Liang K, Kuang C F, Liu X, Zhu B W, Yang Y. Nat. Commun., 2023, 14: 626.

doi: 10.1038/s41467-023-36313-6    
[97]
Sun R J, Wang Z F, Wang H Q, Chen Z H, Yao Y G, Zhang H P, Gao Y N, Hao X T, Liu H Q, Zhang Y H. ACS Appl. Mater. Interfaces, 2022, 14(32): 36801.

doi: 10.1021/acsami.2c08238     URL    
[98]
He Y H, Petryk M, Liu Z F, ChicaD G, Hadar I, Leak C, Ke W J, Spanopoulos I, Lin W W, ChungD Y, Wessels B W, He Z, Kanatzidis M G. Nat. Photonics, 2021, 15(1): 36.

doi: 10.1038/s41566-020-00727-1    
[99]
Devanathan R, Corrales L R, Gao F, Weber W J. Nucl. Instrum. Meth. Phys. Res. Sect. A, 2006, 565(2): 637.

doi: 10.1016/j.nima.2006.05.085     URL    
[100]
Zhou F G, Li Z Z, Lan W, Wang Q A, Ding L M, Jin Z W. Small Meth., 2020, 4(10): 2000506.

doi: 10.1002/smtd.v4.10     URL    
[101]
Xu X, Qian W, Xiao S, Wang J, Zheng S, Yang S. EcoMat., 2020, 2(4): 12064.
[102]
Zi L, Song J A, Wang N, Wang T Y, Li W, Zhu H C, Xu W, Song H W. Laser Photonics Rev., 2023, 17(5): 2200852.

doi: 10.1002/lpor.v17.5     URL    
[103]
Hu G J, Chen Q, Wei W, Sun Z C, Yao M N, Shen L. Chin. J. Lumin., 2023, 44(5): 771.
(胡刚舰, 陈琦, 魏薇, 孙仔成, 姚梦楠, 沈亮. 发光学报, 2023, 44(5): 771.).
[104]
Meng G, Ye Y Q, Fan L M, Wang S M, Volodymyr G, Fang XD. J. Inorg. Mater., 2020, 35(11): 1203.
(孟钢, 叶雨琪, 范黎明, 王时茂, Gnatyuk Volodymyr, 方晓东. 无机材料学报, 2020, 35(11): 1203.).

doi: 10.15541/jim20190394    
[105]
Quinn X L, Kumar R E, Kodur M, CakanD N, Cai Z H, Zhou T, Holt M V, FenningD P. Adv. Opt. Mater., 2021, 9(18): 2002221.

doi: 10.1002/adom.v9.18     URL    
[1] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[2] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[3] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[4] 刘杰, 江漫, 梅咏梅, 吴占超*, 匡少平. 白光发光二极管用单一基质白光荧光粉[J]. 化学进展, 2013, 25(12): 2068-2079.
[5] 方云霞, 方晓明*, 张正国. 基于纳米ZnO的白光LED[J]. 化学进展, 2012, 24(08): 1477-1483.
[6] 张其土, 张乐, 韩朋德, 陈雁, 杨浩, 王丽熙. 白光LED用光转换无机荧光粉[J]. 化学进展, 2011, 23(6): 1108-1122.
[7] 朱崇强 杨春晖 孙亮. 非线性光学晶体CdGeAs2点缺陷的研究*[J]. 化学进展, 2010, 22(0203): 315-321.
[8] 李海艳,李强. 有机染料-层状硅酸盐光活性纳米复合材料*[J]. 化学进展, 2003, 15(02): 135-.