English
新闻公告
More
化学进展 2023, Vol. 35 Issue (7): 997-1004 DOI: 10.7536/PC221231   后一篇

• 综述 •

微纳米机器人增强的抗菌治疗

刘婷1,2, 庞世尧1,2, 鄢晓晖1,2,*()   

  1. 1 厦门大学公共卫生学院分子疫苗学和分子诊断学国家重点实验室分子影像暨转化医学研究中心 厦门 361005
    2 厦门大学深圳研究院 深圳 518057
  • 收稿日期:2022-12-30 修回日期:2023-05-08 出版日期:2023-07-24 发布日期:2023-06-12
  • 基金资助:
    国家自然科学基金(82001845); 广东省机器人与智能系统重点实验室开放基金(XDHT2019588A); 深圳市科技创新委员会基础研究面上项目(JCYJ20190809163407481)

Micro-/Nanorobots for Enhanced Antibacterial Treatment

Ting Liu1,2, Shiyao Pang1,2, Xiaohui Yan1,2()   

  1. 1 State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University,Xiamen 361005, China
    2 Shenzhen Research Institute of Xiamen University,Shenzhen 518057, China
  • Received:2022-12-30 Revised:2023-05-08 Online:2023-07-24 Published:2023-06-12
  • Contact: * e-mail: xhyan@xmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82001845); Guangdong Provincial Key Lab of Robotics and Intelligent System(XDHT2019588A); Shenzhen Science and Technology Program(JCYJ20190809163407481)

细菌感染正演变为全球第二大死因,严重威胁着人类的生命健康。目前报道的抗菌疗法如抗生素治疗、光热治疗、光/声动力治疗等效率亟待提高,而微纳米机器人作为一种具有主动运动属性的小型化机器人,有望为高效抗菌提供新的治疗策略。一方面,微纳米机器人能够将抗菌介质精准高效递送至病灶微区;另一方面,机器人的集群运动可引发机械效应与流体搅拌效应,机械损伤病原菌的同时促进其与抗菌介质充分反应,协同提升抗菌效率。本文综述了微纳米机器人在抗菌领域的研究进展,以抗菌微纳米机器人的驱动方式为切入点系统阐述了其在各类抗菌疗法中的作用机制与应用优势,在此基础上总结了微纳米机器人在抗菌治疗中面临的挑战,并对未来的研究方向进行展望。

Bacterial infections, becoming the second leading cause of death in the worldwide, pose a serious threat to public health. Plenty of therapeutic strategies, such as antibiotic therapy, photothermal therapy, photodynamic therapy and sonodynamic therapy, etc., have been developed to treat bacterial infections. However, how to improve the efficiency of antibacterial therapy is still a great challenge. Micro-/nanorobots, as miniaturized robots with active motion properties, are promising to provide new therapeutic strategies for effective antibacterial. On the one hand, micro-/nanorobots can accurately deliver antibacterial media to the micro area of the lesion through their controllable directional movement. On the other hand, the motion of swarms of micro-/nanorobots can also cause mechanical effect and fluid stirring effects, which mechanically damage the pathogen and at the same time, promote the full reaction between pathogens and antibacterial media, so as to enhance the antibacterial efficiency synergistically. In this review, we summarize the important research advances of micro-/nanorobots in the field of antibacterial applications, and start from the driving mode of antibacterial micro-/nanorobots, systematically expounding the mechanism of action and application advantages in various antibacterial treatments. Finally, we discuss the potential challenges faced by micro-/nanorobots in antibacterial therapy and prospect the main directions of future research in this field.

Contents

1 Introduction

2 Driving mode of antibacterial micro-/nanorobots

3 Micro-/nanorobots in antibacterial application

3.1 Antibacterial agent delivery

3.2 Enhanced photothermal therapy

3.3 Enhanced photodynamic therapy

3.4 Mechanical disruption

3.5 Synergistic strategies

4 Conclusion and outlook

()
图1 (A)酶催化驱动的Janus血小板微米马达[25];(B)海洋轮虫驱动的溶菌机器人[32];(C)磁驱动的螺旋纳米机器人[44];(D)光催化驱动的ZnO:Ag微米马达[39];(E)超声驱动的金纳米线马达[42]
Fig.1 (A) Urease-powered Janus platelet micromotors[25]. Copyright 2020, The American Association for the Advancement of Science; (B) rotifer based microrobots for enzymatic biodegradation of E. coli[32]. Copyright 2019, John Wiley and Sons; (C) magnetic powered helical nanorobots[44]. Copyright 2017, John Wiley and Sons; (D) light-driven ZnO:Ag micromotors[39]. Copyright 2021, John Wiley and Sons; (E) ultrasound-driven gold nanowire motors[42]. Copyright 2013, American Chemical Society
图2 (A)微藻机器人用于主动递送抗生素[30];(B)抗菌肽修饰的微型机器人用于去除MRSA生物膜[45];(C)PEDOT/MnO2管状微米马达用于增强的抗菌[26]
Fig.2 (A) Microalgea robots for antibiotic delivery[30]. Copyright 2020, John Wiley and Sons; (B) antimicrobial peptide-modified microrobots for the eradication of MRSA biofilms[45]. Copyright 2022, John Wiley and Sons; (C) PEDOT/MnO2 tubular micromotors for enhanced antibacterial[26]. Copyright 2020, The Royal Society of Chemistry
图3 磁性螺旋藻微米机器人用于增强的光热抗菌[57]
Fig.3 Magnetic Spirulina microrobots for enhanced photothermal antibacterial[57]. Copyright 2020, American Chemical Society
图4 (A)用于靶向光动力抗菌的脲酶驱动的磁性马达[14];(B)TiO2/CdS微型机器人用于大肠杆菌生物膜根除[48]
Fig.4 (A) Urea-propelled magnetic micromotors for targeted photodynamic antibacterial[14]. Copyright 2019, John Wiley and Sons; (B) TiO2/CdS microrobots for E. coli biofilm eradication[48]. Copyright 2022, John Wiley and Sons
图5 (A)磁性液体金属微马达用于生物膜处理[49];(B)磁性向日葵花粉机器人用于清除生物膜[50]
Fig.5 (A) Magnetic liquid metals micromotors for biofilm treatment[49]. Copyright 2020, American Chemical Society; (B) magnetic sunflower pollen microrobots for biofilm eradication[50]. Copyright 2022, John Wiley and Sons
图6 (A)光热和光动力协同抗菌的 Janus纳米马达[63];(B)机械力协同ROS,药物清除生物膜的磁性抗菌机器人[64]
Fig.6 (A) Janus nanomotors for killing bacteria with PTT and PDT[63]. Copyright 2022, The Royal Society of Chemistry; (B) magnetic antibacterial robots for removal of biofilm with mechanical force in collaboration with ROS and drug[64]. Copyright 2019, The American Association for the Advancement of Science
[1]
Huang H Y, Ali A, Liu Y, Xie H, Ullah S, Roy S, Song Z Y, Guo B, Xu J. Adv. Drug Deliv. Rev., 2023, 192: 114634.

doi: 10.1016/j.addr.2022.114634     URL    
[2]
Egusquiaguirre S P, Igartua M, Hernández R M, Pedraz J L. Clin. Transl. Oncol., 2012, 14(2): 83.

doi: 10.1007/s12094-012-0766-6     pmid: 22301396
[3]
Hochvaldova L, Vecerova R, Kolar M, Prucek R, Kvitek L, Lapcik L, Panacek A. Nanotechnol. Rev., 2022, 11: 1115.

doi: 10.1515/ntrev-2022-0059     URL    
[4]
Chang R, Zhao D H, Zhang C, Liu K Y, He Y M, Guan F X, Yao M H. Int. J. Biol. Macromol., 2023, 226: 870.

doi: 10.1016/j.ijbiomac.2022.12.116     URL    
[5]
He Y M, Liu K Y, Guo S, Chang R, Zhang C, Guan F X, Yao M H. Acta Biomater., 2023, 155: 199.

doi: 10.1016/j.actbio.2022.11.023     URL    
[6]
Wang B, Xu Y, Shao D H, Li L J, Ma Y Q, Li Y H, Zhu J W, Shi X C, Li W L. Front. Bioeng. Biotechnol., 2022, 10: 1047598.

doi: 10.3389/fbioe.2022.1047598     URL    
[7]
Mussini A, Uriati E, Hally C, Nonell S, Bianchini P, Diaspro A, Pongolini S, Delcanale P, Abbruzzetti S, Viappiani C. Bioconjugate Chem., 2022, 33(4): 666.

doi: 10.1021/acs.bioconjchem.2c00067     pmid: 35266706
[8]
Reynoso E, Durantini A M, Solis C A, Macor L P, Otero L A, Gervaldo M A, Durantini E N, Heredia D A. RSC Adv., 2021, 11(38): 23519.

doi: 10.1039/D1RA03417K     URL    
[9]
Wei Z X, Teng S Y, Fu Y, Zhou Q, Yang W S. Prog. Org. Coat., 2022, 164: 106703.
[10]
Wang M Y, Wang X, Liu B, Lang C Y, Wang W, Liu Y, Wang X,. J. Pharm. Sci., 2023, 112(1): 336.
[11]
Medina-Sánchez M, Schmidt O G. Nature, 2017, 545(7655): 406.

doi: 10.1038/545406a     URL    
[12]
Yan M, Liu T Y, Li X F, Zhou S, Zeng H, Liang Q R, Liang K, Wei X B, Wang J Q, Gu Z, Jiang L, Zhao D Y, Kong B. J. Am. Chem. Soc., 2022, 144(17): 7778.

doi: 10.1021/jacs.2c01096     URL    
[13]
Li J X, Esteban-Fernández de Ávila B, Gao W, Zhang L F, Wang J. Sci. Robot., 2017, 2(4): eaam6431.

doi: 10.1126/scirobotics.aam6431     URL    
[14]
Xu D D, Zhou C, Zhan C, Wang Y, You Y Q, Pan X, Jiao J P, Zhang R, Dong Z J, Wang W, Ma X. Adv. Funct. Mater., 2019, 29(17): 1807727.

doi: 10.1002/adfm.v29.17     URL    
[15]
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. J. Magn. Magn. Mater., 2019, 479: 74.

doi: 10.1016/j.jmmm.2019.02.004     URL    
[16]
Li J H, Shen H, Zhou H J, Shi R, Wu C T, Chu P K. Mater. Sci. Eng. R Rep., 2023, 152: 100712.

doi: 10.1016/j.mser.2022.100712     URL    
[17]
Zhang Z F, Wang L, Chan T K F, Chen Z G, Ip M, Chan P K S, Sung J J Y, Zhang L. Adv. Healthc. Mater., 2022, 11(6): 2101991.

doi: 10.1002/adhm.v11.6     URL    
[18]
Liu T Y, Xie L, Price C A H, Liu J, He Q, Kong B. Chem. Soc. Rev., 2022, 51(24): 10083.

doi: 10.1039/D2CS00432A     URL    
[19]
Zhou H J, Dong G Z, Gao G, Du R, Tang X Y, Ma Y N, Li J H. Cyborg Bionic Syst., 2022, 2022: 9852853.
[20]
Gao S, Hou J W, Zeng J, Richardson J J, Gu Z, Gao X, Li D W, Gao M, Wang D W, Chen P, Chen V, Liang K, Zhao D Y, Kong B. Adv. Funct. Mater., 2019, 29(18): 1808900.

doi: 10.1002/adfm.v29.18     URL    
[21]
Lin Z H, Gao C Y, Wang D L, He Q. Angew. Chem. Int. Ed., 2021, 60(16): 8750.

doi: 10.1002/anie.v60.16     URL    
[22]
Wavhale R D, Dhobale K D, Rahane C S, Chate G P, Tawade B V, Patil Y N, Gawade S S, Banerjee S S. Commun. Chem., 2021, 4: 159.

doi: 10.1038/s42004-021-00598-9    
[23]
Liu X X, Sun X, Peng Y X, Wang Y, Xu D D, Chen W J, Wang W, Yan X H, Ma X. ACS Nano, 2022, 16(9): 14666.

doi: 10.1021/acsnano.2c05295     URL    
[24]
Schmidt C K, Medina-Sánchez M, Edmondson R J, Schmidt O G. Nat. Commun., 2020, 11: 5618.

doi: 10.1038/s41467-020-19322-7    
[25]
Tang S S, Zhang F Y, Gong H, Wei F N, Zhuang J, Karshalev E, de Ávila B E F, Huang C Y, Zhou Z D, Li Z X, Yin L, Dong H F, Fang R H, Zhang X J, Zhang L F, Wang J. Sci. Robot., 2020, 5(43): eaba6137.

doi: 10.1126/scirobotics.aba6137     URL    
[26]
Liu W J, Ge H B, Ding X Y, Lu X L, Zhang Y N, Gu Z W. Nanoscale, 2020, 12(38): 19655.

doi: 10.1039/D0NR06281B     URL    
[27]
Stanton M M, Park B W, Vilela D, Bente K, Faivre D, Sitti M, Sánchez S. ACS Nano, 2017, 11(10): 9968.

doi: 10.1021/acsnano.7b04128     pmid: 28933815
[28]
Chen C Y, Chen C F, Yi Y, Chen L J, Wu L F, Song T. Biomed. Microdevices, 2014, 16(5): 761.

doi: 10.1007/s10544-014-9880-2     URL    
[29]
Shchelik I S, Molino J V D, Gademann K. Acta Biomater., 2021, 136: 99.

doi: 10.1016/j.actbio.2021.09.048     pmid: 34601106
[30]
Shchelik I S, Sieber S, Gademann K. Chem. Eur. J., 2020, 26(70): 16644.

doi: 10.1002/chem.v26.70     URL    
[31]
Zhang F Y, Zhuang J, Li Z X, Gong H, de Ávila B E F, Duan Y O, Zhang Q Z, Zhou J R, Yin L, Karshalev E, Gao W W, Nizet V, Fang R H, Zhang L F, Wang J. Nat. Mater., 2022, 21(11): 1324.

doi: 10.1038/s41563-022-01360-9    
[32]
Soto F, Lopez-Ramirez M A, Jeerapan I, de Avila B E F, Mishra R K, Lu X L, Chai I, Chen C R, Kupor D, Nourhani A, Wang J. Adv. Funct. Mater., 2019, 29(22): 1900658.

doi: 10.1002/adfm.v29.22     URL    
[33]
Carlsen R W, Sitti M. Small, 2014, 10(19): 3831.

doi: 10.1002/smll.201400384     pmid: 24895215
[34]
Xie H, Sun M M, Fan X J, Lin Z H, Chen W N, Wang L, Dong L X, He Q. Sci. Robot., 2019, 4(28): eaav8006.

doi: 10.1126/scirobotics.aav8006     URL    
[35]
Hong Y Y, Diaz M, CÓrdova-Figueroa U M, Sen A. Adv. Funct. Mater., 2010, 20(10): 1568.

doi: 10.1002/adfm.v20:10     URL    
[36]
de Avila B E F, Angell C, Soto F, Lopez-Ramirez M A, Báez D F, Xie S B, Wang J, Chen Y. ACS Nano, 2016, 10(5): 4997.

doi: 10.1021/acsnano.6b01415     URL    
[37]
Wang L C, Meng Z Y, Chen Y, Zheng Y Y. Adv. Intell. Syst., 2021, 3(7): 2000267.

doi: 10.1002/aisy.v3.7     URL    
[38]
Cui T T, Wu S, Sun Y H, Ren J S, Qu X G. Nano Lett., 2020, 20(10): 7350.

doi: 10.1021/acs.nanolett.0c02767     URL    
[39]
Ussia M, Urso M, Dolezelikova K, Michalkova H, Adam V, Pumera M. Adv. Funct. Mater., 2021, 31(27): 2101178.

doi: 10.1002/adfm.v31.27     URL    
[40]
Xie L, Yan M, Liu T Y, Gong K, Luo X, Qiu B L, Zeng J, Liang Q R, Zhou S, He Y J, Zhang W, Jiang Y L, Yu Y, Tang J Y, Liang K, Zhao D Y, Kong B. J. Am. Chem. Soc., 2022, 144(4): 1634.

doi: 10.1021/jacs.1c10391     URL    
[41]
Xu T L, Gao W, Xu L P, Zhang X J, Wang S T. Adv. Mater., 2017, 29(9): 1603250.

doi: 10.1002/adma.201603250     URL    
[42]
Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F, Wang J. ACS Nano, 2013, 7(10): 9232.

doi: 10.1021/nn403851v     pmid: 23971861
[43]
de Avila B E F, Angsantikul P, Ramírez-Herrera D E, Soto F, Teymourian H, Dehaini D, Chen Y J, Zhang L F, Wang J. Sci. Robot., 2018, 3(18): eaat0485.

doi: 10.1126/scirobotics.aat0485     URL    
[44]
Li J X, Angsantikul P, Liu W J, de Avila B E F, Chang X C, Sandraz E, Liang Y Y, Zhu S Y, Zhang Y, Chen C R, Gao W W, Zhang L F, Wang J. Adv. Mater., 2018, 30(2): 1704800.

doi: 10.1002/adma.v30.2     URL    
[45]
Milosavljevic V, Kosaristanova L, Dolezelikova K, Adam V, Pumera M. Adv. Funct. Mater., 2022, 32(43): 2112935.

doi: 10.1002/adfm.v32.43     URL    
[46]
Zheng C, Li Z Q, Xu T T, Chen L, Fang F, Wang D, Dai P Q, Wang Q T, Wu X Y, Yan X H. Appl. Mater. Today, 2021, 22: 100962.
[47]
Gong D, Celi N, Xu L, Zhang D, Cai J. Mater. Today Chem., 2022, 23: 100694.
[48]
Villa K, Sopha H, Zelenka J, Motola M, Dekanovsky L, Beketova D C, Macak J M, Ruml T, Pumera M. Small, 2022, 18(36): 2106612.

doi: 10.1002/smll.v18.36     URL    
[49]
Elbourne A, Cheeseman S, Atkin P, Truong N P, Syed N, Zavabeti A, Mohiuddin M, Esrafilzadeh D, Cozzolino D, McConville C F, Dickey M D, Crawford R J, Kalantar-Zadeh K, Chapman J, Daeneke T, Truong V K. ACS Nano, 2020, 14(1): 802.

doi: 10.1021/acsnano.9b07861     pmid: 31922722
[50]
Sun M M, Chan K F, Zhang Z F, Wang L, Wang Q L, Yang S H, Chan S M, Chiu P W Y, Sung J J Y, Zhang L. Adv. Mater., 2022, 34(34): 2201888.

doi: 10.1002/adma.v34.34     URL    
[51]
Bhuyan T, Simon A T, Maity S, Singh A K, Ghosh S S, Bandyopadhyay D. ACS Appl. Mater. Interfaces, 2020, 12(39): 43352.

doi: 10.1021/acsami.0c08444     URL    
[52]
de Avila B E F, Angsantikul P, Li J X, Angel Lopez-Ramirez M, Ramírez-Herrera D E, Thamphiwatana S, Chen C R, Delezuk J, Samakapiruk R, Ramez V, Obonyo M, Zhang L F, Wang J. Nat. Commun., 2017, 8: 272.

doi: 10.1038/s41467-017-00309-w    
[53]
Yu Q L, Deng T, Lin F C, Zhang B, Zink J I. ACS Nano, 2020, 14(5): 5926.

doi: 10.1021/acsnano.0c01336     URL    
[54]
Bhuyan T, Singh A K, Ghosh S S, Bandyopadhyay D. Bull. Mater. Sci., 2020, 43(1): 111.

doi: 10.1007/s12034-020-2076-x    
[55]
Qi C Y, Zhang Y P, Tu J. Biochem. Eng. J., 2022, 186: 108569.

doi: 10.1016/j.bej.2022.108569     URL    
[56]
Lin X, Cao Y B, Li J, Zheng D Y, Lan S Y, Xue Y N, Yu F Q, Wu M, Zhu X J. Biomater. Sci., 2019, 7(7): 2996.

doi: 10.1039/C9BM00276F     URL    
[57]
Xie L S, Pang X, Yan X H, Dai Q X, Lin H R, Ye J, Cheng Y, Zhao Q L, Ma X, Zhang X Z, Liu G, Chen X Y. ACS Nano, 2020, 14(3): 2880.

doi: 10.1021/acsnano.9b06731     URL    
[58]
Yuan H X, Li Z L, Wang X Y, Qi R L. Polymers, 2022, 14(17): 3657.

doi: 10.3390/polym14173657     URL    
[59]
Cheeseman S, Elbourne A, Kariuki R, Ramarao A V, Zavabeti A, Syed N, Christofferson A J, Kwon K Y, Jung W, Dickey M D, Kalantar-Zadeh K, McConville C F, Crawford R J, Daeneke T, Chapman J, Truong V K. J. Mater. Chem. B, 2020, 8(47): 10776.

doi: 10.1039/d0tb01655a     pmid: 33155005
[60]
Gu H, Lee S W, Carnicelli J, Zhang T, Ren D C. Nat. Commun., 2020, 11: 2211.

doi: 10.1038/s41467-020-16055-5    
[61]
Chen C Y, Chen L J, Wang P P, Wu L F, Song T. Nanomed. Nanotechnol. Biol. Med., 2017, 13(2): 363.

doi: 10.1016/j.nano.2016.08.021     URL    
[62]
Daima H K, Selvakannan P R, Kandjani A E, Shukla R, Bhargava S K, Bansal V. Nanoscale, 2014, 6(2): 758.

doi: 10.1039/C3NR03806H     URL    
[63]
Liu X, Liu H X, Zhang J Z, Hao Y J, Yang H N, Zhao W B, Mao C. Biomater. Sci., 2022, 10(19): 5608.

doi: 10.1039/D2BM00845A     URL    
[64]
Hwang G, Paula A J, Hunter E E, Liu Y, Babeer A, Karabucak B, Stebe K, Kumar V, Steager E, Koo H. Sci. Robot., 2019, 4(29): eaaw2388.

doi: 10.1126/scirobotics.aaw2388     URL    
[65]
Xu D D, Hu J, Pan X, Sánchez S, Yan X H, Ma X. ACS Nano, 2021, 15(7): 11543.

doi: 10.1021/acsnano.1c01573     URL    
[66]
Lu B T, Hu E L, Xie R Q, Yu K, Lu F, Bao R, Wang C H, Lan G Q, Dai F Y. ACS Appl. Mater. Interfaces, 2021, 13(19): 22225.

doi: 10.1021/acsami.1c04330     URL    
[1] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[2] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[3] 朱英, 刘明杰, 万梅香, 江雷. 一维纳米纤维构筑的导电聚合物三维结构及其可控的浸润性[J]. 化学进展, 2011, 23(5): 819-828.
[4] 王永健,张政朴,何炳林. 环糊精聚合物的高分子效应[J]. 化学进展, 2000, 12(03): 318-.
阅读次数
全文


摘要

微纳米机器人增强的抗菌治疗