English
新闻公告
More
化学进展 2023, Vol. 35 Issue (8): 1229-1257 DOI: 10.7536/PC221218 前一篇   后一篇

• 综述 •

银纳米材料的可控合成及其环境应用

潘自宇, 冀豪栋*()   

  1. 北京大学 深圳研究生院 环境与能源学院 深圳 518055
  • 收稿日期:2022-12-28 修回日期:2023-02-27 出版日期:2023-08-24 发布日期:2023-05-15
  • 作者简介:

    冀豪栋 北京大学深圳研究生院助理教授/研究员,博士生导师,环境材料化学实验室PI,主要从事环境功能材料的定向设计与应用、量子化学模拟在环境中的应用等工作,发表论文70余篇,H-index 36,主持国家自然科学基金等项目,入选国际水协-中国青年委员会新星计划。

  • 基金资助:
    国家自然科学基金项目(52100069); 深圳市基础研究面上项目(JCYJ20220531093205013)

Controlled Synthesis of Silver Nanomaterials and Their Environmental Applications

Ziyu Pan, Haodong Ji()   

  1. School of Environment and Energy, Peking University Shenzhen Graduate School,Shenzhen 518055, China
  • Received:2022-12-28 Revised:2023-02-27 Online:2023-08-24 Published:2023-05-15
  • Contact: *e-mail: jihaodong@pku.edu.cn
  • Supported by:
    National Natural Science Foundation of China(52100069); Shenzhen Science and Technology Program(JCYJ20220531093205013)

银纳米材料因催化活性高、生物相容性好、物化性能独特而备受关注,已被广泛应用于催化、药物、环境等领域。本文首先介绍了银纳米材料的种类、性质及合成策略,重点对可控合成方法进行了归纳总结,并讨论了机器学习在银纳米材料合成中的新成果。然后综述了近年来银纳米材料在环境中的应用,如污染物去除、杀菌和病毒灭活、传感器等。基于此,本文主要就银纳米材料的种类、可控合成及其环境应用进行综述和展望。

Silver nanomaterials have been widely used in catalysis, medicine, environment and other fields due to their high catalytic activity, fine biocompatibility, unique physical and chemical properties. This review first introduced the species, properties and synthetic strategy of silver nanomaterials, summarized controllable synthesis method in detail, and discussed the new achievements of machine learning in the synthesis of silver nanomaterials. Then, we reviewed the applications of silver nanomaterials in the environment such as pollutant removal, sterilization and virus inactivation, sensor and so on. Based on this, the species, controlled synthesis and environmental applications of silver nanomaterials were reviewed and prospected in this paper.

Contents

1 Introduction

2 Types and synthesis methods of silver nanomaterials

2.1 Types and synthesis methods of silver nanomaterials composed of only silver element

2.2 Types and synthesis methods of silver nanomaterials of containing two or more elements

2.3 The types and synthesis methods of silver nanomaterials with different carriers

2.4 Types and synthesis methods of silver oxide, silver halide and other nanomaterials

3 Environmental applications of silver nanomaterials

3.1 Application of silver nanomaterials in pollutants-adsorption and catalytic degradation

3.2 Application of silver nanomaterials in water purification, antibacterial and antiviral

3.3 Application of silver nanomaterials in the treatment of toxic metal wastewater-sensor

4 Summary and prospects for the future

()
图1 银纳米材料的种类,合成策略,近年来银纳米材料在环境中的应用(包括污染物去除、杀菌和病毒灭活、传感器)
Fig.1 The types and synthesis strategies, and recent applications of silver nanomaterials in the environment, including pollutant removal, sterilization and virus inactivation, sensors
图2 银纳米材料分类图:(A,B,C)银纳米三角双锥[47],银纳米棒[14],银纳米立方体[48];(A1,B1,C1)金包银凹形立方八面体[49],银铑核框纳米立方体[50], Janus Ag/AgClBr纳米结构[51];(A2,B2,C2)多孔TiO2-Ag核壳复合材料[52],铽金属有机骨架(Tb-MOF)作为银纳米颗粒载体的复合材料[53],介孔二氧化硅负载银纳米颗粒[54];(A3,B3,C3)硫化银纳米立方体团簇[55], Ag/AgBr/AgVO3复合材料[56],Ag/AgCl材料[57]
Fig.2 Classification diagram of silver nanomaterials. (A, B and C) Silver right triangular bipyramids[47], Copyright 2010, American Chemical Society; silver nanorods[14], Copyright 2009, American Chemical Society; silver nanocubes[48], Copyright 2017, American Chemical Society. (A1, B1 and C1) The Ag@Au concave cuboctahedra[49], Copyright 2016, American Chemical Society; the Ag-Rh core-frame nanocubes[50], Copyright 2018, American Chemical Society; Janus Ag/AgClBr nanostructures[51], Copyright 2021, The Royal Society of Chemistry. (A2, B2 and C2) Porous TiO2-Ag core-shell composite material[52], Copyright 2013, The Royal Society of Chemistry; Tb-MOF support of Ag nanoparticles[53], Copyright 2017, Wiley; Silver nanoparticles supported on mesoporous silica (Ag/HMS)[54], Copyright 2017, Wiley. (A3, B3 and C3) Clusters formed by Ag2S nanocubes[55], copyright 2017, The Royal Society of Chemistry; The 2% Ag/AgBr/AgVO3 composite[56], Copyright 2021, Elsevier; the Ag/AgCl nanostructures[57], Copyright 2017, The Royal Society of Chemistry.
图3 银纳米材料的合成方法
Fig.3 Synthetic methods of silver nanomaterials
图4 使用晶种调节生长法合成金属胶体的一般策略[76]
Fig.4 General strategy for the synthesis of metal colloid by the seed-mediated growth method[76], Copyright 2017, Wiley
图5 超声强化法合成单分散球形银纳米颗粒[31]。(A)超声强化化学还原法制备银纳米颗粒的实验示意图;(B)有无超声增强作用化学合成银纳米颗粒的机理图;(C)机器学习分析:拟合决策树回归
Fig.5 Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method[31], copyright 2021, Elsevier. (A) Schematic diagram of ultrasound-intensified Lee-Meisel method. (B) Mechanism of conventional Lee-Meisel method and ultrasound-intensified Lee-Meisel method. (C) Machine learning analysis: fitted decision tree regressor
表1 银纳米颗粒的合成方法及特性
Table 1 The synthesis methods and properties of silver nanoparticles (Ag NPs)
Method Process Ag NPs size and shape ref
Chemical
Methods
Photochemical 7 nm, sphere 134
Chemical reduction 10, 12, 14 nm, spheres 87
Seed-mediated growth 42 nm, rod, 1~4 μm, nanowire 12
Photoinduced 100 nm, nanoprism 123
Seed-mediated growth 60 nm, nanodisk 128
Soft, solution-phase approach Lateral dimension:30~40 nm, length: ~50 μm, nanowire 117
Chemical reduction 50, 80, 95, 115 nm, nanocubes 65
Chemical reduction Lateral dimension:30~40 nm, length: ~50 μm, nanowire 116,118
Chemical reduction Lateral dimension:35 nm, length: 166 nm~12 μm, nanowire 60
“Green” Synthesis 5.3 nm, sphere 92
Silver mirror reaction Mean edge length:55 nm, nanocube 109
Chemical reduction Nanowire:30~40 nm, nanowire thin film, 129
Thermal method 39 nm, nanoprism 61
Chemical reduction 25~45 nm, nanocubes 105
Polyol method Nanocube: 80 nm; truncated nanocube: 120 nm;
cubocta hedras: 150~200 nm; octahedras: 250~300 nm
135
Chemical reduction 90, 170, 250, 350 nm, triangular nanoplates 111
Seed-mediated growth 75~150 nm, right bipyramids 15
Seed-mediated growth 64 nm, 81 nm, triangular nanoplates 19
Sulfide-mediated polyol method 45, 90 nm, nanocubes 64
Chemical reduction 146 nm, nanorod 13
Solvothermal reduction Nanorod:40 nm;triangulars:50,150nm;nanocubes:50~80 nm; quasi-spherical polyhedrons:60~80 nm; hexagonal nanoplates:50, 30 nm; 132
Seed-based method 20, 33, 46, 65 nm, nanoprisms 112
Green approach 20~60 nm, spheres 91
Thermal regrowth 50 nm~2 μm, pentagonal silver nanorods 14
Photoinduced synthesis 107, 132, 165, 192 nm, right-triangular bipyramids 121
Seed-catalyzed reduction 11~200 nm, triangular silver nanoplates 113
Green approach 8~71 nm, spheres 81
Photomediated synthesis Various triangular bipyramids and prisms 47
Seed-mediated 30~200 nm, nanocubes 75
Chemical reduction 30~70 nm, nanocubes 108
Seed-mediated growth Octahedral:80 nm; various concave nanocrystals 67
Chemical reduction Hierarchical assemblies of silver nanostructures 125
Seed-mediated approach 52, 67, 460, 870, 1010 nm, nanorods 115
Chemical reduction Various nanoplates 20
Green method 10.60, 11.23, 15.30 nm, spheres 63
Chemical reduction 20~100 nm, quasi-spherical 8
Seed-mediated growth Various nanocubes and octahedrons 130
Seed-mediated growth 20~72 nm, octahedra 131
Chemical reduction 4~8 nm, spheres 88
Seed-mediated growth 30~100 nm, nanocubes 102
Chemical reduction Silver nanoparticle with various shapes 66
Seeded growth method 150 nm~1.5μm, triangular silver nanoplates 68
Greener synthesis 5~150 nm, spheres and triangular 97
Seed-mediated growth 20~120 nm, quasi-spherical 99
Biogenic synthesis 2~15 nm, quasi-spherical 89
Seed-mediated growth 23~60 nm, nanocubes 103
Chemical reduction 15~90 nm, spherical; 150 nm, triangular 62
Green synthesis 40~70 nm, quasi-spherical 93
Green synthesis 15 nm, sphere 96
Seed-mediated growth coupled with oxidative etching 37~68 nm, sphere 101
Green synthesis 17~27 nm, pherical/quasispherical 94
Chemical reduction 59.84 nm, 75.70 nm, 110.32 nm, nanocubes 69
Lithography 90, 120, 145 nm, elliptical, triangular 58
Physical
Methods
Ultrasonic-Assisted Synthesis 120 nm, nanoplate 110
Sonochemical approach Less than 2 nm, nanocluster 70
Sonochemical synthesis Mean diameters:100 nm, lengths: 4~7 μm, nanorods 114
Sonochemical synthesis 1.3 μm, microflowers 124
Conventional thermal treatment 10.4 nm, sphere 95
Microwave treatment 12 nm, sphere 95
Microwave irradiation Nanowires diameters: 50~100 nm, 100~200 nm 119
Microwave-assisted polyol Lateral dimension:60~480 nm, length: 10~30 μm, nanowires 120
图6 双金属合金、核壳结构和Janus纳米颗粒的合成示意图。(A)银汞合金的生长示意图[137];(B)一锅合成铜/银双金属纳米颗粒示意图[138];(C)形成Au@Ag半壳Janus纳米粒子示意图[139];(D)在银纳米立方体种子上沉积第二种金属M的两种方法示意图[140];(E)胶体金-银-金、核-壳-壳纳米粒子的合成示意图[141]
Fig.6 Schematic diagram of synthesis of bimetallic alloy, core-shell structure and Janus nanoparticles. (A) The growth of Ag@Hg nanoalloys from four typical Ag nanoparticles[137],Copyright 2013, American Chemical Society. (B) Schematic illustration of the one-pot synthetic procedure of Cu/Ag bimetallic NPs[138], Copyright 2015, The Royal Society of Chemistry. (C) Schematic illustration of forming Au core@Ag semishell Janus nanoparticles[139], Copyright 2016, The Royal Society of Chemistry. (D) Schematic illustration of two proposed pathways for the deposition of a second metal M on a Ag nanocube seed[140], Copyright 2017, American Chemical Society. (E) Three steps synthesis of colloidal Gold-Silver-Gold Core-Shell-Shell nanoparticles[141], Copyright 2015, American Chemical Society
表2 含有两种或两种以上元素的银纳米材料的合成方法及特性总结
Table 2 The synthesis methods and properties of silver nanomaterials containing two or more elements
Method Process Constituent elements ref
Chemical Methods Galvanic replacement reactions Pd-Ag, Pt-Ag nanoboxes 147
Microwave-polyol method Au-Ag core-shell nanoparticles 153
Sonochemical co-reduction Au-Ag core-shell nanoparticles 154
Aqueous reduction Fe-Ag core-shell nanoparticles 160
Thermal decomposition Janus Ag-Ag2S nanoparticles 165
Galvanic exchange reactions Ag-Au Janus nanoparticles 166
Galvanic replacement reaction Pt-Ag nanobox, heterodimer, multimer, popcorn-shaped nanoparticles 150
Phytosynthesis Au-Ag nanoparticles 145
Chemical reduction Ag-Hg nanoalloys 137
Chemical reduction Au-Ag core-shell nanoparticles 155
Green synthesis Au-Ag bimetallic nanoparticles 146
Coreduction reaction Au-Ag multispiked nanoparticles 143
Galvanic replacement-free deposition Au-Ag core-shell nanocubes 156
Coreduction reaction Au-Ag-Au core-shell-shell nanoparticles 141
One-pot reduction Cu-Ag nanoalloys 138
Overgrowth of seed-mediated growth Au-Ag nanorods 157
Chemical etching Au-Ag semishell Janus nanoparticles 139
Co-reduction Ag-Pd nanoframes 148
Chemical reduction Ag-Au concave cuboctahedra 49
Chemical reduction Ag-Ni snowman and Ag@Ni core-shell nanoparticles 162
Impregnation-reduction method Ag-Pd alloy nanoparticles 149
Chemical reduction Au-Ag nanoboxes 144
Seed-mediated-growth method Au-Ag core-shell nanoparticles 158
Chemical reduction Ag-Rh core-frame nanocubes 50
Chemical reduction Janus Ag/AgClBr nanostructures:Janus silver/ternary silver halide nanostructures 51
Physical Methods Laser-induced heating Au-Ag alloy nanoparticles 142
Room-temperature radiolysis Ag-Ni, Pd-Ni alloy nanoparticles 151
Combination of “grafting from” and “grafting to” approaches Hairy Janus particles with immobilized Ag or Au nanoparticles 169
One-pot reaction Janus Ag-MSN@CTAB: Janus silver mesoporous silica nanobullets 167
Ultrasonic treatment Janus silver/silica nanoplatforms 168
Deposition Hairy Janus silver nanoparticles 170
Electrostatic adsorption Janus plasmonic silver nanoplatelets 171
图7 碳材料、二氧化硅、金属有机框架材料(MOFs)、聚合物、金属氧化物和氮化硼为载体的银纳米复合材料合成示意图。(A)氧化石墨烯-银纳米复合材料的制备过程示意图[174];(B)AgNPs@SiO2微胶囊合成示意图[175];(C)形成Fe3O4@MIL-100(Fe)/Ag纳米复合材料示意图[176];(D)银纳米颗粒负载于共轭微孔聚合物(CMP)复合材料(Ag0@CMP)的合成示意图[177];(E)微波辅助合成六方氮化硼负载银纳米颗粒(SNP/h-BN)复合纳米材料示意图[178];(F)银纳米颗粒修饰MnO2纳米线层次化异质结构的形成示意图[179]
Fig.7 Schematic diagram of silver nanocomposites synthesis of carbon materials, silica, metal-organic framework materials (MOFs), polymers, metal oxides and boron nitride as substrates. (A) Schematic of the procedure for preparing GO-Ag nanocomposite[174], Copyright 2015, American Chemical Society. (B) Schematic illustration of the AgNPs@silica microcapsule[175], Copyright 2012, The Royal Society of Chemistry. (C) Fabrication strategy of Fe3O4@MIL-100(Fe)/Ag nanocomposites[176], Copyright 2020, American Chemical Society. (D) Illustration of synthetic pathway and pore structure of CMP for silver nanoparticle immobilization[177], Copyright 2017, American Chemical Society. (E) Schematic synthesis process of SNP/h-BN nanohybrids via a microwave-assisted method[178], Copyright 2014, The Royal Society of Chemistry. (F) Schematic illustration of the formation of the hierarchical heterostructures of AgNPs-decorated MnO2 nanowires[179], Copyright 2015, The Royal Society of Chemistry
表3 不同载体银纳米材料的种类及合成方法总结
Table 3 The types and synthesis methods of silver nanomaterials with different carriers
Method Specie ref
Incipient-wetness impregnation method Zirconia-supported Ag particles 235
Mix silver glue and PVA and evaporation of the solvent Silver-polyvinyl alcohol (Ag-PVA) nanocomposites 214
Calcination Silver/carbon composites 237
Microwave-assisted one-step synthesis Polyacrylamide-metal (M=Ag, Pt, Cu) nanocomposites 215
The Ar+ sputtering in UHV followed by Annealing in air Silver nanoparticles supported on highly oriented pyrolytic graphite (Ag/HOPG) 238
Calcination Ag Nanoparticles supported on Alumina (Ag/Al2O3) materials 211
Incipient-wetness impregnation Silica supported silver nanoparticles (Ag/SiO2) 204
Citrate-protecting method Carbon-supported Ag nanoparticles (Ag/C) 239
One-pot facile synthesis Ag/TiO2-xNx 227
In situ reduction of adsorbed Ag+ by hydroquinone in a citrate buffer solution Silver nanoparticle and graphene oxide nanosheet composites (AgNP/GO) 186
Chemical assembly Silver nanoparticles supported on TiO2 nanotubes (Ag-TiO2) 228
Adsorption Silver nanoparticles supported on reduced graphene oxide (AgNP/rGO) 180
Carbon radical reaction procedure and a chemical reduction method Silver nanoparticles on functionalized graphene with uniform carboxylic sodium groups (AgNPs/CS-G) 182
Chemical reduction Silver nanoparticles loaded the pores of mesoporous silica SBA-15 (Ag@SBA-15) 205
Adenine functionalization Template the growth of silver nanoparticles on the surface of multi-walled carbon nanotubes (Ag/MWCNTs) 190
One-step simultaneous reduction Graphene-Ag nanocomposite 183
In situ assembly Carbon nanofibers/silver nanoparticles (CNFs/AgNPs) composite nanofibers 200
Solvothermal-assisted heat treatment and photoreduction method Nanostructured Ag nanoparticles (Ag-NPs)/nanoporous ZnO micrometer-rods (n-ZnO MRs) 229
Chemical reduction Carbon-Supported Ag Nanoparticles (Ag/C) 240
Chemical reduction Silver nanoparticle-decorated boron nitride nanosheets (Ag-BNNS nanohybrid) 220
Dispersing silica powder in the suspension of destabilized silver nanoparticles Silica-supported silver nanoparticles (Ag/SiO2) 206
Nano-assembly Mesoporous silica microcapsule-supported Ag nanoparticles (AgNPs@silica microcap-sule) 175
Chemical reduction Poly (N-heterocyclic carbene)-supported silver nanoparticles (poly-NHC-Ag nano-composite) 216
One-pot photochemical synthesis Silver nanoparticles supported on graphene composites 184
Biogenic synthesis Ag-ZnO nanocomposite 230
Green synthesis Silver nanoparticles supported on the surface of graphene oxide nanosheets functionalized with mussel-inspired dopamine (Ag/GO-Dop) 188
Assembly Au@Ag core-shell nanoparticle 2D arrays on protein-coated graphene oxide (GO@Au@Ag) 241
In situ hydrolysis Porous TiO2-Ag core-shell nanocomposite 52
Reduced graphene oxide-silver nanoparticle composite (rGO-Ag) 181
Surfactant mediated route ZnO/Ag nanoparticles 242
Microwave assisted one-pot approach Two-dimensional chemically exfoliated layered hexagonal boron nitride (h-BN) and embedded silver nanoparticles (SNP/h-BN) 178
Chemical reduction AgNP-impregnated silica 207
Incipient wetness impregnation Silver nanoparticles supported on alumina (Ag/Al2O3) 225
Successive ion layer adsorption and reaction Silver nanoparticles supported on alumina (Ag/Al2O) 226
Modified solution phase-based nanocapsule method Carbon supported Ag nanoparticles 243
Annealing reduction Silver nanoparticles supported on diamond nanoparticles (Ag/D3) 194
Heated at 500 ℃ Silver nanoparticles supported on nanostructured tungsten oxide (Ag/WO3) 236
Reduction and carbonization Macro-tube/meso-pore carbon frame with decorated mono-dispersed silver nanoparticles (Ag/C) 201
Bottom-up self-assembly method Silver nanoparticles on carbon nitride sheets 224
Solid-state synthetic route Ag/graphene oxide nanocomposites 187
Green approach Silver nanoparticle-decorated graphene oxide (GO-Ag) nanocomposite 174
Etch, precipitate, dry in vacuum Ag nanoparticles-decorated MnO2 nanowires (Ag/MnO2) 179
Impregnation method Three-dimensional ordered mesoporous MnO2-supported Ag nanoparticles (Ag/MnO2) 231
Chemical reduction ilver nanoparticles deposited on mesoporous silica (Ag-MCM-41) 208
Polyol reduction Copper nanoparticles supported on diamond nanoparticles (Cu/D) 195
Chemical reduction Ag and Cu Monometallic and Ag/Cu bimetallic nanoparticle-graphene composites (Ag-Graphene, Cu-raphene, Ag/Cu-graphene) 185
Electron-assisted reduction Silver nanoparticles supported on aminated-carbon nanotubes (Ag/A-CNTs) 191
Classic volumetric impregnation Silver nanoparticles confined in carbon nanotubes (Ag-in/hCNT) 192
Liquid impregnation and light-induced reduction Silver nanoparticles supported on a conjugated microporous polymer (Ag@CMP) 177
Wet impregnation followed by reduction, in situ deposition/reduction Mesoporous silica supported silver nanoparticles (Ag/HMS) 54
Galvanic replacement reaction Bimetallic porous CuO microspheres decorated with Ag nanoparticles (μCuO/nAg) 232
Chemical reduction Crosslinked PVA/PVP supported silver nanoparticles (PVA/PVP/Ag) 217
Evaporate under vacuum and dry Ag nanoparticles supported on activated carbon (Ag/C) 245
Ion exchange, reduce in situ Ag nanoparticles supported on multifunctional Tb-MOF (Ag@CTGU-1) 53
Liquid impregnation method Ag@MOF (Ag@MIL-100(Fe) and Ag@UIO-66(Zr)) 212
Microwave plasma-enhanced chemical vapor deposition Diamond-Ag-Diamond (D-Ag-D) 196
One-pot pyrolysis method Silver nanoparticle-decorated boron nitride (Ag-BN) 221
Microwave-assisted synthesis Carbon nitride-supported silver nanoparticles 197
Thermal condensation, chemical reduction Silver nanoparticles decorated on porous ultrathin two dimensional (2D) graphitic carbon nitride nanosheets (AgNPs@g-CN) 198
Chemical reduction Carbon nanotubes decorated with silver nanoparticles (CNT-AgNP) 193
Activated, suspended, irradiated Fe3O4 nanoparticles coated with Ag-nanoparticle-embedded metal-organic framework MIL-100(Fe) (Fe3O4@MIL-100(Fe)/Ag) 176
Chemical reduction Silver nanoparticles (nAg), chitosan-poly(3-hydroxybutyrate) polymer conjugate (Chit-PHB) (nAg-Chit-PHB) 218
表4 银纳米材料在染料处理中的应用总结
Table 4 The applications of silver nanomaterials in dye treatment
Materials Applications ref
Ag/TiO2 Photocatalytic degradation; Methylene blue 251
Silver-doped titanium oxide nanofibers Photocatalytic degradation; Methylene blue dihydrate, methyl red 252
Silver nanoparticles on amidoxime fibers (Ag/AOF fibers) Photocatalytic degradation; Methyl orange 263
Ag-ZnO nanocomposite Visible light-assisted degradation; Methyl orange 264
Silver and palladium nanoparticles loaded on activated carbon (Ag-AC and/or Pd-AC) Adsorption; Methylene blue 253
Nano-silica-AgNPs composite material (NSAgNP) Electrostatic adsorption; Congo red (CR), eosin yellow (EY), bromophenol blue (BPB), brilliant blue (BB) 267
Silver nanoparticle-colemanite ore waste (Ag-COW) Adsorptive and photocatalytic removal; Reactive yellow 86 (RY86) and reactive red2 (RR2) 268
Carbon microspheres decorated with silver nanoparticles (AgNP-CMSs) Adsorption and photocatalytic decomposition; Methylene blue (MB) and rhodamine B (RhB) 254
Multi-walled carbon nanotubes decorated with silver nanoparticles (Ag/CNTs) Adsorption; Tartrazine dye 269
Reduced graphene oxide-based silver nanoparticle-containing composite hydrogels (RGO/PEI/Ag hydrogel) Photocatalytic degradation; Rhodamine B (RhB) and methylene blue (MB) 255
ZnO-Ag nano custard apples Photocatalytic degradation; Methylene blue (MB) 256
Silver nanoparticles decorated magnetic-chitosan microsphere Adsorptive removal; Acid blue 113 (AB-113), bromocresol green (BCG), bromophenol blue (BPB), congo red (CR), eosine yellow (EY), solochrome black (SB), solochrome dark blue (SDB), yellow 5GN (Y-5GN) 270
Au-Ag bimetallic nanostructures Photocatalytic degradation; Rose bengal, methyl violet 6 B and methylene blue 257
Ag/CdS nanoparticles immobilized on a cement bed Photocatalytic degradation; Azo dye, direct red 264 (DR 264) 272
Poly (acrylic acid)-silver/silver nanoparticles hydrogels (PAA-Ag/AgNPs hydrogels) Adsorption, photocatalytic degradation; Congo red (CR), rhodamine B (RhB), methylene blue (MB) 258
Silver nanoparticles Photocatalytic degradation; AZO dye 274
Ag-soil nanocomposite Adsorption; Crystal violet 271
Silver nanoparticles coated with Solanum nigrum (Sn-AgNPs) Photocatalytic degradation; Methyl orange 265
Silver nanoparticles supported on cellulose Photocatalytic degradation; Methylene blue, methyl orange, bromophenol blue, eosin Y and orange G 259
Silver-attached reduced graphene oxide nanocomposite Photocatalytic degradation; Indigo carmine, methylene blue 260
Silver (Ag) loaded tungsten oxide (WO3) nanoparticles Photocatalytic degradation; Methylene blue 261
Silver/poly(styrene-N-isopropylacrylamide-methacrylic acid) (Ag/PSNM) nanocomposite spheres Catalytic degradation; Methylene blue (MB) 262
Ag NPs on the Fe3O4/HZSM-5 surface (Ag/Fe3O4/HZSM-5 nanocomposite) Catalytic reduction; Methyl orange, 4-nitrophenol 266
Ferrites modified with silver nanoparticles (ZnFe2O4/Ag-NPs, MgFe2O4/Ag-NPs, CoFe2O4/Ag-NPs) Photocatalytic degradation; Malachite green 273
Chitin nano-crystals/sodium lignosulfonate/Ag NPs nanocomposites (ChNC@NaLS@AgNPs) Catalytic degradation; Congo Red 275
图8 光催化降解机理以及路径图: (A)宽谱光照射下SDAg-CQDs/UCN光催化降解萘普生(NPX)机理示意图;(B)可见光照射下在SDAg-CQDs/UCN水溶液中NPX可能的转化途径[32];(C)4% Ag-g-C3N4光催化臭氧氧化降解对乙酰氨基酚(ACE)的机理;(D)4% Ag-g-C3N4光催化臭氧化降解ACE的途径[284]
Fig.8 Photocatalytic degradation mechanism and pathway. (A) Schematic photocatalytic mechanism for the SDAg-CQDs/UCN under broad-spectrum light irradiation; (B) possible transformation pathways of NPX in the aqueous SDAg-CQDs/UCN solution under visible light irradiation[32], Copyright 2018, Elsevier. (C) Proposed mechanism of photocatalytic ozonation by 4% Ag-g-C3N4 for degrading acetaminophen (ACE); (D) Proposed degradation pathway for photocatalytic ozonation of ACE using 4% Ag-g-C3N4[284], Copyright 2019, Elsevier
图9 银纳米材料抗菌机理图:(A)GO-Ag的抗菌机理示意图[291];(B)银纳米颗粒(AgNPs),银离子(Ag+)和细胞相互作用示意图[298]
Fig.9 Schematic mechanisms for antibacterial behaviors of silver nanomaterials. (A) Schematic mechanisms for antibacterial behaviors of GO-Ag[291], Copyright 2016, Elsevier. (B) Schematic of AgNPs, Ag+, and cell interactions[298], Copyright 2012, American Chemical Society
表5 银纳米材料作为传感器在有毒金属检测中的应用总结
Table 5 The applications of silver nanomaterials as sensors in the detection of toxic metals
Materials Analyte Detection technique LOD ref
Starch-stabilized AgNPs Hg2+ UV-Vis 5 ppb 305
Silver nanoclusters Hg2+ Fluorescence 10-10 M 320
Silver nanoparticles Hg2+, Hg+ X-ray photoelectron spectroscopic * 308
Silver nanoparticles Hg2+ UV-visible 17 nM 309
Silver nanoparticle-embedded poly (vinyl alcohol) (Ag-PVA) thin film Hg2+, Hg22+, Hg Surface plasmon resonance (SPR) extinction 1 ppb 316
Silver nanoparticle loaded on alumina Hg2+ ICP-OES * 317
Ag25 clusters Hg2+, Pt2+, Au3+ Absorption and fluorescence 1 ppb, ppm 321
Thiol-functionalized silver nanoparticles Hg2+ Surface-enhanced Raman scattering spectroscopy (SERS) 0.0024 μM
Silver nanoparticles Hg2+ UV-vis 2.2×10-6 M 310
Silver nanoparticles Hg2+ UV-vis 6.6×10-9 M 313
The p-phenylenediamine (p-PDA) functionalized silver nanoparticles (AgNPs) Hg2+, Fe3+ Surface plasmon resonance (SPR) absorption 0.80 M, 1.29 M 319
Silver nanoparticles embedded in cyclodextrin-silicate composite Hg2+, nitrobenzene Surface plasmon absorption spectra * 314
SiO2/Ag NPs Hg2+ Spectral and colorimetric detection 5 μM 315
Ag nanoparticle-decorated graphene quantum dots ((AgNPs/GQDs) Ag+, Cys, Hcy, GSH Fluorescence 3.5 nM, 6.2 nM, 4.5 nM, 4.1 nM 322
Silver nanoparticles Hg2+ Colorimetric sensing 0.5 nM 312
Silver nanoparticles Hg2+ Colorimetric sensing 0.5 mM 306
Silver nanoparticles Hg2+ Colorimetric sensing 0.273 nM 307
Silver nanoparticles Hg2+ Colorimetric sensing 1.18 nM 311
Silver nanoparticles Hg2+,Cr3+ Colorimetric sensing 0.125 μM, 6.25 μM 323
Ag@AgCl nanomaterial Hg2+ Colorimetric sensing 4.19 nM 324
[1]
Zhang X F, Liu Z G, Shen W, Gurunathan S. Int. J. Mol. Sci., 2016, 17(9): 1534.

doi: 10.3390/ijms17091534     URL    
[2]
Gunawan C, Marquis C P, Amal R, Sotiriou G A, Rice S A, Harry E J. ACS Nano, 2017, 11(4): 3438.

doi: 10.1021/acsnano.7b01166     pmid: 28339182
[3]
Rizzello L, Pompa P P. Chem. Soc. Rev., 2014, 43(5): 1501.

doi: 10.1039/c3cs60218d     pmid: 24292075
[4]
Fernando A, Dimuthu M Weerawardene K L, Karimova N V, Aikens C M. Chem. Rev., 2015, 115(12): 6112.

doi: 10.1021/cr500506r     pmid: 25898274
[5]
Islam M A, Jacob M V, Antunes E. J. Environ. Manag., 2021, 281: 111918.

doi: 10.1016/j.jenvman.2020.111918     URL    
[6]
Wiley B, Herricks T, Sun Y G, Xia Y N. Nano Lett., 2004, 4(9): 1733.

doi: 10.1021/nl048912c     URL    
[7]
Li H, You Q, Feng X, Zheng C, Zeng X, Xu H. J. Drug Deliv. Sci. Tech., 2023, 80: 104165.
[8]
Steinigeweg D, Schlücker S. Chem. Commun., 2012, 48(69): 8682.

doi: 10.1039/c2cc33850e     URL    
[9]
Personick M L, Langille M R, Zhang J, Wu J S, Li S Y, Mirkin C A. Small, 2013, 9(11): 1947.

doi: 10.1002/smll.201202451     pmid: 23292747
[10]
Im S H, Lee Y T, Wiley B, Xia Y N. Angewandte Chemie Int. Ed., 2005, 44(14): 2154.

doi: 10.1002/(ISSN)1521-3773     URL    
[11]
Rycenga M, McLellan J M, Xia Y N. Adv. Mater., 2008, 20(12): 2416.

doi: 10.1002/adma.v20:12     URL    
[12]
Jana N R, Gearheart L, Murphy C J. Chem. Commun., 2001(7): 617.
[13]
Wiley B J, Chen Y, McLellan J M, Xiong Y J, Li Z Y, Ginger D, Xia Y N. Nano Lett., 2007, 7(4): 1032.

doi: 10.1021/nl070214f     URL    
[14]
Pietrobon B, McEachran M, Kitaev V. ACS Nano, 2009, 3(1): 21.

doi: 10.1021/nn800591y     pmid: 19206244
[15]
Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y N. Nano Lett., 2006, 6(4): 765.

doi: 10.1021/nl060069q     URL    
[16]
Zhu Z X, Wang X L, Yu H Y, Zhou W, Wang Y S, Han J, Guo F. Cryst. Growth Des., 2023, 23(3): 1455.

doi: 10.1021/acs.cgd.2c01031     URL    
[17]
Xinling T, Masaharu T, Michiko N, Peng J. Bull. Chem. Soc. Jpn., 2009, 82(10):1304.

doi: 10.1246/bcsj.82.1304     URL    
[18]
Wijaya Y N, Kim J, Choi W M, Park S H, Kim M H. Nanoscale, 2017, 9(32): 11705.

doi: 10.1039/c7nr03077k     pmid: 28776049
[19]
Ledwith D M, Whelan A M, Kelly J M. J. Mater. Chem., 2007, 17(23): 2459.

doi: 10.1039/b702141k     URL    
[20]
Zhang Q, Li N, Goebl J, Lu Z D, Yin Y D. J. Am. Chem. Soc., 2011, 133(46): 18931.

doi: 10.1021/ja2080345     pmid: 21999679
[21]
Pastoriza-Santos I, Liz-Marzán L M. Nano Lett., 2002, 2(8): 903.

doi: 10.1021/nl025638i     URL    
[22]
Korte K E, Skrabalak S E, Xia Y N. J. Mater. Chem., 2008, 18(4): 437.

doi: 10.1039/B714072J     URL    
[23]
Zhang S H, Xie Z X, Jiang Z Y, Xu X, Xiang J, Huang R B, Zheng L S. Chem. Commun., 2004(9): 1106.
[24]
Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y N. J. Phys. Chem. B, 2006, 110(32): 15666.

doi: 10.1021/jp0608628     URL    
[25]
Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat. Mater., 2008, 7(6): 442.

doi: 10.1038/nmat2162    
[26]
Marimuthu S, Antonisamy A J, Malayandi S, Rajendran K, Tsai P C, Pugazhendhi A, Ponnusamy V K. J. Photochem. Photobiol. B Biol., 2020, 205: 111823.

doi: 10.1016/j.jphotobiol.2020.111823     URL    
[27]
Bahcelioglu E, Unalan H E, Erguder T H. Crit. Rev. Environ. Sci. Technol., 2021, 51(20): 2389.

doi: 10.1080/10643389.2020.1784666     URL    
[28]
Heinemann M G, Rosa C H, Rosa G R, Dias D. Trends Environ. Anal. Chem., 2021, 30: e00129.

doi: 10.1016/j.teac.2021.e00129     URL    
[29]
Bu Y R, Lee S. ACS Appl. Mater. Interfaces, 2012, 4(8): 3923.

doi: 10.1021/am300750s     URL    
[30]
Thanh N T K, Green L A W. Nano Today, 2010, 5(3): 213.

doi: 10.1016/j.nantod.2010.05.003     URL    
[31]
Dong B, Xue N, Mu G H, Wang M J, Xiao Z H, Dai L, Wang Z X, Huang D C, Qian H L, Chen W. Ultrason. Sonochemistry, 2021, 73: 105485.

doi: 10.1016/j.ultsonch.2021.105485     URL    
[32]
Wang F L, Wang Y F, Feng Y P, Zeng Y Q, Xie Z J, Zhang Q X, Su Y H, Chen P, Liu Y, Yao K, Lv W Y, Liu G G. Appl. Catal. B Environ., 2018, 221: 510.

doi: 10.1016/j.apcatb.2017.09.055     URL    
[33]
Nowack B, Krug H F, Height M. Environ. Sci. Technol., 2011, 45(4): 1177.

doi: 10.1021/es103316q     URL    
[34]
Bhattarai B, Zaker Y, Atnagulov A, Yoon B, Landman U, Bigioni T P. Acc. Chem. Res., 2018, 51(12): 3104.

doi: 10.1021/acs.accounts.8b00445     URL    
[35]
He D, Garg S, Wang Z M, Li L, Rong H Y, Ma X M, Li G Y, An T C, David Waite T. Environ. Sci.: Nano, 2019, 6(6): 1674.
[36]
Guo Z, Cui K P, Zeng G M, Wang J J, Guo X P. Sci. Total Environ., 2018, 643: 1325.

doi: 10.1016/j.scitotenv.2018.06.302     URL    
[37]
Zhang P, Wyman I, Hu J W, Lin S D, Zhong Z W, Tu Y Y, Huang Z Z, Wei Y L. Mater. Sci. Eng. B, 2017, 223: 1.

doi: 10.1016/j.mseb.2017.05.002     URL    
[38]
Zhang Z, Shen W F, Xue J, Liu Y M, Liu Y W, Yan P P, Liu J X, Tang J G. Nanoscale Res. Lett., 2018, 13(1): 1.

doi: 10.1186/s11671-017-2411-3     URL    
[39]
Nasrollahzadeh M, Mahmoudi-Gom Yek S, Motahharifar N, Ghafori Gorab M. Chem. Rec., 2019, 19(12): 2436.

doi: 10.1002/tcr.v19.12     URL    
[40]
Cinelli M, Coles S R, Nadagouda M N, Błaszczyński J, Słowiński R, Varma R S, Kirwan K. Green Chem., 2015, 17(5): 2825.

doi: 10.1039/C4GC02088J     URL    
[41]
Xue J, Liu J X, Mao S, Wang Y, Shen W F, Wang W, Huang L J, Li H L, Tang J G. Mater. Res. Bull., 2018, 106: 113.

doi: 10.1016/j.materresbull.2018.05.041     URL    
[42]
Zhao Q X, Zhao M M, Qiu J Q, Lai W Y, Pang H, Huang W. Small, 2017, 13(38): 1701091.

doi: 10.1002/smll.v13.38     URL    
[43]
Sun D L, Xu X M, Qin Y L, Jiang S P, Shao Z P. ChemSusChem, 2020, 13(1): 39.

doi: 10.1002/cssc.v13.1     URL    
[44]
An C H, Wang S T, Sun Y G, Zhang Q H, Zhang J, Wang C Y, Fang J Y. J. Mater. Chem. A, 2016, 4(12): 4336.

doi: 10.1039/C5TA07719B     URL    
[45]
Xue W J, Huang D L, Wen X J, Chen S, Cheng M, Deng R, Li B, Yang Y, Liu X G. J. Hazard. Mater., 2020, 390: 122128.

doi: 10.1016/j.jhazmat.2020.122128     URL    
[46]
Liang C, Lu Z A, Wu J, Chen M X, Zhang Y Y, Zhang B, Gao G L, Li S W, Xu P. ACS Appl. Mater. Interfaces, 2020, 12(49): 54266.

doi: 10.1021/acsami.0c15192     URL    
[47]
Zhang J A, Langille M R, Mirkin C A. J. Am. Chem. Soc., 2010, 132(35): 12502.

doi: 10.1021/ja106008b     pmid: 20718424
[48]
Landry M J, GellÉ A, Meng B Y, Barrett C J, Moores A. ACS Catal., 2017, 7(9): 6128.

doi: 10.1021/acscatal.7b02128     URL    
[49]
Zhang J W, Winget S A, Wu Y R, Su D, Sun X J, Xie Z X, Qin D. ACS Nano, 2016, 10(2): 2607.

doi: 10.1021/acsnano.5b07665     URL    
[50]
Zhang Y, Ahn J, Liu J Y, Qin D. Chem. Mater., 2018, 30(6): 2151.

doi: 10.1021/acs.chemmater.8b00602     URL    
[51]
Jia H L, Dou Y R, Yang Y Y, Li F, Zhang C Y. Nanoscale, 2021, 13(47): 20289.

doi: 10.1039/D1NR05801K     URL    
[52]
Zou X X, Silva R, Huang X X, Al-Sharab J F, Asefa T. Chem. Commun., 2013, 49(4): 382.

doi: 10.1039/C2CC35917K     URL    
[53]
Xu G W, Wu Y P, Dong W W, Zhao J, Wu X Q, Li D S, Zhang Q C. Small, 2017, 13(22): 1602996.
[54]
Charistoudi E, Kallitsakis M G, Charisteidis I, Triantafyllidis K S, Lykakis I N. Adv. Synth. Catal., 2017, 359(17): 2949.

doi: 10.1002/adsc.v359.17     URL    
[55]
Sadovnikov S I, Gusev A I. J. Mater. Chem. A, 2017, 5(34): 17676.

doi: 10.1039/C7TA04949H     URL    
[56]
Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V K, Kalia S, Nguyen V H, Singh P. J. Environ. Chem. Eng., 2021, 9(2): 105157.

doi: 10.1016/j.jece.2021.105157     URL    
[57]
Song W, Querebillo C J, Götz R, Katz S, Kuhlmann U, Gernert U, Weidinger I M, Hildebrandt P. Nanoscale, 2017, 9(24): 8380.

doi: 10.1039/c7nr02760e     pmid: 28594421
[58]
Jensen T R, Malinsky M D, Haynes C L, Van Duyne R P. J. Phys. Chem. B, 2000, 104(45): 10549.

doi: 10.1021/jp002435e     URL    
[59]
Zulkifli N I, Muhamad M, Mohamad Zain N N, Tan W N, Yahaya N, Bustami Y, Abdul Aziz A, Nik Mohamed Kamal N N S. Molecules, 2020, 25(18): 4332.

doi: 10.3390/molecules25184332     URL    
[60]
Caswell K K, Bender C M, Murphy C J. Nano Lett., 2003, 3(5): 667.

doi: 10.1021/nl0341178     URL    
[61]
MÉtraux G S, Mirkin C A. Adv. Mater., 2005, 17(4): 412.

doi: 10.1002/adma.v17:4     URL    
[62]
Raza M, Kanwal Z, Rauf A, Sabri A, Riaz S, Naseem S. Nanomaterials, 2016, 6(4): 74.

doi: 10.3390/nano6040074     URL    
[63]
Shameli K, Bin Ahmad M, Davoud Jazayeri S, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y. Int. J. Mol. Sci., 2012, 13(6): 6639.

doi: 10.3390/ijms13066639     pmid: 22837654
[64]
Skrabalak S E, Au L, Li X D, Xia Y N. Nat. Protoc., 2007, 2(9): 2182.

doi: 10.1038/nprot.2007.326     pmid: 17853874
[65]
Sun Y G, Xia Y N. Science, 2002, 298(5601): 2176.

doi: 10.1126/science.1077229     URL    
[66]
Banerjee S, Loza K, Meyer-Zaika W, Prymak O, Epple M. Chem. Mater., 2014, 26(2): 951.

doi: 10.1021/cm4025342     URL    
[67]
Xia X H, Zeng J, McDearmon B, Zheng Y Q, Li Q G, Xia Y N. Angew. Chem., 2011, 123(52): 12750.

doi: 10.1002/ange.201105200     URL    
[68]
Liu X X, Li L L, Yang Y D, Yin Y D, Gao C B. Nanoscale, 2014, 6(9): 4513.

doi: 10.1039/c4nr00254g     URL    
[69]
Pan Z Y, Zhou J, Zou H Y, Li Y F, Gao P F, Huang C Z. J. Colloid Interface Sci., 2021, 584: 253.

doi: 10.1016/j.jcis.2020.09.121     URL    
[70]
Xu H X, Suslick K S. ACS Nano, 2010, 4(6): 3209.

doi: 10.1021/nn100987k     URL    
[71]
Chen S L, Wang G H, Sui W J, Parvez A M, Si C L. Green Chem., 2020, 22(9): 2879.

doi: 10.1039/C9GC04311J     URL    
[72]
Pan Z Y, Gao P F, Jing C J, Zhou J, Liang W T, Lei G, Feng W, Li Y F, Huang C Z. Appl. Catal. B Environ., 2021, 291: 120090.

doi: 10.1016/j.apcatb.2021.120090     URL    
[73]
Adhikari L, Larm N E, Bhawawet N, Baker G A. ACS Sustainable Chem. Eng., 2018, 6(5): 5725.

doi: 10.1021/acssuschemeng.8b00050     URL    
[74]
Hebbalalu D, Lalley J, Nadagouda M N, Varma R S. ACS Sustainable Chem. Eng., 2013, 1(7): 703.

doi: 10.1021/sc4000362     URL    
[75]
Zhang Q, Li W Y, Moran C, Zeng J, Chen J Y, Wen L P, Xia Y N. J. Am. Chem. Soc., 2010, 132(32): 11372.

doi: 10.1021/ja104931h     URL    
[76]
Xia Y N, Gilroy K D, Peng H C, Xia X H. Angewandte Chemie Int. Ed., 2017, 56(1): 60.

doi: 10.1002/anie.201604731     URL    
[77]
Koga N, Tanaka H. Thermochimica Acta, 2002, 388(1/2): 41.

doi: 10.1016/S0040-6031(02)00051-5     URL    
[78]
Hosseinpour-Mashkani S M, Ramezani M. Mater. Lett., 2014, 130: 259.

doi: 10.1016/j.matlet.2014.05.133     URL    
[79]
Akhtar M S, Panwar J, Yun Y S. ACS Sustainable Chem. Eng., 2013, 1(6): 591.

doi: 10.1021/sc300118u     URL    
[80]
Virkutyte J, Varma R S. Chem. Sci., 2011, 2(5): 837.

doi: 10.1039/C0SC00338G     URL    
[81]
Moulton M C, Braydich-Stolle L K, Nadagouda M N, Kunzelman S, Hussain S M, Varma R S. Nanoscale, 2010, 2(5): 763.

doi: 10.1039/c0nr00046a     URL    
[82]
Johnson R W, Hultqvist A, Bent S F. Mater. Today, 2014, 17(5): 236.

doi: 10.1016/j.mattod.2014.04.026     URL    
[83]
Sharma R K, Yadav S, Dutta S, Kale H B, Warkad I R, Zbořil R, Varma R S, Gawande M B. Chem. Soc. Rev., 2021, 50(20): 11293.

doi: 10.1039/D0CS00912A     URL    
[84]
Gawande M B, Shelke S N, Zboril R, Varma R S. Acc. Chem. Res., 2014, 47(4): 1338.

doi: 10.1021/ar400309b     URL    
[85]
Xu H X, Zeiger B W, Suslick K S. Chem. Soc. Rev., 2013, 42(7): 2555.

doi: 10.1039/C2CS35282F     URL    
[86]
Bang J H, Suslick K S. Adv. Mater., 2010, 22(10): 1039.

doi: 10.1002/adma.v22:10     URL    
[87]
Van Hyning D L, Zukoski C F. Langmuir, 1998, 14(24): 7034.

doi: 10.1021/la980325h     URL    
[88]
Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F, Polte J. Chem. Mater., 2013, 25(23): 4679.

doi: 10.1021/cm401851g     URL    
[89]
Aziz N, Faraz M, Pandey R, Shakir M, Fatma T, Varma A, Barman I, Prasad R. Langmuir, 2015, 31(42): 11605.

doi: 10.1021/acs.langmuir.5b03081     URL    
[90]
Dauthal P, Mukhopadhyay M. Ind. Eng. Chem. Res., 2016, 55(36): 9557.

doi: 10.1021/acs.iecr.6b00861     URL    
[91]
Nadagouda M N, Varma R S. Green Chem., 2008, 10(8): 859.

doi: 10.1039/b804703k     URL    
[92]
Raveendran P, Fu J, Wallen S L. J. Am. Chem. Soc., 2003, 125(46): 13940.

doi: 10.1021/ja029267j     URL    
[93]
Sutradhar P, Saha M. J. Phys. Chem. C, 2016, 120(16): 8941.

doi: 10.1021/acs.jpcc.6b00075     URL    
[94]
Xue Y Y, Qiu X Q, Liu Z W, Li Y. ACS Sustainable Chem. Eng., 2018, 6(6): 7695.

doi: 10.1021/acssuschemeng.8b00578     URL    
[95]
Boopathi S, Gopinath S, Boopathi T, Balamurugan V, Rajeshkumar R, Sundararaman M. Ind. Eng. Chem. Res., 2012, 51(17): 5976.

doi: 10.1021/ie3001869     URL    
[96]
Kasithevar M, Saravanan M, Prakash P, Kumar H, Ovais M, Barabadi H, Shinwari Z K. J. Interdiscip. Nanomed., 2017, 2(2): 131.

doi: 10.1002/jin2.v2.2     URL    
[97]
Nadagouda M N, Iyanna N, Lalley J, Han C, Dionysiou D D, Varma R S. ACS Sustainable Chem. Eng., 2014, 2(7): 1717.

doi: 10.1021/sc500237k     URL    
[98]
Nakano M, Fujiwara T, Koga N. J. Phys. Chem. C, 2016, 120(16): 8841.

doi: 10.1021/acs.jpcc.6b02377     URL    
[99]
Zong R L, Wang X L, Shi S K, Zhu Y F. Phys. Chem. Chem. Phys., 2014, 16(9): 4236.

doi: 10.1039/c3cp54846e     URL    
[100]
Rostami S, Mehdinia A, Jabbari A. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2017, 180: 204.
[101]
Lin X, Lin S, Liu Y L, Gao M M, Zhao H Y, Liu B K, Hasi W, Wang L. Langmuir, 2018, 34(21): 6077.

doi: 10.1021/acs.langmuir.7b04343     URL    
[102]
Zhang L, Wang Y, Tong L M, Xia Y N. Langmuir, 2013, 29(50): 15719.

doi: 10.1021/la4040722     pmid: 24308796
[103]
Lin Z W, Tsao Y C, Yang M Y, Huang M H. Chem. A Eur. J., 2016, 22(7): 2326.

doi: 10.1002/chem.201504303     URL    
[104]
Wiley B, Sun Y G, Mayers B, Xia Y N. Chem. A Eur. J., 2005, 11(2): 454.

doi: 10.1002/(ISSN)1521-3765     URL    
[105]
Siekkinen A R, McLellan J M, Chen J Y, Xia Y N. Chem. Phys. Lett., 2006, 432(4/6): 491.

doi: 10.1016/j.cplett.2006.10.095     URL    
[106]
Sherry L J, Chang S H, Schatz G C, Van Duyne R P, Wiley B J, Xia Y N. Nano Lett., 2005, 5(10): 2034.

pmid: 16218733
[107]
Wang Y, Zou H Y, Huang C Z. Nanoscale, 2015, 7(37): 15209.

doi: 10.1039/c5nr04234h     pmid: 26316076
[108]
Zhang Q, Li W Y, Wen L P, Chen J Y, Xia Y N. Chem. A Eur. J., 2010, 16(33): 10234.

doi: 10.1002/chem.201000341     URL    
[109]
Yu D B, Yam V W W. J. Am. Chem. Soc., 2004, 126(41): 13200.

doi: 10.1021/ja046037r     URL    
[110]
Jiang L P, Xu S, Zhu J M, Zhang J R, Zhu J J, Chen H Y. Inorg. Chem., 2004, 43(19): 5877.

doi: 10.1021/ic049529d     URL    
[111]
Washio I, Xiong Y, Yin Y, Xia Y. Adv. Mater., 2006, 18(13): 1745.

doi: 10.1002/(ISSN)1521-4095     URL    
[112]
Aherne D, Ledwith D M, Gara M, Kelly J M. Adv. Funct. Mater., 2008, 18(14): 2005.

doi: 10.1002/adfm.v18:14     URL    
[113]
Charles D E, Aherne D, Gara M, Ledwith D M, Gun’ko Y K, Kelly J M, Blau W J, Brennan-Fournet M E. ACS Nano, 2010, 4(1): 55.

doi: 10.1021/nn9016235     pmid: 20030362
[114]
Zhu Y P, Wang X K, Guo W L, Wang J G, Wang C. Ultrason. Sonochemistry, 2010, 17(4): 675.

doi: 10.1016/j.ultsonch.2010.01.003     URL    
[115]
Zhang J, Langille M R, Mirkin C A. Nano Lett., 2011, 11(6): 2495.

doi: 10.1021/nl2009789     pmid: 21528893
[116]
Sun Y G, Yin Y D, Mayers B T, Herricks T, Xia Y N. Chem. Mater., 2002, 14(11): 4736.

doi: 10.1021/cm020587b     URL    
[117]
Sun Y G, Gates B, Mayers B, Xia Y N. Nano Lett., 2002, 2(2): 165.

doi: 10.1021/nl010093y     URL    
[118]
Sun Y G, Mayers B, Herricks T, Xia Y N. Nano Lett., 2003, 3(7): 955.

doi: 10.1021/nl034312m     URL    
[119]
Kou J H, Varma R S. Chem. Commun., 2013, 49(7): 692.

doi: 10.1039/C2CC37696B     URL    
[120]
Tang S C, Vongehr S, Wan N, Meng X K. Mater. Chem. Phys., 2013, 142(1): 17.

doi: 10.1016/j.matchemphys.2013.06.023     URL    
[121]
Langille M., Personick M., Mirkin C. Angewandte Chemie Int. Ed., 2013, 52(52): 13910-13940.

doi: 10.1002/anie.201301875     URL    
[122]
Sherry L J, Jin R C, Mirkin C A, Schatz G C, Van Duyne R P. Nano Lett., 2006, 6(9): 2060.

pmid: 16968025
[123]
Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Science, 2001, 294(5548): 1901.

doi: 10.1126/science.1066541     pmid: 11729310
[124]
Zhang M F, Zhao A W, Sun H H, Guo H Y, Wang D P, Li D, Gan Z B, Tao W Y. J. Mater. Chem., 2011, 21(46): 18817.

doi: 10.1039/c1jm12831k     URL    
[125]
Zhang B, Xu P, Xie X M, Wei H, Li Z P, Mack N H, Han X J, Xu H X, Wang H L. J. Mater. Chem., 2011, 21(8): 2495.

doi: 10.1039/C0JM02837A     URL    
[126]
Kang L L, Xu P, Zhang B, Tsai H, Han X J, Wang H L. Chem. Commun., 2013, 49(33): 3389.

doi: 10.1039/c3cc40732b     URL    
[127]
Tang X H, Cai W Y, Yang L B, Liu J H. Nanoscale, 2014, 6(15): 8612.

doi: 10.1039/C4NR01939C     URL    
[128]
Chen S H, Fan Z Y, Carroll D L. J. Phys. Chem. B, 2002, 106(42): 10777.

doi: 10.1021/jp026376b     URL    
[129]
Zhang D B, Qi L M, Yang J H, Ma J M, Cheng H M, Huang L. Chem. Mater., 2004, 16(5): 872.

doi: 10.1021/cm0350737     URL    
[130]
Xia X H, Zeng J, Oetjen L K, Li Q G, Xia Y N. J. Am. Chem. Soc., 2012, 134(3): 1793.

doi: 10.1021/ja210047e     URL    
[131]
Wang Y, Wan D H, Xie S F, Xia X H, Huang C Z, Xia Y N. ACS Nano, 2013, 7(5): 4586.

doi: 10.1021/nn401363e     pmid: 23631674
[132]
Yang Y, Matsubara S, Xiong L M, Hayakawa T, Nogami M. J. Phys. Chem. C, 2007, 111(26): 9095.

doi: 10.1021/jp068859b     URL    
[133]
Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105(4): 1025.

doi: 10.1021/cr030063a     URL    
[134]
Henglein A. Chem. Mater., 1998, 10(1): 444.

doi: 10.1021/cm970613j     URL    
[135]
Tao A, Sinsermsuksakul P, Yang P D. Angewandte Chemie Int. Ed., 2006, 45(28): 4597.

doi: 10.1002/(ISSN)1521-3773     URL    
[136]
Rebello Sousa Dias M, Leite M S. Acc. Chem. Res., 2019, 52(10): 2881.

doi: 10.1021/acs.accounts.9b00153     URL    
[137]
Liu Y, Huang C Z. ACS Nano, 2013, 7(12): 11026.

doi: 10.1021/nn404694e     URL    
[138]
Wu W, Lei M, Yang S L, Zhou L, Liu L, Xiao X H, Jiang C Z, Roy V A L. J. Mater. Chem. A, 2015, 3(7): 3450.

doi: 10.1039/C4TA06567K     URL    
[139]
Chen L M, Deming C P, Peng Y, Hu P G, Stofan J, Chen S W. Nanoscale, 2016, 8(30): 14565.

doi: 10.1039/C6NR03368G     URL    
[140]
Wu Y R, Sun X J, Yang Y, Li J M, Zhang Y, Qin D. Acc. Chem. Res., 2017, 50(7): 1774.

doi: 10.1021/acs.accounts.7b00216     URL    
[141]
Karam T E, Smith H T, Haber L H. J. Phys. Chem. C, 2015, 119(32): 18573.

doi: 10.1021/acs.jpcc.5b05110     URL    
[142]
Peng Z Q, Spliethoff B, Tesche B, Walther T, Kleinermanns K. J. Phys. Chem. B, 2006, 110(6): 2549.

doi: 10.1021/jp056677w     URL    
[143]
Sharma M, Pudasaini P R, Ruiz-Zepeda F, Vinogradova E, Ayon A A. ACS Appl. Mater. Interfaces, 2014, 6(17): 15472.

doi: 10.1021/am5040939     URL    
[144]
Wang P Y, Bai Y J, Yao C, Li X M, Zhou L, Wang W X, El-Toni A M, Zi J, Zhao D Y, Shi L, Zhang F. Anal. Chem., 2017, 89(4): 2583.

doi: 10.1021/acs.analchem.6b04860     URL    
[145]
AbdelHamid A A, Al-Ghobashy M A, Fawzy M, Mohamed M B, Abdel-Mottaleb M M S A. ACS Sustainable Chem. Eng., 2013, 1(12): 1520.

doi: 10.1021/sc4000972     URL    
[146]
Xia B H, He F, Li L D. Langmuir, 2013, 29(15): 4901.

doi: 10.1021/la400355u     URL    
[147]
Chen J Y, Wiley B, McLellan J, Xiong Y J, Li Z Y, Xia Y N. Nano Lett., 2005, 5(10): 2058.

doi: 10.1021/nl051652u     URL    
[148]
Li J M, Sun X J, Qin D. ChemNanoMat, 2016, 2(6): 494.

doi: 10.1002/cnma.v2.6     URL    
[149]
Peiris S, Sarina S, Han C H, Xiao Q, Zhu H Y. Dalton Trans., 2017, 46(32): 10665.

doi: 10.1039/C7DT00418D     URL    
[150]
Zhang W Q, Yang J Z, Lu X M. ACS Nano, 2012, 6(8): 7397.

doi: 10.1021/nn302590k     URL    
[151]
Zhang Z Y, Nenoff T M, Leung K, Ferreira S R, Huang J Y, Berry D T, Provencio P P, Stumpf R. J. Phys. Chem. C, 2010, 114(34): 14309.

doi: 10.1021/jp911947v     URL    
[152]
Ghosh Chaudhuri R, Paria S. Chem. Rev. 2012, 112(4): 2373.

doi: 10.1021/cr100449n     pmid: 22204603
[153]
Tsuji M, Miyamae N, Lim S, Kimura K, Zhang X, Hikino S, Nishio M. Cryst. Growth Des., 2006, 6(8): 1801.

doi: 10.1021/cg060103e     URL    
[154]
Anandan S, Grieser F, Ashokkumar M. J. Phys. Chem. C, 2008, 112(39): 15102.

doi: 10.1021/jp806960r     URL    
[155]
Samal A K, Polavarapu L, Rodal-Cedeira S, Liz-Marzán L M, PÉrez-Juste J, Pastoriza-Santos I. Langmuir, 2013, 29(48): 15076.

doi: 10.1021/la403707j     URL    
[156]
Yang Y, Liu J Y, Fu Z W, Qin D. J. Am. Chem. Soc., 2014, 136(23): 8153.

doi: 10.1021/ja502472x     pmid: 24863686
[157]
Zhuo X L, Zhu X Z, Li Q, Yang Z, Wang J F. ACS Nano, 2015, 9(7): 7523.

doi: 10.1021/acsnano.5b02622     URL    
[158]
Ye Z J, Weng R, Ma Y H, Wang F Y, Liu H, Wei L, Xiao L H. Anal. Chem., 2018, 90(21): 13044.

doi: 10.1021/acs.analchem.8b04024     URL    
[159]
Sun X J, Qin D. J. Mater. Chem. C, 2015, 3(45): 11833.

doi: 10.1039/C5TC03002A     URL    
[160]
Carroll K J, Hudgins D M, Spurgeon S, Kemner K M, Mishra B, Boyanov M I, Brown L W III, Taheri M L, Carpenter E E. Chem. Mater., 2010, 22(23): 6291.
[161]
Li J M, Liu J Y, Yang Y, Qin D. J. Am. Chem. Soc., 2015, 137(22): 7039.

doi: 10.1021/jacs.5b03528     URL    
[162]
Kim C, Suh B L, Yun H, Kim J, Lee H. ACS Catal., 2017, 7(4): 2294.

doi: 10.1021/acscatal.7b00411     URL    
[163]
Khatami M, Alijani H, Nejad M, Varma R. Appl. Sci., 2018, 8(3): 411.

doi: 10.3390/app8030411     URL    
[164]
Poggi E, Gohy J F. Colloid Polym. Sci., 2017, 295(11): 2083.

doi: 10.1007/s00396-017-4192-8     URL    
[165]
Jiang F R, Tian Q W, Tang M H, Chen Z G, Yang J M, Hu J Q. CrystEngComm, 2011, 13(24): 7189.

doi: 10.1039/c1ce05632h     URL    
[166]
Song Y, Liu K, Chen S W. Langmuir, 2012, 28(49): 17143.

doi: 10.1021/la303513x     URL    
[167]
Chang Z M, Wang Z, Lu M M, Shao D, Yue J, Yang D, Li M Q, Dong W F. Colloids Surf. B Biointerfaces, 2017, 157: 199.

doi: 10.1016/j.colsurfb.2017.05.079     URL    
[168]
Wang Z, Chang Z M, Lu M M, Shao D, Yue J, Yang D, Li M Q, Dong W F. ACS Appl. Mater. Interfaces, 2017, 9(36): 30306.

doi: 10.1021/acsami.7b06446     URL    
[169]
Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A. ACS Appl. Mater. Interfaces, 2015, 7(38): 21218.

doi: 10.1021/acsami.5b05224     URL    
[170]
Buccolieri A, Bettini S, Salvatore L, Baldassarre F, Ciccarella G, Giancane G. Sens. Actuat. B Chem., 2018, 267: 265.

doi: 10.1016/j.snb.2018.04.028     URL    
[171]
Guo Y C, Khan A U, Cao K, Liu G L. ACS Appl. Nano Mater., 2018, 1(10): 5377.

doi: 10.1021/acsanm.8b01141     URL    
[172]
Levard C, Hotze E M, Lowry G V, Brown G E Jr. Environ. Sci. Technol., 2012, 46(13): 6900.

doi: 10.1021/es2037405     URL    
[173]
Sokolov S V, Tschulik K, Batchelor-McAuley C, Jurkschat K, Compton R G. Anal. Chem., 2015, 87(19): 10033.

doi: 10.1021/acs.analchem.5b02639     URL    
[174]
Shao W, Liu X F, Min H H, Dong G H, Feng Q Y, Zuo S L. ACS Appl. Mater. Interfaces, 2015, 7(12): 6966.

doi: 10.1021/acsami.5b00937     URL    
[175]
Yang H, Liu Y, Shen Q H, Chen L F, You W H, Wang X M, Sheng J S. J. Mater. Chem., 2012, 22(45): 24132.

doi: 10.1039/c2jm35621j     URL    
[176]
Chang S Q, Liu C C, Sun Y F, Yan Z F, Zhang X H, Hu X D, Zhang H Q. ACS Appl. Nano Mater., 2020, 3(3): 2302.

doi: 10.1021/acsanm.9b02415     URL    
[177]
Cao H L, Huang H B, Chen Z, Karadeniz B, Lü J, Cao R. ACS Appl. Mater. Interfaces, 2017, 9(6): 5231.

doi: 10.1021/acsami.6b13186     URL    
[178]
Gao G H, Mathkar A, Martins E P, Galvão D S, Gao D Y, Alves da Silva Autreto P, Sun C J, Cai L T, Ajayan P M. J. Mater. Chem. A, 2014, 2(9): 3148.

doi: 10.1039/c3ta12892j     URL    
[179]
Xia H, Hong C Y, Shi X Q, Li B, Yuan G L, Yao Q F, Xie J P. J. Mater. Chem. A, 2015, 3(3): 1216.

doi: 10.1039/C4TA05568C     URL    
[180]
Liu S, Tian J Q, Wang L, Sun X P. Carbon, 2011, 49(10): 3158.

doi: 10.1016/j.carbon.2011.03.036     URL    
[181]
Bhunia S K, Jana N R. ACS Appl. Mater. Interfaces, 2014, 6(22): 20085.

doi: 10.1021/am505677x     URL    
[182]
Lu X Q, Qi H T, Zhang X F, Xue Z H, Jin J, Zhou X B, Liu X H. Chem. Commun., 2011, 47(46): 12494.

doi: 10.1039/c1cc15697g     URL    
[183]
Tang X Z, Cao Z W, Zhang H B, Liu J, Yu Z Z. Chem. Commun., 2011, 47(11): 3084.

doi: 10.1039/c0cc05613h     URL    
[184]
Zhang Y M, Yuan X, Wang Y, Chen Y. J. Mater. Chem., 2012, 22(15): 7245.

doi: 10.1039/c2jm16455h     URL    
[185]
Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos N K, Prombona A, Karanikolos G N. ACS Appl. Mater. Interfaces, 2016, 8(41): 27498.

doi: 10.1021/acsami.6b08403     URL    
[186]
Bao Q, Zhang D, Qi P. J. Colloid Interface Sci., 2011, 360(2): 463.

doi: 10.1016/j.jcis.2011.05.009     URL    
[187]
Li Y Z, Cao Y L, Xie J, Jia D Z, Qin H Y, Liang Z T. Catal. Commun., 2015, 58: 21.

doi: 10.1016/j.catcom.2014.08.022     URL    
[188]
Jeon E K, Seo E, Lee E, Lee W, Um M K, Kim B S. Chem. Commun., 2013, 49(33): 3392.

doi: 10.1039/c3cc00115f     URL    
[189]
Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. J. Mater. Chem., 2011, 21(40): 15872.

doi: 10.1039/c1jm12254a     URL    
[190]
Singh P, Lamanna G, MÉnard-Moyon C, Toma F M, Magnano E, Bondino F, Prato M, Verma S, Bianco A. Angewandte Chemie Int. Ed., 2011, 50(42): 9893.

doi: 10.1002/anie.v50.42     URL    
[191]
Yan X L, Li S, Bao J H, Zhang N, Fan B B, Li R F, Liu X G, Pan Y X. ACS Appl. Mater. Interfaces, 2016, 8(27): 17060.

doi: 10.1021/acsami.6b03106     URL    
[192]
Zheng J W, Duan X P, Lin H Q, Gu Z Q, Fang H H, Li J H, Yuan Y Z. Nanoscale, 2016, 8(11): 5959.

doi: 10.1039/C5NR08651E     URL    
[193]
Krainoi A, Kummerlöwe C, Vennemann N, Nakaramontri Y, Pichaiyut S, Nakason C. J. Appl. Polym. Sci., 2019, 136(13): 47281.

doi: 10.1002/app.v136.13     URL    
[194]
Espinosa J C, NavalÓn S, Álvaro M, García H. ChemCatChem, 2015, 7(17): 2682.

doi: 10.1002/cctc.201500458     URL    
[195]
Espinosa J C, NavalÓn S, Álvaro M, García H. Catal. Sci. Technol., 2016, 6(19): 7077.

doi: 10.1039/C6CY00572A     URL    
[196]
Li S, Bandy J A, Hamers R J. ACS Appl. Mater. Interfaces, 2018, 10(6): 5395.

doi: 10.1021/acsami.7b13821     URL    
[197]
Patel S B, Vasava D V. ChemistrySelect, 2018, 3(2): 471.

doi: 10.1002/slct.v3.2     URL    
[198]
Veerakumar P, Rajkumar C, Chen S M, Thirumalraj B, Lin K C. J. Electroanal. Chem., 2018, 826: 207.

doi: 10.1016/j.jelechem.2018.08.031     URL    
[199]
Liu J, Wang H Q, Antonietti M. Chem. Soc. Rev., 2016, 45(8): 2308.

doi: 10.1039/C5CS00767D     URL    
[200]
Zhang P, Shao C L, Zhang Z Y, Zhang M Y, Mu J B, Guo Z C, Liu Y C. Nanoscale, 2011, 3(8): 3357.

doi: 10.1039/c1nr10405e     pmid: 21761072
[201]
Ji T, Chen L, Schmitz M, Bao F S, Zhu J H. Green Chem., 2015, 17(4): 2515.

doi: 10.1039/C5GC00123D     URL    
[202]
Caltagirone C, Bettoschi A, Garau A, Montis R. Chem. Soc. Rev., 2015, 44(14): 4645.

doi: 10.1039/c4cs00270a     pmid: 25406516
[203]
Sharma R K, Sharma S, Dutta S, Zboril R, Gawande M B. Green Chem., 2015, 17(6): 3207.

doi: 10.1039/C5GC00381D     URL    
[204]
Steffan M, Jakob A, Claus P, Lang H. Catal. Commun., 2009, 10(5): 437.

doi: 10.1016/j.catcom.2008.10.003     URL    
[205]
Naik B, Hazra S, Prasad V S, Ghosh N N. Catal. Commun., 2011, 12(12): 1104.

doi: 10.1016/j.catcom.2011.03.028     URL    
[206]
Raji V, Chakraborty M, Parikh P A. Ind. Eng. Chem. Res., 2012, 51(16): 5691.

doi: 10.1021/ie2027603     URL    
[207]
He D, Kacopieros M, Ikeda-Ohno A, David Waite T. Environ. Sci. Technol., 2014, 48(20): 12320.

doi: 10.1021/es502804a     URL    
[208]
Chen Z C, Luck R L. Green Chem., 2016, 18(11): 3354.

doi: 10.1039/C5GC03110A     URL    
[209]
Guillerm V, Kim D, Eubank J F, Luebke R, Liu X F, Adil K, Lah M S, Eddaoudi M. Chem. Soc. Rev., 2014, 43(16): 6141.

doi: 10.1039/c4cs00135d     pmid: 25009001
[210]
Zhu Q L, Xu Q. Chem. Soc. Rev., 2014, 43(16): 5468.

doi: 10.1039/C3CS60472A     URL    
[211]
Czaja A U, Trukhan N, Müller U. Chem. Soc. Rev., 2009, 38(5): 1284.

doi: 10.1039/b804680h     URL    
[212]
Zhu N N, Liu X H, Li T, Ma J G, Cheng P, Yang G M. Inorg. Chem., 2017, 56(6): 3414.

doi: 10.1021/acs.inorgchem.6b02855     URL    
[213]
Dutta G, Jana A K, Singh D K, Eswaramoorthy M, Natarajan S. Chem. Asian J., 2018, 13(18): 2677.

doi: 10.1002/asia.v13.18     URL    
[214]
Mbhele Z H, Salemane M G, van Sittert C G C E, Nedeljković J M, Djoković V, Luyt A S. Chem. Mater., 2003, 15(26): 5019.

doi: 10.1021/cm034505a     URL    
[215]
Zhu J F, Zhu Y J. J. Phys. Chem. B, 2006, 110(17): 8593.

doi: 10.1021/jp060488b     URL    
[216]
Yu D Y, Tan M X, Zhang Y G. Adv. Synth. Catal., 2012, 354(6): 969.

doi: 10.1002/adsc.201100934     URL    
[217]
Eisa W H, Abdel-Baset T A, Mohamed E M A, Mahrous S. J. Inorg. Organomet. Polym. Mater., 2017, 27(6): 1703.

doi: 10.1007/s10904-017-0632-7     URL    
[218]
Silvestri D, Wacławek S, Venkateshaiah A, Krawczyk K, Sobel B, Padil V V T, Černík M, Varma R S. Carbohydr. Polym., 2020, 232: 115806.

doi: 10.1016/j.carbpol.2019.115806     URL    
[219]
Sun W L, Meng Y, Fu Q R, Wang F, Wang G J, Gao W H, Huang X C, Lu F S. ACS Appl. Mater. Interfaces, 2016, 8(15): 9881.

doi: 10.1021/acsami.6b01008     URL    
[220]
Lin Y, Bunker C E, Fernando K A S, Connell J W. ACS Appl. Mater. Interfaces, 2012, 4(2): 1110.

doi: 10.1021/am201747d     URL    
[221]
Pang J Y, Chao Y H, Chang H H, Li H P, Xiong J, Zhang Q, Chen G Y, Qian J C, Zhu W S, Li H M. ACS Sustainable Chem. Eng., 2018, 6(4): 4948.

doi: 10.1021/acssuschemeng.7b04481     URL    
[222]
Zheng N F, Stucky G D. J. Am. Chem. Soc., 2006, 128(44): 14278.

doi: 10.1021/ja0659929     URL    
[223]
Gawande M B, Pandey R K, Jayaram R V. Catal. Sci. Technol., 2012, 2(6): 1113.

doi: 10.1039/c2cy00490a     URL    
[224]
Mori K, Kumami A, Tomonari M, Yamashita H. J. Phys. Chem. C, 2009, 113(39): 16850.

doi: 10.1021/jp907277g     URL    
[225]
Poreddy R, García-Suárez E J, Riisager A, Kegnæs S. Dalton Trans., 2014, 43(11): 4255.

doi: 10.1039/c3dt52499j     pmid: 24323249
[226]
Stamplecoskie K G, Manser J S. ACS Appl. Mater. Interfaces, 2014, 6(20): 17489.

doi: 10.1021/am502185g     URL    
[227]
Virkutyte J, Varma R S. New J. Chem., 2010, 34(6): 1094.

doi: 10.1039/c0nj00268b     URL    
[228]
Liang Y Q, Cui Z D, Zhu S L, Liu Y, Yang X J. J. Catal., 2011, 278(2): 276.

doi: 10.1016/j.jcat.2010.12.011     URL    
[229]
Deng Q, Duan X W, Ng D H L, Tang H B, Yang Y, Kong M G, Wu Z K, Cai W P, Wang G Z. ACS Appl. Mater. Interfaces, 2012, 4(11): 6030.

doi: 10.1021/am301682g     URL    
[230]
Ali Ansari S, Khan M M, Ansari M O, Lee J, Cho M H. J. Phys. Chem. C, 2013, 117(51): 27023.

doi: 10.1021/jp410063p     URL    
[231]
Bai B Y, Qiao Q, Arandiyan H, Li J H, Hao J M. Environ. Sci. Technol., 2016, 50(5): 2635.

doi: 10.1021/acs.est.5b03342     URL    
[232]
Chen X M, Ku S, Weibel J A, Ximenes E, Liu X Y, Ladisch M, Garimella S V. ACS Appl. Mater. Interfaces, 2017, 9(45): 39165.

doi: 10.1021/acsami.7b11364     URL    
[233]
Bouazizi N, Vieillard J, Thebault P, Desriac F, Clamens T, Bargougui R, Couvrat N, Thoumire O, Brun N, Ladam G, Morin S, Mofaddel N, Lesouhaitier O, Azzouz A, Le Derf F. Dalton Trans., 2018, 47(27): 9143.

doi: 10.1039/c8dt02154f     pmid: 29946586
[234]
Tang D P, Yuan R, Chai Y Q. J. Phys. Chem. B, 2006, 110(24): 11640.

doi: 10.1021/jp060950s     URL    
[235]
Kundakovic L, Flytzani-Stephanopoulos M. Appl. Catal. A Gen., 1999, 183(1): 35.

doi: 10.1016/S0926-860X(99)00043-5     URL    
[236]
Ghosh S, Acharyya S S, Sasaki T, Bal R. Green Chem., 2015, 17(3): 1867.

doi: 10.1039/C4GC02123A     URL    
[237]
Wang Y, Liu Z M, Han B X, Huang Y, Yang G Y. Langmuir, 2005, 21(23): 10846.

doi: 10.1021/la051790z     URL    
[238]
Zhang H, Fu Q, Yao Y X, Zhang Z, Ma T, Tan D L, Bao X H. Langmuir, 2008, 24(19): 10874.

doi: 10.1021/la801348n     pmid: 18729334
[239]
Guo J S, Hsu A, Chu D, Chen R R. J. Phys. Chem. C, 2010, 114(10): 4324.

doi: 10.1021/jp910790u     URL    
[240]
Garcia A C, Gasparotto L H S, Gomes J F, Tremiliosi-Filho G. Electrocatalysis, 2012, 3(2): 147.

doi: 10.1007/s12678-012-0096-z     URL    
[241]
Wang H Q, Liu J B, Wu X, Tong Z H, Deng Z X. Nanotechnology, 2013, 24(20): 205102.

doi: 10.1088/0957-4484/24/20/205102     URL    
[242]
Fageria P, Gangopadhyay S, Pande S. RSC Adv., 2014, 4(48): 24962.

doi: 10.1039/C4RA03158J     URL    
[243]
Wang Z C, Xin L, Zhao X S, Qiu Y, Zhang Z Y, Baturina O A, Li W Z. Renew. Energy, 2014, 62: 556.

doi: 10.1016/j.renene.2013.08.005     URL    
[244]
Kundu M K, Sadhukhan M, Barman S. J. Mater. Chem. B, 2015, 3(7): 1289.

doi: 10.1039/C4TB01740D     URL    
[245]
Guo S X, Zhang Q, Li H B, Guo H F, He W. Nano Res., 2017, 10(9): 3261.

doi: 10.1007/s12274-017-1676-2     URL    
[246]
Sobhani-Nasab A, Behpour M. J. Mater. Sci. Mater. Electron., 2016, 27(2): 1191.

doi: 10.1007/s10854-015-3873-7     URL    
[247]
Rashmi B N, Harlapur S F, Avinash B, Ravikumar C R, Nagaswarupa H P, Anil Kumar M R, Gurushantha K, Santosh M S. Inorg. Chem. Commun., 2020, 111: 107580.

doi: 10.1016/j.inoche.2019.107580     URL    
[248]
Wen X J, Shen C H, Fei Z H, Fang D, Liu Z T, Dai J T, Niu C G. Chem. Eng. J., 2020, 383: 123083.

doi: 10.1016/j.cej.2019.123083     URL    
[249]
Li X P, Xu P, Chen M, Zeng G M, Wang D B, Chen F, Tang W W, Chen C Y, Zhang C, Tan X F. Chem. Eng. J., 2019, 366: 339.

doi: 10.1016/j.cej.2019.02.083     URL    
[250]
Dargo Beyene H, Werkneh A A, Bezabh H K, Ambaye T G. Sustain. Mater. Technol., 2017, 13: 18.
[251]
Whang T J, Huang H Y, Hsieh M T, Chen J J. Int. J. Mol. Sci., 2009, 10(11): 4707.

doi: 10.3390/ijms10114707     URL    
[252]
Kanjwal M A, Barakat N A M, Sheikh F A, Khil M S, Kim H Y. Int. J. Appl. Ceram. Technol., 2010, 7: E54.
[253]
Ghaedi M, Heidarpour S, Nasiri Kokhdan S, Sahraie R, Daneshfar A, Brazesh B. Powder Technol., 2012, 228: 18.

doi: 10.1016/j.powtec.2012.04.030     URL    
[254]
Chen Q C, Wu Q S. J. Hazard. Mater., 2015, 283: 193.

doi: 10.1016/j.jhazmat.2014.09.024     URL    
[255]
Jiao T F, Guo H Y, Zhang Q R, Peng Q M, Tang Y F, Yan X H, Li B B. Sci. Rep., 2015, 5: 11873.

doi: 10.1038/srep11873    
[256]
Kaviya S, Prasad E. RSC Adv., 2015, 5(32): 25532.

doi: 10.1039/c5ra90023a    
[257]
Sinha T, Ahmaruzzaman M. J. Colloid Interface Sci., 2015, 453: 115.

doi: 10.1016/j.jcis.2015.04.053     URL    
[258]
Hou C L, Ma K, Jiao T F, Xing R R, Li K K, Zhou J X, Zhang L X. RSC Adv., 2016, 6(112): 110799.

doi: 10.1039/C6RA23371F     URL    
[259]
Goswami M, Baruah D, Das A M. New J. Chem., 2018, 42(13): 10868.

doi: 10.1039/C8NJ00526E     URL    
[260]
Jose P P A, Kala M S, Kalarikkal N, Thomas S. Res. Chem. Intermed., 2018, 44(9): 5597.

doi: 10.1007/s11164-018-3443-8    
[261]
Khan M A M, Kumar S, Ahamad T, Alhazaa A N. J. Alloys Compd., 2018, 743: 485.

doi: 10.1016/j.jallcom.2018.01.343     URL    
[262]
Liao G F, Li Q, Zhao W Z, Pang Q H, Gao H Y, Xu Z S. Appl. Catal. A Gen., 2018, 549: 102.

doi: 10.1016/j.apcata.2017.09.034     URL    
[263]
Wu Z C, Zhang Y, Tao T X, Zhang L F, Fong H. Appl. Surf. Sci., 2010, 257(3): 1092.

doi: 10.1016/j.apsusc.2010.08.022     URL    
[264]
Zhang D F, Zeng F B. Res. Chem. Intermed., 2010, 36(9): 1055.

doi: 10.1007/s11164-010-0219-1     URL    
[265]
Malaikozhundan B, Vijayakumar S, Vaseeharan B, Jenifer A A, Chitra P, Prabhu N M, Kannapiran E. Microb. Pathog., 2017, 111: 316.

doi: 10.1016/j.micpath.2017.08.039     URL    
[266]
Rostami-Vartooni A, Moradi-Saadatmand A. IET Nanobiotechnology, 2019, 13(4): 407.

doi: 10.1049/iet-nbt.2018.5089     pmid: 31171746
[267]
Das S K, Khan M M R, Parandhaman T, Laffir F, Guha A K, Sekaran G, Mandal A B. Nanoscale, 2013, 5(12): 5549.

doi: 10.1039/c3nr00856h     URL    
[268]
Yola M L, Eren T J, Atar N, Wang S B. Chem. Eng. J., 2014, 242: 333.

doi: 10.1016/j.cej.2013.12.086     URL    
[269]
Goscianska J, Pietrzak R. Catal. Today, 2015, 249: 259.

doi: 10.1016/j.cattod.2014.11.017     URL    
[270]
Ramalingam B, Khan M M R, Mondal B, Mandal A B, Das S K. ACS Sustainable Chem. Eng., 2015, 3(9): 2291.

doi: 10.1021/acssuschemeng.5b00577     URL    
[271]
Satapathy M K, Das P. Desalination Water Treat., 2016, 57(9): 4073.

doi: 10.1080/19443994.2014.987179     URL    
[272]
Elmi Fard N, Fazaeli R. Int. J. Chem. Kinet., 2016, 48(11): 691.

doi: 10.1002/kin.2016.48.issue-11     URL    
[273]
Tsvetkov M, Zaharieva J, Milanova M. Catal. Today, 2020, 357: 453.

doi: 10.1016/j.cattod.2019.07.052     URL    
[274]
Mariselvam R, Ranjitsingh A J A, Mosae Selvakumar P, Alarfaj A A, Munusamy M A. Bioinorganic Chem. Appl., 2016, 2016: 8629178.
[275]
Yang J, An X Y, Liu L Q, Seta F T, Zhang H, Nie S X, Yao S Q, Cao H B, Xu Q L, Liu H B, Ni Y H. Cellulose, 2020, 27(9): 5071.

doi: 10.1007/s10570-020-03161-2    
[276]
Okeke E S, Okoye C O, Atakpa E O, Ita R E, Nyaruaba R, Mgbechidinma C L, Donald Akan O. Resour. Conserv. Recycl., 2022, 177: 105961.

doi: 10.1016/j.resconrec.2021.105961     URL    
[277]
Tirkey A, Upadhyay L S B. Mar. Pollut. Bull., 2021, 170: 112604.

doi: 10.1016/j.marpolbul.2021.112604     URL    
[278]
Hu K S, Tian W J, Yang Y Y, Nie G, Zhou P, Wang Y X, Duan X G, Wang S B. Water Res., 2021, 198: 117144.

doi: 10.1016/j.watres.2021.117144     URL    
[279]
Goh P S, Kang H S, Ismail A F, Khor W H, Quen L K, Higgins D. Chemosphere, 2022, 299: 134418.

doi: 10.1016/j.chemosphere.2022.134418     URL    
[280]
Rout P R, Zhang T C, Bhunia P, Surampalli R Y. Sci. Total Environ., 2021, 753: 141990.

doi: 10.1016/j.scitotenv.2020.141990     URL    
[281]
Rodriguez-Narvaez O M, Peralta-Hernandez J M, Goonetilleke A, Bandala E R. Chem. Eng. J., 2017, 323: 361.

doi: 10.1016/j.cej.2017.04.106     URL    
[282]
Wang Y B, Zhao X, Cao D, Wang Y, Zhu Y F. Appl. Catal. B Environ., 2017, 211: 79.

doi: 10.1016/j.apcatb.2017.03.079     URL    
[283]
Wang F L, Wang Y F, Li Y Y, Cui X H, Zhang Q X, Xie Z J, Liu H J, Feng Y P, Lv W Y, Liu G G. Dalton Trans., 2018, 47(20): 6924.

doi: 10.1039/C8DT00919H     URL    
[284]
Ling Y, Liao G Z, Xu P, Li L S. Sep. Purif. Technol., 2019, 216: 1.

doi: 10.1016/j.seppur.2019.01.057    
[285]
Zhao Z W, Zhang W, Liu W, Li Y Y, Ye J Y, Liang J L, Tong M P. Sci. Total Environ., 2020, 742: 140642.

doi: 10.1016/j.scitotenv.2020.140642     URL    
[286]
Chithra A, Sekar R, Senthil Kumar P, Padmalaya G. Chemosphere, 2022, 295: 133915.

doi: 10.1016/j.chemosphere.2022.133915     URL    
[287]
Dayana Priyadharshini S, Manikandan S, Kiruthiga R, Rednam U, Babu P S, Subbaiya R, Karmegam N, Kim W, Govarthanan M. Environ. Pollut., 2022, 306: 119377.

doi: 10.1016/j.envpol.2022.119377     URL    
[288]
Ferraris M, Perero S, Miola M, Ferraris S, VernÉ E, Morgiel J. Mater. Chem. Phys., 2010, 120(1): 123.

doi: 10.1016/j.matchemphys.2009.10.034     URL    
[289]
Hossain F, Perales-Perez O J, Hwang S, Román F. Sci. Total Environ., 2014, 466/467: 1047.

doi: 10.1016/j.scitotenv.2013.08.009     URL    
[290]
Li Q L, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J. Water Res., 2008, 42(18): 4591.

doi: 10.1016/j.watres.2008.08.015     URL    
[291]
Song B, Zhang C, Zeng G M, Gong J L, Chang Y N, Jiang Y. Arch. Biochem. Biophys., 2016, 604: 167.

doi: 10.1016/j.abb.2016.04.018     URL    
[292]
Pradeep T, Anshup . Thin Solid Films, 2009, 517(24): 6441.

doi: 10.1016/j.tsf.2009.03.195     URL    
[293]
Rai M, Yadav A, Gade A. Biotechnol. Adv., 2009, 27(1): 76.

doi: 10.1016/j.biotechadv.2008.09.002     URL    
[294]
Guzman M, Dille J, Godet S. Nanomed. Nanotechnol. Biol. Med., 2012, 8(1): 37.

doi: 10.1016/j.nano.2011.05.007     URL    
[295]
Maillard J Y, Hartemann P. Crit. Rev. Microbiol., 2013, 39(4): 373.

doi: 10.3109/1040841X.2012.713323     URL    
[296]
Le Ouay B, Stellacci F. Nano Today, 2015, 10(3): 339.

doi: 10.1016/j.nantod.2015.04.002     URL    
[297]
Durán N, Durán M, de Jesus M B, Seabra A B, Fávaro W J, Nakazato G. Nanomed. Nanotechnol. Biol. Med., 2016, 12(3): 789.

doi: 10.1016/j.nano.2015.11.016     URL    
[298]
Xiu Z M, Zhang Q B, Puppala H L, Colvin V L, Alvarez P J J. Nano Lett., 2012, 12(8): 4271.

doi: 10.1021/nl301934w     URL    
[299]
Praveena S M, Aris A Z. Water Qual. Expo. Health, 2015, 7(4): 617.

doi: 10.1007/s12403-015-0167-5     URL    
[300]
Prathna T C, Sharma S K, Kennedy M. Sep. Purif. Technol., 2018, 199: 260.

doi: 10.1016/j.seppur.2018.01.061     URL    
[301]
Jeevanandam J, Krishnan S, Hii Y S, Pan S, Chan Y S, Acquah C, Danquah M K, Rodrigues J. J. Nanostructure Chem., 2022, 12(5): 809.

doi: 10.1007/s40097-021-00465-y    
[302]
Lu F, Astruc D. Coord. Chem. Rev., 2020, 408: 213180.

doi: 10.1016/j.ccr.2020.213180     URL    
[303]
Lu F, Astruc D. Coord. Chem. Rev., 2018, 356: 147.

doi: 10.1016/j.ccr.2017.11.003     URL    
[304]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47(10): 4967.

doi: 10.1021/es305071v     URL    
[305]
Fan Y J, Liu Z, Wang L, Zhan J H. Nanoscale Res. Lett., 2009, 4(10): 1230.

doi: 10.1007/s11671-009-9387-6     URL    
[306]
Anbazhagan V, Ahmed K B A, Janani S. Sens. Actuat. B Chem., 2014, 200: 92.

doi: 10.1016/j.snb.2014.04.033     URL    
[307]
Bhattacharjee Y, Chakraborty A. ACS Sustainable Chem. Eng., 2014, 2(9): 2149.

doi: 10.1021/sc500339n     URL    
[308]
Bootharaju M S, Pradeep T. J. Phys. Chem. C, 2010, 114(18): 8328.

doi: 10.1021/jp101988h     URL    
[309]
Wang Y, Yang F, Yang X R. ACS Appl. Mater. Interfaces, 2010, 2(2): 339.

doi: 10.1021/am9007243     URL    
[310]
Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A. Sens. Actuat. B Chem., 2012, 161(1): 880.

doi: 10.1016/j.snb.2011.11.052     URL    
[311]
Nanda Kumar D, Rajeshwari A, Alex S A, Chandrasekaran N, Mukherjee A. New J. Chem., 2015, 39(2): 1172.

doi: 10.1039/C4NJ01722F     URL    
[312]
Tan H L, Liu B X, Chen Y. Plasmonics, 2013, 8(2): 705.

doi: 10.1007/s11468-012-9461-2     URL    
[313]
Wu L P, Zhao H W, Qin Z H, Zhao X Y, Pu W D J. Anal. Methods Chem., 2012, 2012: 856947.
[314]
Manivannan S, Ramaraj R. Analyst, 2013, 138(6): 1733.

doi: 10.1039/c3an36488g     pmid: 23358544
[315]
Rameshkumar P, Manivannan S, Ramaraj R. J. Nanoparticle Res., 2013, 15(5): 1639.

doi: 10.1007/s11051-013-1639-9     URL    
[316]
Ramesh G V, Radhakrishnan T P. ACS Appl. Mater. Interfaces, 2011, 3(4): 988.

doi: 10.1021/am200023w     URL    
[317]
Sumesh E, Bootharaju M S, Anshup, Pradeep T. J. Hazard. Mater., 2011, 189(1/2): 450.

doi: 10.1016/j.jhazmat.2011.02.061     URL    
[318]
Chen Y, Wu L H, Chen Y H, Bi N, Zheng X, Qi H B, Qin M H, Liao X, Zhang H Q, Tian Y. Microchimica Acta, 2012, 177(3/4): 341.
[319]
Bothra S, Solanki J N, Sahoo S K. Sens. Actuat. B Chem., 2013, 188: 937.

doi: 10.1016/j.snb.2013.07.111     URL    
[320]
Adhikari B, Banerjee A. Chem. Mater., 2010, 22(15): 4364.
[321]
Chakraborty I, Udayabhaskararao T, Pradeep T. J. Hazard. Mater., 2012, 211/212: 396.

doi: 10.1016/j.jhazmat.2011.12.032     URL    
[322]
Ran X, Sun H J, Pu F, Ren J S, Qu X G. Chem. Commun., 2013, 49(11): 1079.

doi: 10.1039/c2cc38403e     URL    
[323]
Zhan L, Yang T, Zhen S J, Huang C Z. Microchimica Acta, 2017, 184(9): 3171.

doi: 10.1007/s00604-017-2250-z     URL    
[324]
Karimi S, Samimi T. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 222: 117216.
[1] 林益军, 朱云龙, 旷桂超, 喻桂朋*, 金日光. 用于放射性碘吸附的多孔有机聚合物[J]. 化学进展, 2017, 29(7): 766-775.
[2] 赵洁, 安秋凤, 李献起, 魏元博. 有机硅在抗菌整理剂中的应用[J]. 化学进展, 2014, 26(0203): 310-319.
[3] 苏晶,张玲,伍青. 两亲性树状聚合物*[J]. 化学进展, 2008, 20(12): 1980-1986.