English
新闻公告
More
化学进展 2023, Vol. 35 Issue (5): 699-708 DOI: 10.7536/PC220933 前一篇   后一篇

• 综述 •

纳米碳分子——合成化学的魅力

鄢剑锋1, 徐进栋1, 张瑞影1, 周品2, 袁耀锋1,*(), 李远明1,*()   

  1. 1 福州大学化学学院 福州 350108
    2 福州大学电气工程与自动化学院 福州 350108
  • 收稿日期:2022-09-29 修回日期:2023-02-28 出版日期:2023-05-24 发布日期:2023-03-25
  • 基金资助:
    国家自然科学基金项目(22071025)

Nanocarbon Molecules — the Fascination of Synthetic Chemistry

Jianfeng Yan1, Jindong Xu1, Ruiying Zhang1, Pin Zhou2, Yaofeng Yuan1(), Yuanming Li1()   

  1. 1 College of Chemistry, Fuzhou University, Fuzhou 350108, China
    2 College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
  • Received:2022-09-29 Revised:2023-02-28 Online:2023-05-24 Published:2023-03-25
  • Contact: * e-mail: Yaofeng_yuan@fzu.edu.cn(Yaofeng Yuan);Yuanming.li@fzu.edu.cn(Yuanming Li)
  • Supported by:
    National Natural Science Foundation of China(22071025)

碳材料的发展极大地推动了人类科技的进步。碳材料通过碳原子之间不同的键合方式、结构和排列,使其具有丰富的性质,并且更多新型碳材料还不断地被发现或合成出来。作为新型碳材料的纳米碳分子由于其本身所拥有的潜在优良性质,在有机电子学、材料科学如生物材料等领域具有广阔的应用前景,因此被誉为是未来最有开发前景的材料。在过去的四十年里,新型纳米碳分子的发现和创造已彻底改变了碳材料的格局,打开了一扇通往全新科学领域的大门。本文重点介绍了近年来具有新颖拓扑结构的纳米碳分子的结构特征以及如何通过有机合成的手段对其进行精准构筑。

The discovery and creation of new carbon materials have motivated the evolution of technology. Carbon is one of the central elements, due to the characteristics of carbon atoms and varying electron configurations, diverse molecules will be discovered and formed. The structures and arrangements of carbon atoms in molecules have a significant impact on their properties. Nanocarbon molecules, as novel carbon materials with excellent properties, have found promising applications in nanotechnology, electronics, optics, and biomedical fields. In the past four decades, the discovery and creation of new variety of nanocarbon materials have opened up a new path to advanced science and technology. This paper focuses on the study of the structural characteristics of nanocarbon molecules with novel topological structures, and the way to achieve full synthetic control over these structures that are reported in recent years.

Contents

1 Introduction

2 Graphene nanoribbons

3 Negatively Curved Nanocarbons

4 Carbon nanorings and carbon nanobelts

4.1 Synthesis of carbon nanorings

4.2 Synthesis of carbon nanobelts

5 Other structures

6 Conclusion and perspectives

()
图1 近年来碳材料家族的发展
Fig. 1 The recent development of the carbon materials
图2 不同类型的碳纳米条带
Fig. 2 Different types of graphene nanoribbons
图3 通过Suzuki-Miyaura偶联“自下而上”液相合成GNRs[18]
Fig. 3 The bottom-up synthesis of GNR by solution-phase polymerization via Suzuki-Miyaura coupling[18]
图4 通过Yamamoto偶联“自下而上”液相合成GNRs[19]
Fig. 4 The synthesis of a chiral-type GNR via Yamamoto coupling[19]
图5 一种马凯晶体或碳施瓦茨体的晶胞结构[20]
Fig. 5 The cellular structure of a Mackey crystal or a carbon Schwarz body, Copyright 2020, Progress in Chemistry[20]
图6 负曲率的纳米石墨烯的合成策略[22,23,31]
Fig. 6 Strategies for the synthesis of nanographene with negative curvature[22,23,31]
图7 以碳纳米环和碳纳米环带为模板合成碳纳米管[7]
Fig. 7 The synthesis of GNTs by “growth-from-template” approach[7]. Copyright 2021, American Chemical Society
图8 代表性的碳纳米环分子的合成[36?~38]
Fig. 8 The representative synthesis of CPPs[36?~38]
图9 近年来基于苯环单元的一些代表性纳米碳分子[40?????~46]
Fig. 9 Some representative nanocarbon molecules based on benzene rings[40?????~46]
图10 碳纳米环带的合成[48???~52]
Fig. 10 The synthesis of CNBs[48???~52]
图11 具有其他拓扑结构的碳纳米环带[53,54,56,57]
Fig. 11 The CNBs with other topological structures[53,54,56,57]
图12 其他新颖结构的碳纳米分子[58??~61]
Fig.12 Other nanocarbon molecules with novel topological structures[58??~61]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896     URL    
[2]
Xu X J, Qin J G, Li Z. Prog. Chem., 2009, 21(12): 2559.
(徐秀娟, 秦金贵, 李振. 化学进展, 2009, 21(12): 2559.).
[3]
Huang C S, Li Y J, Wang N, Xue Y R, Zuo Z C, Liu H B, Li Y L. Chem. Rev., 2018, 118(16): 7744.

doi: 10.1021/acs.chemrev.8b00288     URL    
[4]
Shang H, Gu Y, Wang Y B. University Chemistry, 2020, 35: 201.
(商虹, 顾宇, 王英滨. 大学化学, 2020, 35: 201. ).
[5]
Georgakilas V, Perman J A, Tucek J, Zboril R. Chem. Rev., 2015, 115(11): 4744.

doi: 10.1021/cr500304f     URL    
[6]
Li P, Zhang J. Progress in Chemistry, 2013, 25: 167.
(李盼, 张锦. 化学进展, 2013, 25: 167. ).

doi: 10.7536/PC120758    
[7]
Li Y M, Kono H, Maekawa T, Segawa Y, Yagi A, Itami K. Acc. Mater. Res., 2021, 2(8): 681.

doi: 10.1021/accountsmr.1c00105     URL    
[8]
Majewski M A, Stępień M. Angew. Chem. Int. Ed., 2019, 58(1): 86.

doi: 10.1002/anie.201807004     pmid: 30006951
[9]
Itami K, Maekawa T. Nano Lett., 2020, 20(7): 4718.

doi: 10.1021/acs.nanolett.0c02143     URL    
[10]
Jolly A, Miao D D, Daigle M, Morin J F. Angew. Chem. Int. Ed., 2020, 59(12): 4624.

doi: 10.1002/anie.v59.12     URL    
[11]
Zheng X Q, Feng M, Zhan H B. Progress in Chemistry, 2012, 24: 2320.
(郑小青, 冯苗, 詹红兵. 化学进展, 2012, 24: 2320. ).
[12]
Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K. Science, 2020, 369(6503): 571.

doi: 10.1126/science.abb8880     pmid: 32586951
[13]
Rizzo D J, Veber G, Jiang J W, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F. Science, 2020, 369(6511): 1597.

doi: 10.1126/science.aay3588     URL    
[14]
Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L, Müllen K, Fasel R. Nature, 2010, 466(7305): 470.

doi: 10.1038/nature09211    
[15]
Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M, Dresselhaus M S. Science, 2009, 323(5922): 1701.

doi: 10.1126/science.1166862     URL    
[16]
Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Nanoscale, 2011, 3(1): 86.

doi: 10.1039/C0NR00600A     URL    
[17]
Chen L, Hernandez Y, Feng X L, Müllen K. Angew. Chem. Int. Ed., 2012, 51(31): 7640.

doi: 10.1002/anie.201201084     URL    
[18]
Yang X Y, Dou X, Rouhanipour A, Zhi L J, Räder H J, Müllen K. J. Am. Chem. Soc., 2008, 130(13): 4216.

doi: 10.1021/ja710234t     URL    
[19]
Schwab M G, Narita A, Hernandez Y, Balandina T, Mali K S, De Feyter S, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134(44): 18169.

doi: 10.1021/ja307697j     URL    
[20]
Miao Q, Yang D Y. Progress in Chemistry, 2020, 32: 1835.

doi: 10.7536/PC200633    
(缪谦, 杨代月. 化学进展, 2020, 32: 1835.).
[21]
Kim K, Lee T, Kwon Y, Seo Y, Song J, Park J K, Lee H, Park J Y, Ihee H, Cho S J, Ryoo R. Nature, 2016, 535(7610): 131.

doi: 10.1038/nature18284    
[22]
Pun S H, Wang Y J, Chu M, Chan C K, Li Y K, Liu Z F, Miao Q. J. Am. Chem. Soc., 2019, 141(24): 9680.

doi: 10.1021/jacs.9b03910     URL    
[23]
Pun S H, Chan C K, Luo J Y, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2018, 57(6): 1581.

doi: 10.1002/anie.v57.6     URL    
[24]
Zhang Y Q, Zhu Y K, Lan D N, Pun S H, Zhou Z, Wei Z, Wang Y, Lee H K, Lin C, Wang J P, Petrukhina M A, Li Q, Miao Q. J. Am. Chem. Soc., 2021, 143(13): 5231.

doi: 10.1021/jacs.1c01642     URL    
[25]
Chaolumen, Stepek I A, Yamada K E, Ito H, Itami K. Angew. Chem. Int. Ed., 2021, 60(44): 23508.

doi: 10.1002/anie.202100260     pmid: 33547701
[26]
Kato K, Takaba K, Maki-Yonekura S, Mitoma N, Nakanishi Y, Nishihara T, Hatakeyama T, Kawada T, Hijikata Y, Pirillo J, Scott L T, Yonekura K, Segawa Y, Itami K. J. Am. Chem. Soc., 2021, 143(14): 5465.

doi: 10.1021/jacs.1c00863     URL    
[27]
Feng C N, Kuo M Y, Wu Y T. Angew. Chem. Int. Ed., 2013, 52(30): 7791.

doi: 10.1002/anie.v52.30     URL    
[28]
Márquez I R, Fuentes N, Cruz C M, Puente-Muñoz V, Sotorrios L, Marcos M L, Choquesillo-Lazarte D, Biel B, Crovetto L, GÓmez-Bengoa E, Teresa González M, Martin R, Cuerva J M, Campaña A G. Chem. Sci., 2017, 8(2): 1068.

doi: 10.1039/c6sc02895k     pmid: 28451246
[29]
Qiu Z L, Chen X W, Huang Y D, Wei R J, Chu K S, Zhao X J, Tan Y Z. Angewandte Chemie Int. Ed., 2022, 61(18): e202116955.
[30]
Pun S H, Miao Q. Acc. Chem. Res., 2018, 51(7): 1630.

doi: 10.1021/acs.accounts.8b00140     URL    
[31]
Cheung K Y, Chan C K, Liu Z F, Miao Q. Angew. Chem. Int. Ed., 2017, 56(31): 9003.

doi: 10.1002/anie.201703754     pmid: 28471075
[32]
González Miera G, Matsubara S, Kono H, Murakami K, Itami K. Chem. Sci., 2022, 13(7): 1848.

doi: 10.1039/d1sc05586k     pmid: 35308842
[33]
Omachi H, Nakayama T, Takahashi E, Segawa Y, Itami K. Nat. Chem., 2013, 5(7): 572.

doi: 10.1038/nchem.1655    
[34]
Zhou Q F, Jiang B, Yang H B. Progress in Chemistry, 2018, 30: 628.
(周启峰, 江波, 杨海波. 化学进展, 2018, 30: 628.).

doi: 10.7536/PC170909    
[35]
Parekh V, Guha P. J. Indian Chem. Soc. 1934, 11: 95.
[36]
Jasti R, Bhattacharjee J, Neaton J B, Bertozzi C R. J. Am. Chem. Soc., 2008, 130(52): 17646.

doi: 10.1021/ja807126u     URL    
[37]
Takaba H, Omachi H, Yamamoto Y, Bouffard J, Itami K. Angew. Chem. Int. Ed., 2009, 48(33): 6112.

doi: 10.1002/anie.v48:33     URL    
[38]
Zhang F, Götz G, Winkler H D, Schalley C, Bäuerle P. Angew. Chem. Int. Ed., 2009, 48(36): 6632.

doi: 10.1002/anie.200900101     pmid: 19562806
[39]
Yamago S, Watanabe Y, Iwamoto T. Angewandte Chemie Int. Ed., 2010, 49(4): 644.

doi: 10.1002/anie.200906851     URL    
[40]
Shudo H, Kuwayama M, Shimasaki M, Nishihara T, Takeda Y, Mitoma N, Kuwabara T, Yagi A, Segawa Y, Itami K. Nat. Commun., 2022, 13: 3713.

doi: 10.1038/s41467-022-31530-x    
[41]
Lu D P, Zhuang G L, Wu H T, Wang S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2017, 56(1): 158.

doi: 10.1002/anie.201608963     URL    
[42]
Kayahara E, Iwamoto T, Takaya H, Suzuki T, Fujitsuka M, Majima T, Yasuda N, Matsuyama N, Seki S, Yamago S. Nat. Commun., 2013, 4: 2694.

doi: 10.1038/ncomms3694     pmid: 24165515
[43]
Sun Z, Ikemoto K, Fukunaga T M, Koretsune T, Arita R, Sato S, Isobe H. Science, 2019, 363(6423): 151.

doi: 10.1126/science.aau5441     URL    
[44]
Segawa Y, Kuwayama M, Hijikata Y, Fushimi M, Nishihara T, Pirillo J, Shirasaki J, Kubota N, Itami K. Science, 2019, 365(6450): 272.

doi: 10.1126/science.aav5021     URL    
[45]
Huang Z A, Chen C, Yang X D, Fan X B, Zhou W, Tung C H, Wu L Z, Cong H. J. Am. Chem. Soc., 2016, 138(35): 11144.

doi: 10.1021/jacs.6b07673     URL    
[46]
Li K, Xu Z Q, Deng H, Zhou Z N, Dang Y F, Sun Z. Angew. Chem. Int. Ed., 2021, 60(14): 7649.

doi: 10.1002/anie.v60.14     URL    
[47]
Huang Q, Zhuang G L, Jia H X, Qian M M, Cui S S, Yang S F, Du P W. Angew. Chem. Int. Ed., 2019, 58(19): 6244.

doi: 10.1002/anie.v58.19     URL    
[48]
Povie G, Segawa Y, Nishihara T, Miyauchi Y, Itami K. Science, 2017, 356(6334): 172.

doi: 10.1126/science.aam8158     URL    
[49]
Cheung K Y, Gui S J, Deng C F, Liang H F, Xia Z M, Liu Z F, Chi L F, Miao Q. Chem, 2019, 5(4): 838.

doi: 10.1016/j.chempr.2019.01.004    
[50]
Cheung K Y, Watanabe K, Segawa Y, Itami K. Nat. Chem., 2021, 13(3): 255.

doi: 10.1038/s41557-020-00627-5     pmid: 33495606
[51]
Han Y, Dong S Q, Shao J W, Fan W, Chi C Y. Angew. Chem. Int. Ed., 2021, 60(5): 2658.

doi: 10.1002/anie.202012651     pmid: 33047813
[52]
Zhang Q, Zhang Y E, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(3): 1196.

doi: 10.1021/jacs.9b12181     pmid: 31903753
[53]
Shi T H, Guo Q H, Tong S, Wang M X. J. Am. Chem. Soc., 2020, 142(10): 4576.

doi: 10.1021/jacs.0c00112     URL    
[54]
Li Y M, Segawa Y, Yagi A, Itami K. J. Am. Chem. Soc., 2020, 142(29): 12850.

doi: 10.1021/jacs.0c06007     URL    
[55]
Xue B C, Cai W S, Shao X G. Progress in Chemistry, 2008, 20: 1501.
(薛冰纯, 蔡文生, 邵学广. 化学进展, 2008, 20: 1501. ).
[56]
Fan W, Matsuno T, Han Y, Wang X H, Zhou Q F, Isobe H, Wu J S. J. Am. Chem. Soc., 2021, 143(39): 15924.

doi: 10.1021/jacs.1c08468     URL    
[57]
Segawa Y, Watanabe T, Yamanoue K, Kuwayama M, Watanabe K, Pirillo J, Hijikata Y, Itami K. Nat. Synth, 2022, 1(7): 535.

doi: 10.1038/s44160-022-00075-8    
[58]
Zhu Y P, Xia Z M, Cai Z Y, Yuan Z Y, Jiang N Q, Li T, Wang Y G, Guo X Y, Li Z H, Ma S, Zhong D Y, Li Y, Wang J B. J. Am. Chem. Soc., 2018, 140(12): 4222.

doi: 10.1021/jacs.8b01447     URL    
[59]
Hou H, Zhao X J, Tang C, Ju Y Y, Deng Z Y, Wang X R, Feng L B, Lin D H, Hou X, Narita A, Mu¨llen K, Tan Y Z. Nat. Commun., 2020, 11: 3976.

doi: 10.1038/s41467-020-17691-7    
[60]
Zhu Z Z, Chen Z C, Yao Y R, Cui C H, Li S H, Zhao X J, Zhang Q Y, Tian H R, Xu P Y, Xie F F, Xie X M, Tan Y Z, Deng S L, Quimby J M, Scott L T, Xie S Y, Huang R B, Zheng L S. Sci. Adv., 2019, 5(8): eaaw0982.

doi: 10.1126/sciadv.aaw0982     URL    
[61]
Wang S H, Yuan J, Xie J L, Lu Z H, Jiang L, Mu Y X, Huo Y P, Tsuchido Y, Zhu K L. Angew. Chem. Int. Ed., 2021, 60(34): 18443.

doi: 10.1002/anie.v60.34     URL    
[62]
Leonhardt E J, Jasti R. Nat. Rev. Chem., 2019, 3(12): 672.

doi: 10.1038/s41570-019-0140-0    
[1] 马云华, 邵晗, 蔺腾龙, 邓钦月. 基于多齿钯化合物的磁性纳米颗粒催化材料的设计合成及应用[J]. 化学进展, 2023, 35(9): 1369-1388.
[2] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[3] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[6] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[7] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[8] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[9] 付如刚, 李政, 高磊. 直接以碳化钙为炔源合成有机化合物[J]. 化学进展, 2019, 31(9): 1303-1313.
[10] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[11] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.
[12] 石颖, 闻雷, 吴敏杰, 李峰. 碳材料在钛酸锂负极材料中的应用[J]. 化学进展, 2017, 29(1): 149-161.
[13] 周宏伟, 丁小斌. Belousov-Zhabotinsky反应驱动的智能高分子材料:拓扑结构及仿生功能[J]. 化学进展, 2016, 28(1): 111-120.
[14] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[15] 张慧, 周雅静, 宋肖锴. 基于金属-有机骨架前驱体的先进功能材料[J]. 化学进展, 2015, 27(2/3): 174-191.
阅读次数
全文


摘要

纳米碳分子——合成化学的魅力