English
新闻公告
More
化学进展 2022, Vol. 34 Issue (6): 1402-1413 DOI: 10.7536/PC210727 前一篇   后一篇

• 综述与评论 •

无机水系液流电池研究

南明君1, 乔琳1,*(), 刘玉琴1, 张华民1,2, 马相坤1,*()   

  1. 1 大连海事大学材料科学与工程系 大连 116026
    2 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2021-07-21 修回日期:2021-11-12 出版日期:2021-12-02 发布日期:2021-12-02
  • 通讯作者: 乔琳, 马相坤
  • 基金资助:
    中央高校基本科研业务费专项资金(3132021179); 中国科学院洁净能源先导专项资金(XDA21070100)

A Review of Inorganic Aqueous Flow Battery

Mingjun Nan1, Lin Qiao1(), Yuqin Liu1, Huamin Zhang1,2, Xiangkun Ma1()   

  1. 1 Department of Materials Science and Engineering, Dalian Maritime University, Dalian 116026, China
    2 Dalian Institute of Chemical Physics, University of Chinese Academy of Science, Dalian 116023, China
  • Received:2021-07-21 Revised:2021-11-12 Online:2021-12-02 Published:2021-12-02
  • Contact: Lin Qiao, Xiangkun Ma
  • Supported by:
    Fundamental Research Funds for the Central Universities(3132021179); Strategic Priority Research Program of Chinese Academy of Sciences(XDA21070100)

液流电池具有安全性高、循环寿命长以及环境友好等优势,被认为是大规模储能技术的首选技术之一,能够解决太阳能、风能等可再生能源发电不连续、不稳定的瓶颈问题,推动可再生能源的大规模应用,助力碳达峰、碳中和目标的实现。其中无机水系液流电池具有能量效率高、循环性能稳定、技术成熟等优势,是目前工程应用最为广泛的液流电池。本文介绍了无机水系液流电池的技术现状及其示范应用情况,系统阐述了新型无机水系液流电池的原理、技术现状及其挑战,同时对无机水系液流电池未来的技术创新与突破进行了展望,为无机水系液流电池的发展指明了方向。

Flow battery (FB), an important technology for large-scale energy storage, has the advantages of high safety, long cycle life, environmental friendliness, and so on. FBs can stabilize the fluctuation of renewable energy output, help to promote the large-scale application of renewable energy, and further achieve the goal of peak carbon dioxide emissions and carbon neutrality. Inorganic aqueous flow batteries with high energy efficiency and stable cycle performance are attracting increasing attention. This paper introduces the technology status and application demonstration of the commercial inorganic aqueous flow battery. Then, the principle, current state, and technology challenges of new-type inorganic aqueous flow batteries are summarized. Finally, this paper points out the goals of inorganic aqueous flow batteries for the next 15 years, pointing out the development direction of inorganic aqueous flow batteries.

Contents

1 Introduction

2 Liquid-liquid aqueous flow battery

2.1 Fe-Cr flow battery

2.2 Vanadium flow battery

2.3 Other types of liquid-liquid aqueous flow battery

3 Liquid-deposition aqueous flow battery

3.1 Zn-Br flow battery

3.2 Other types of liquid-deposition aqueous flow battery

4 Conclusion and outlook

()
图1 常见无机电子对的标准电极电位
Fig. 1 The standard electrode potential of inorganic ion pairs
图2 液-液型液流电池结构示意图
Fig. 2 The schematic diagram of liquid-liquid aqueous flow battery system structure
表1 2010~2021年国内典型VFB示范项目
Table 1 The typical VFB demonstration projects in China between 2010 to 2021
图3 V-Mn液流电池反应机理[76]
Fig. 3 The reaction mechanism of V-Mn FB[76]
图4 (a) V-Fe液流电池的反应机理; (b) V-Fe液流电池循环伏安曲线[80]
Fig. 4 (a) The reaction mechanism of V-Fe FB; (b) the CV curve of V-Fe FB[80]
图5 ZBFB国外发展进程
Fig. 5 The development status of ZBFB abroad
图6 (a) ZISFB的反应机理; (b) ZIFB性能对比[101]
Fig. 6 (a) The reaction mechanism of ZISFB; (b) the performance comparison of ZIFB[101]
图7 (a) ZVFB的反应机理; (b) Zn0/2+和VO2+/ VO 2 +的循环伏安曲线[102]
Fig. 7 (a) The reaction mechanism of ZVFB; (b) The CV of Zn0/2+ and VO2+/ VO 2 + ][102]
图8 (a) Sn-Fe液流电池反应机理; (b) Sn-Fe液流电池效率[108]
Fig. 8 (a) The reaction mechanism of Sn-Fe FB; (b) the efficiency of Sn-Fe FB[108]
图9 (a) TMSFB的反应机理; (b) 电解液循环伏安曲线; (c) TMSFB电池寿命[114]
Fig. 9 (a) The reaction mechanism of TMSFB; (b) the CV of TiO2+/Ti3+ and Mn2+/Mn3+/MnO2; (c) the battery life of TMSFB[114]
图10 液流电池发展预测
Fig. 10 Forecast of FB development
[1]
Chu S, Majumdar A. Nature, 2012, 488(7411): 294.

doi: 10.1038/nature11475     URL    
[2]
Jiang S, Li Y, Lu Q, Hong Y, Wang S. Nat. Commun., 2021, 12: 1938.

doi: 10.1038/s41467-021-22256-3     URL    
[3]
Stocks M, Stocks R, Lu B, Cheng C, Blakers A. Joule, 2021, 5(1): 270.

doi: 10.1016/j.joule.2020.11.015     URL    
[4]
Guo C, Li C, Zhang K, Cai Z, Shen L. Appl. Energ., 2021, 286: 116513.

doi: 10.1016/j.apenergy.2021.116513     URL    
[5]
Olabi A G, Wilberforce T, Abdelkareem M A, Ramadan M. Energies, 2021, 14(8): 2159.

doi: 10.3390/en14082159     URL    
[6]
Jian X, Jian W A, Rhy A, Tian L, Shuai M A, Ying J, Yun Q X. J. Energy Storage, 2021, 38: 102508.

doi: 10.1016/j.est.2021.102508     URL    
[7]
Zhou Y, Qi H L, Yang J Y, Bo Z, Huang F, Islam M S, Lu X Y, Dai L M, Amal R, Wang C H, Han Z J. Energy Environ. Sci., 2021, 14(4): 1854.

doi: 10.1039/D0EE03167D     URL    
[8]
Goodenough J B, Cockrell VH. Accounts Chem. Rec., 2013, 46: 5.
[9]
Qiu H Y, Zhao J W, Zhou X H, Cui GL, Acta Chim. Sinica, 2018, 76: 749.

doi: 10.6023/A18060248     URL    
( 邱华玉, 赵井文, 周新红, 崔光磊. 化学学报, 2018, 76: 749.).
[10]
Chang Z H, Wang J T, Wu Z H, Zhao J L, Lu S G. Progress in Chemistry, 2018, 30: 1960.
( 常增花, 王建涛, 武兆辉, 赵金玲, 卢世刚. 化学进展,2018, 30: 1960.).
[11]
Zhuang Q C, Yang Z, Zhang L, Cui Y H. Progress in Chemistry, 2020, 32: 761.
( 庄全超, 杨梓, 张蕾, 崔艳华. 化学进展, 2020, 32: 761.).

doi: 10.7536/PC191116    
[12]
Jens N N R, Tatjana H, Peter F. Angew. Chem. Int. Ed., 2014, 54: 9776.

doi: 10.1002/anie.201410823     URL    
[13]
Wang W, Luo Q T, Li B, Wei X L, Li L Y, Yang Z G. Adv. Funct. Mater., 2013, 23(8): 970.

doi: 10.1002/adfm.201200694     URL    
[14]
Romadina E I, Volodin I A, Stevenson K J, Troshin P A. J. Mater. Chem. A, 2021, 9(13): 8303.

doi: 10.1039/D0TA11860E     URL    
[15]
Pang S, Wang X Y, Wang P, Ji Y L. Angewandte Chemie Int. Ed., 2021, 60(10): 4953.

doi: 10.1002/anie.202016889     URL    
[16]
Wang C X, Yu B, Liu Y Z, Wang H Z, Zhang Z W, Xie C X, Li X F, Zhang H M, Jin Z. Energy Storage Mater., 2021, 36: 417.
[17]
Lopez-Atalaya M, Codina G, Perez J R, Vazquez J L, Aldaz A. J. Power Sources, 1992, 39(2): 147.

doi: 10.1016/0378-7753(92)80133-V     URL    
[18]
Thaller L H. NASA TM-79143, DOE/NASA/1002-79/3, 1979.
[19]
Lin Z Q, Jiang Z Y. Chin. J. Power Sources, 1991(2): 32.
( 林兆勤, 江志韫. 电源技术, 1991(2): 32.).
[20]
Futamata M, Higuchi S, Nakamura O, Ogino I, Takada Y, Okazaki S, Ashimura S, Takahashi S. J. Power Sources, 1988, 24(2): 137.

doi: 10.1016/0378-7753(88)80098-3     URL    
[21]
Zhang H M, Zhang Y, Liu Z H, Wang X L. Progress in Chemistry, 2009, 21: 2333.
( 张华民, 张宇, 刘宗浩, 王晓丽. 化学进展, 2009, 21: 2333.).
[22]
Grigorii L, Soloveichi K. Chem. Rev., 2015, 115: 11533.

doi: 10.1021/cr500720t     URL    
[23]
Yang L, Wang H, Li X M, Zhao Z, Zuo Y J, Liu Y J, Liu Y. Energy Storage Science and Technology, 2020, 9: 751.
( 杨林, 王含, 李晓蒙, 赵钊, 左元杰, 刘雨佳, 刘赟. 储能科学与技术, 2020, 9: 751.).
[24]
Hagedorn. NASA redox storage system development project. final report. Washington, 1984.
[25]
Wu C, Scherson D, Calvo E J. Electrochem. Soc., 1986, 133: 2109.

doi: 10.1149/1.2108351     URL    
[26]
Na C A, Hz A, Xdl A, Cysb C. Electrochimi. Acta, 2020, 336: 135646.

doi: 10.1016/j.electacta.2020.135646     URL    
[27]
Jalan V, Morriseau B, Swette L. Office of Scientific and Technical Information (OSTI), 1982.
[28]
Zeng Y K, Zhou X L, Zeng L, Yan X H, Zhao T S. J. Power Sources, 2016, 327: 258.

doi: 10.1016/j.jpowsour.2016.07.066     URL    
[29]
Zhang H, Yi T, Li J, Bing X. Electrochimi. Acta, 2017, 248: 603.

doi: 10.1016/j.electacta.2017.08.016     URL    
[30]
Wang S L, Xu Z Y, Wu X L, Zhao H, Zhao J L, Liu J G, Yan C W, Fan X Z. Electrochimica Acta, 2021, 368: 137524.

doi: 10.1016/j.electacta.2020.137524     URL    
[31]
Rychcik M, Skyllas-Kazacos M. J. Power Sources, 1988, 22(1): 59.

doi: 10.1016/0378-7753(88)80005-3     URL    
[32]
Sukkar T, Skyllas-Kazacos M. J. Appl. Electrochem., 2004, 34(2): 137.

doi: 10.1023/B:JACH.0000009931.83368.dc     URL    
[33]
Prifti H, Parasuraman A, Winardi S, Lim T M, Skyllas-Kazacos M. Membranes, 2012, 2(2): 275.

doi: 10.3390/membranes2020275     pmid: 24958177
[34]
Sun B, Skyllas-Kazacos M. Electrochimica Acta, 1992, 37(7): 1253.

doi: 10.1016/0013-4686(92)85064-R     URL    
[35]
Rui X H, Oo M O, Sim D H, Raghu S C, Yan Q Y, Lim T M, Skyllas-Kazacos M. Electrochimica Acta, 2012, 85: 175.

doi: 10.1016/j.electacta.2012.08.119     URL    
[36]
Noack J, Roznyatovskaya N, Kunzendorf J, Skyllas-Kazacos M, Menictas C, Tübke J. J. Energy Chem., 2018, 27(5): 1341.

doi: 10.1016/j.jechem.2018.03.021     URL    
[37]
Cao L Y, Skyllas-Kazacos M, Menictas C, Noack J. J. Energy Chem., 2018, 27(5): 1269.

doi: 10.1016/j.jechem.2018.04.007     URL    
[38]
Skyllas-Kazacos M, Cao L Y, Kazacos M, Kausar N, Mousa A. ChemInform, 2016, 47(37): 1521.
[39]
Rahman F, Skyllas-Kazacos M. J. Power Sources, 2009, 189(2): 1212.

doi: 10.1016/j.jpowsour.2008.12.113     URL    
[40]
Mousa A, Skyllas-Kazacos M. ChemElectroChem, 2017, 4(1): 130.

doi: 10.1002/celc.201600426     URL    
[41]
Yan Y T, Skyllas-Kazacos M, Bao J. J. Energy Storage, 2017, 11: 104.

doi: 10.1016/j.est.2017.01.007     URL    
[42]
Yan Y T, Li Y F, Skyllas-Kazacos M, Bao J. J. Power Sources, 2016, 322: 116.

doi: 10.1016/j.jpowsour.2016.05.011     URL    
[43]
Skyllas-Kazacos M, Kazacos M. J. Power Sources, 2011, 196(20): 8822.

doi: 10.1016/j.jpowsour.2011.06.080     URL    
[44]
Tang A, Bao J, Skyllas-Kazacos M. J. Power Sources, 2011, 196(24): 10737.

doi: 10.1016/j.jpowsour.2011.09.003     URL    
[45]
Skyllas-Kazacos M, Goh L. J. Membr. Sci., 2012, 399/400: 43.

doi: 10.1016/j.memsci.2012.01.024     URL    
[46]
Qiao L, Liu S M, Cheng H D, Ma X K. Membranes, 2022, 12(4): 388.

doi: 10.3390/membranes12040388     URL    
[47]
Yuan Z Z, Zhu X X, Li M R, Lu W J, Li X F, Zhang H M. Angew. Chem. Int. Ed., 2016, 55(9): 3058.

doi: 10.1002/anie.201510849     URL    
[48]
Moore M, Counce R. M, Watson J, Zawodzinsk T. J. Adv. Chem. Eng., 2015, 5: 1000140.
[49]
Kazacos M, Cheng M, Skyllas-Kazacos M. J. Appl. Electrochem., 1990, 20(3): 463.

doi: 10.1007/BF01076057     URL    
[50]
Li L, Kim S, Wang W, Vijayakumar M, Nie Z, Chen B. Adv. Energy Mater., 2011, 1: 394.

doi: 10.1002/aenm.201100008     URL    
[51]
Ahn Y, Kim D. Energy Storage Mater., 2020, 31: 105.
[52]
Ye J, Zhao X, Ma Y, Su J, Sun L. Adv. Energy Mater., 2020, 10: 1904041.

doi: 10.1002/aenm.201904041     URL    
[53]
Qian P H, Wang H X, Jiang Y H, Zhou Y, Shi H F. J. Mater. Chem. A, 2021, 9(7): 4240.

doi: 10.1039/D0TA11037J     URL    
[54]
Di M, Hu L, Gao L, Yan X, He G. Chem. Eng. J., 2020, 399: 125833.

doi: 10.1016/j.cej.2020.125833     URL    
[55]
Xu W X, Zhao Y Y, Yuan Z Z, Li X F, Zhang H M, Vankelecom I F J. Adv. Funct. Mater., 2015, 25(17): 2583.

doi: 10.1002/adfm.201500284     URL    
[56]
Yuan Z Z, Li X F, Duan Y Q, Zhao Y Y, Zhang H M. Polym. Chem., 2015, 6(30): 5385.

doi: 10.1039/C5PY00482A     URL    
[57]
Yuan Z Z, Li X F, Zhao Y Y, Zhang H M. ACS Appl. Mater. Interfaces, 2015, 7(34): 19446.

doi: 10.1021/acsami.5b05840     URL    
[58]
Zhang H Z, Zhang H M, Zhang F X, Li X F, Li Y, Vankelecom I. Energy Environ. Sci., 2013, 6(3): 776.

doi: 10.1039/c3ee24174b     URL    
[59]
Yuan Z Z, Duan Y Q, Zhang H Z, Li X F, Zhang H M, Vankelecom I. Energy Environ. Sci., 2016, 9(2): 441.

doi: 10.1039/C5EE02896E     URL    
[60]
Lu W J, Yuan Z Z, Zhao Y Y, Li X F, Zhang H M, Vankelecom I F J. Energy Environ. Sci., 2016, 9(7): 2319.

doi: 10.1039/C6EE01371F     URL    
[61]
Lu W J, Yuan Z Z, Li M R, Li X F, Zhang H M, Vankelecom I. Adv. Funct. Mater., 2017, 27(4): 1604587.

doi: 10.1002/adfm.201604587     URL    
[62]
Wang R, Li Y. Energy Storage Mater., 2020, 31: 23051.
[63]
Yu L H, Lin F, Xu L, Xi J Y. J. Energy Chem., 2019, 35: 55.

doi: 10.1016/j.jechem.2018.11.004     URL    
[64]
Wang R, Li Y S, Wang Y N, Fang Z. Appl. Energy, 2020, 261: 114369.

doi: 10.1016/j.apenergy.2019.114369     URL    
[65]
Sun J, Jiang H R, Zhang B W, Chao C Y H, Zhao T S. Appl. Energy, 2020, 259: 114198.

doi: 10.1016/j.apenergy.2019.114198     URL    
[66]
Wei L, Zhao T S, Zeng L, Zeng Y K, Jiang H R. J. Power Sources, 2017, 341: 318.

doi: 10.1016/j.jpowsour.2016.12.016     URL    
[67]
Jiang H R, Sun J, Wei L, Wu M C, Shyy W, Zhao T S. Energy Storage Mater., 2020, 24: 529.
[68]
Largent R, Skylas-Kazacos M, Chieng, J. 23rd Photovoltaic Specialists Conference, Louisville, Kentucky, IEEE, 1993: 1119.
[69]
Shibata A, Sato K. Journal of Power Engineering, 1999, 13: 130.

doi: 10.1049/pe:19990305     URL    
[70]
Xie C X, Zheng Q, Li X F, Zhang H M. Energy Storage Sci. Technol., 2017, 6(5): 1050.
( 谢聪鑫, 郑琼, 李先锋, 张华民. 储能科学与技术, 2017, 6(5): 1050.)
[71]
Ma X, Zhang H, Xu X. The International Coaltion for Energy Storage and Innovation, Dalian, China, 2019..
[72]
Li X F, Zhang H M, Mai Z S, Zhang H Z, Vankelecom I. Energy Environ. Sci., 2011, 4(4): 1147.

doi: 10.1039/c0ee00770f     URL    
[73]
Zhang M, Moore M, Watson J J. Electrochem. Soc., 2012, 159: A1183.

doi: 10.1149/2.041208jes     URL    
[74]
Xue F Q, Wang Y L, Wang W H, Wang X D. Electrochimica Acta, 2008, 53(22): 6636.

doi: 10.1016/j.electacta.2008.04.040     URL    
[75]
Park S, Lee H, Lee H J, Kim H. J. Power Sources, 2020, 451: 227746.

doi: 10.1016/j.jpowsour.2020.227746     URL    
[76]
Reynard D, Maye S, Peljo P, Chanda V, Girault H H, Gentil S. Chem. Eur. J., 2020, 26(32): 7250.

doi: 10.1002/chem.202000340     URL    
[77]
Kaliyaraj S, Subramanian S, Pitchai R, Mani U. Electrochimi. Acta, 2020, 345: 136245.

doi: 10.1016/j.electacta.2020.136245     URL    
[78]
Kaku H, Dong Y R, Hanafusa K, Moriuchi K, Shigematsu T. ECS Trans., 2016, 72(10): 1.
[79]
Kaku H, Kawagoe Y, Dong Y R, Tatsumi R, Moriuchi K, Shigematsu T. ECS Trans., 2017, 77(11): 173.
[80]
Wang W, Kim S, Chen B W, Nie Z M, Zhang J L, Xia G G, Li L Y, Yang Z G. Energy Environ. Sci., 2011, 4(10): 4068.

doi: 10.1039/c0ee00765j     URL    
[81]
Zhou H T, Zhang H M, Zhao P, Yi B L. Electrochimica Acta, 2006, 51(28): 6304.

doi: 10.1016/j.electacta.2006.03.106     URL    
[82]
Zhao P, Zhang H M, Zhou H T, Yi B L. Electrochimica Acta, 2005, 51(6): 1091.

doi: 10.1016/j.electacta.2005.06.008     URL    
[83]
Zhou H T, Zhang H M, Zhao P, Yi B L. Electrochemistry, 2006, 74(4): 296.

doi: 10.5796/electrochemistry.74.296     URL    
[84]
Walsh F C. Pure Appl. Chem., 2001, 73(12): 1819.

doi: 10.1351/pac200173121819     URL    
[85]
Zhou H T, Zhang H M, Zhao P, Yi B L. Renewable Energy Resources, 2005, 3: 62.
( 周汉涛, 张华民, 赵平, 衣宝廉. 可再生能源, 2005, 3: 62.).
[86]
Wen Y, Cheng J, Zhang H M, Yang Y S. Battery Bimonthly, 2008, 38: 247.
( 文越华, 程杰, 张华民, 杨裕生. 电池, 2008, 38: 247.).
[87]
Li Z J, Weng G M, Zou Q L, Cong G T, Lu Y C. Nano Energy, 2016, 30: 283.

doi: 10.1016/j.nanoen.2016.09.043     URL    
[88]
Gong K, Xu F, Grunewald J B, Ma X Y, Zhao Y, Gu S, Yan Y S. ACS Energy Lett., 2016, 1(1): 89.

doi: 10.1021/acsenergylett.6b00049     URL    
[89]
Sreenath S, Sharma N K, Nagarale R K. RSC Adv., 2020, 10(73): 44824.

doi: 10.1039/D0RA08316J     URL    
[90]
Shin M, Noh C, Chung Y, Kwon Y. Chem. Eng. J., 2020, 398: 125631.

doi: 10.1016/j.cej.2020.125631     URL    
[91]
Khor A, Leung P, Mohamed M R, Flox C, Xu Q, An L, Wills R G A, Morante J R, Shah A A. Mater. Today Energy, 2018, 8: 80.
[92]
Jens N, Roznyatovskaya N, Tatjana H, Peter F. Angew. Chem. Int. Ed., 2014, 54: 9776.

doi: 10.1002/anie.201410823     URL    
[93]
Lu W J, Xie C X, Zhang H M, Li X F. ChemSusChem, 2018, 11(23): 3996.

doi: 10.1002/cssc.201801657     URL    
[94]
Zhou D B, Yu Z Y. Battery Bimonthly, 2004, 6, 442.
( 周德璧, 于中一. 电池, 2004, 6, 442.).
[95]
Lin H. Master’s Dissertation of Northeast Electric Power University, 2019.
( 林航. 东北电力大学硕士论文, 2019.).
[96]
Biswas S, Senju A, Mohr R, Hodson T, Karthikeyan N, Knehr K W, Hsieh A G, Yang X F, Koel B E, Steingart D A. Energy Environ. Sci., 2017, 10(1): 114.

doi: 10.1039/C6EE02782B     URL    
[97]
van Egmond W J, Saakes M, Porada S, Meuwissen T, Buisman C J N, Hamelers H V M. J. Power Sources, 2016, 325: 129.

doi: 10.1016/j.jpowsour.2016.05.130     URL    
[98]
Zhang L Q, Zhang H M, Lai Q Z, Li X F, Cheng Y H. J. Power Sources, 2013, 227: 41.

doi: 10.1016/j.jpowsour.2012.11.033     URL    
[99]
Li B, Nie Z M, Vijayakumar M, Li G S, Liu J, Sprenkle V, Wang W. Nat. Commun., 2015, 6: 6303.

doi: 10.1038/ncomms7303     URL    
[100]
Xie C X, Zhang H M, Xu W B, Wang W, Li X F. Angew. Chem. Int. Ed., 2018, 57(35): 11472.

doi: 10.1002/anie.201806827     URL    
[101]
Xie C X, Liu Y, Lu W J, Zhang H M, Li X F. Energy Environ. Sci., 2019, 12(6): 1834.

doi: 10.1039/C8EE02825G     URL    
[102]
Ulaganathan M, Suresh S, Mariyappan K, Periasamy P, Pitchai R. ACS Sustainable Chem. Eng., 2019, 7(6): 6053.

doi: 10.1021/acssuschemeng.8b06194     URL    
[103]
Clarke R. WO 03/ 017408 A1, 2003.
[104]
Clarke R. US 2004/ 0197649 A1, 2004.
[105]
Clarke R. US 7560189 B2, 2009.
[106]
Xie C X, Li T Y, Deng C Z, Song Y, Zhang H M, Li X F. Energy Environ. Sci., 2020, 13(1): 135.

doi: 10.1039/C9EE03702K     URL    
[107]
Chen F Y, Sun Q, Gao W, Liu J G, Yan C W, Liu Q Y. J. Power Sources, 2015, 280: 227.

doi: 10.1016/j.jpowsour.2015.01.049     URL    
[108]
Zhou X L, Lin L Y, Lv Y H, Zhang X Y, Wu Q X. J. Power Sources, 2018, 404: 89.

doi: 10.1016/j.jpowsour.2018.10.011     URL    
[109]
Zeng Y K, Yang Z F, Lu F, Xie Y L. Appl. Energy, 2019, 255: 113756.

doi: 10.1016/j.apenergy.2019.113756     URL    
[110]
McGrath M J, Patterson N, Manubay B C, Hardy S H, Malecha J J, Shi Z X, Yue X J, Xing X, Funke H H, Gin D L, Liu P, Noble R D. Ind. Eng. Chem. Res., 2019, 58(49): 22250.

doi: 10.1021/acs.iecr.9b04592     URL    
[111]
Hawthorne K L, Petek T J, Miller M A, Wainright J S, Savinell R F. J. Electrochem. Soc., 2014, 162(1): A108.

doi: 10.1149/2.0591501jes     URL    
[112]
Hawthorne K L, Wainright J S, Savinell R F. J. Electrochem. Soc., 2014, 161(10): A1662.

doi: 10.1149/2.0761410jes     URL    
[113]
Yu S C, Yue X J, Holoubek J, Xing X, Pan E, Pascal T, Liu P. J. Power Sources, 2021, 513: 230457.

doi: 10.1016/j.jpowsour.2021.230457     URL    
[114]
Qiao L, Xie C X, Nan M J, Zhang H M, Ma X K, Li X F. J. Mater. Chem. A, 2021: 12606.
[1] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[2] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[3] 王刚, 陈金伟, 朱世富, 张洁, 刘效疆, 王瑞林. 全钒氧化还原液流电池碳素类电极的活化[J]. 化学进展, 2015, 27(10): 1343-1355.
[4] 王刚, 陈金伟, 汪雪芹, 田晶, 刘效疆, 王瑞林. 全钒氧化还原液流电池电解液[J]. 化学进展, 2013, 25(07): 1102-1112.
[5] 汪南方, 刘素琴*. 全钒液流电池隔膜的制备与性能[J]. 化学进展, 2013, 25(01): 60-68.
[6] 张亚萍 陈艳 周元林 何平. 全钒氧化还原液流电池隔膜*[J]. 化学进展, 2010, 22(0203): 384-387.
阅读次数
全文


摘要

无机水系液流电池研究