English
新闻公告
More
化学进展 2021, Vol. 33 Issue (9): 1496-1510 DOI: 10.7536/PC201116 前一篇   后一篇

• 综述 •

有机小分子荧光探针对甲醛的识别及其应用

王学川2,*(), 王岩松1, 韩庆鑫2, 孙晓龙3   

  1. 1 陕西科技大学化学与化工学院 西安 710021
    2 陕西科技大学轻工科学与工程学院 生物质与功能材料研究所 西安 710021
    3 西安交通大学生命科学与技术学院 西安 710049
  • 收稿日期:2020-11-13 修回日期:2021-04-21 出版日期:2021-09-20 发布日期:2021-09-21
  • 通讯作者: 王学川
  • 基金资助:
    国家“十三五”重点研发计划(2017YFB0308500); 国家自然科学基金项目(21907080); 国家自然科学基金项目(21476134); 陕西省自然科学基金项目(2020JM-069); 陕西省自然科学基础研究计划(2019JQ-456)

Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications

Xuechuan Wang2(), Yansong Wang1, Qingxin Han2, Xiaolong Sun3   

  1. 1 College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
    2 College of Bioresources Chemical and Materials Engineering, Institute of Biomass and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
    3 School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
  • Received:2020-11-13 Revised:2021-04-21 Online:2021-09-20 Published:2021-09-21
  • Contact: Xuechuan Wang
  • Supported by:
    National Key Research and Development Program of China in the 13th Five-Year Plan(2017YFB0308500); National Natural Science Foundation of China(21907080); National Natural Science Foundation of China(21476134); Natural Science Foundation of Shaanxi Province(2020JM-069); Natural Science Basic Research Program of Shaanxi Province(2019JQ-456)

甲醛不仅用作工业化学品,也是调节人体生理活动的必要代谢产物。但是,人体从外环境过量的摄入甲醛或者内环境甲醛代谢的不平衡,会造成器官癌变和老年痴呆等重大疾病。有机小分子荧光探针以其高灵敏度、高选择性、可视化和原位检测等特点,使其在生物体内外甲醛检测和生物成像领域具有应用优势,同时也为实际产品中甲醛的痕量检测提供一种新方法。近五年来,甲醛荧光探针得到了快速的发展。本文主要从甲醛荧光探针的反应类型、生物体中甲醛的荧光成像以及在实际样品(商品)检测应用三个方面,介绍有机小分子荧光探针对甲醛的识别和应用。最后总结指出,不同类型的有机小分子荧光探针在不断开发、结构优化和光学性能提升及满足辅助生物医学方向长期性研究的同时,也能拓展应用范围,达到短期内对实际产品中甲醛快速(原位)检测的目的。

Formaldehyde (FA) is not only used as a basic chemical for industrial products, but also a necessary metabolite for regulating human physiological activities. However, excessive intake from the external environment or unbalanced metabolism homeostasis of the internal environment would cause critical diseases to the human body such as organ cancers, Alzheimer?s disease and so on. The high sensitivity and selectivity with visualization and in-situ detection by means of small-molecular fluorescent probe, provides superiority for identification of FA and biological image in vitro and in vivo, and a new detection method for the trace detection of FA in real products as well. In the past five years, fluorescent probes of FA have developed rapidly. This article mainly reviews the research progress of fluorescent probes for FA recognition and applications, including the general reaction mechanisms and the applications in organisms and samples with commercial products. It is concluded that the small molecular fluorescent probes should be continuously improved in structures and optical characteristics to not only assist long-term research in biomedicine, but also lead to the achievable goals of fast (in situ) detecting FA in practice from actual products.

Contents

1 Introduction

2 Reaction mechanisms of FA fluorescent probes

2.1 The 2-aza-Cope rearrangement

2.2 The methylenehydrazine

2.3 The formimine and others

3 Fluorescence imaging applications

3.1 For cell imaging

3.2 For tissue imaging

3.3 For in vivo imaging

4 Detections of FA in samples (products)

4.1 In food

4.2 In air

5 Conclusion and outlook

()
表1 甲醛荧光探针总结
Table 1 Summary of formaldehyde fluorescent probes
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
①The 2-aza-Cope rearrangement
FP1 633, 650 3 h 10 μM
Cell (HEK293TN and NS1) 38
FAP-1 645, 662 2 h 5 μM
Cell (HEK293T and MCF7) 39
FAP488 488, 515 2 h 10 μM
40
FAP555 555, 572 2 h 10 μM
Cell (HEK293T) 40
CFAP540 410, 540 1 h 10 μM
(cp: 10 μM, 25~50 μM)
Cell (HEK293) 41
CFAP700 540, 700 1 h
(cp: 10 μM, 25~50 μM)
Mice 41
RFFP 318, 359/451 2 h 59.6 μM
(cp: 10 μM, 0~3 mM)
Cell (HeLa) Formalin fixative 42
FAP 405, 495/570 2 h 0.5 μM
(cp: 20 μM, 0~200 μM)
Root tissue of a plant Water samples 43
RFAP-1 420/470, 510 2 h 0.3 μM
(cp: 10 μM, 0~40 μM)
Cell (HEK293T) 44
Lyso-TPFP 405, 506 3 h 3.0 μM
(cp: 10 μM, 10~250 μM)
Cell (HepG2 and HeLa);Mice 45
MQAP 355, 405/490 2.5 h 4.054 μM
(cp: 10 μM, 0~1 mM)
Cell (MCF7) 46
CA 405, 451 3.3 h 41.6 μM
(cp: 10 μM, 0~20 μM)
Cell (HeLa); zebrafish;
liver tissue
47
CHFA 360, 517 3 h 1.71 μM
(cp: 20 μM, 0~140 μM)
Cell (HeLa) 48
FATP1 390, 526 3 h 0.2 μM
(cp: 10 μM, 1~50 μM)
Cell (HEK293 and MCF7); liver tissue 49
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
Probe-1 400, 438/533 3 h 10 μM
(cp: 10 μM, 0~800 μM)
Cell (MCF7);
tissues of mice
50
TPNF 350, 510 3 h 5 μM
(cp: 20 μM, 0~500 μM)
Cell (HeLa);zebrafish 51
Naph-FA 395, 518 3 h 0.22 μM
(cp: 10 μM, 10~350 μM)
Cell (HeLa) 52
HBT-FA 350, 462/541 3 h 410 μM
(cp: 20 μM, 0~30 mM)
Calf serum;
formaldehyde gas
53
FA-P 350, 542 3 h 250 μM
(cp: 5 μM, 0~10 mM)
Bovine serum;
formaldehyde gas
54
B1 390, 472 2 h 0.107 μM
(cp: 10 μM, 0~10 μM)
Cell (HEK293T) 55
TPE-FA 335, 504 1 h 0.036 mg/m3
(0~1.6 mg/m3)
Formaldehyde gas 56
TP-FA 305, 442/488 ~1 h 51 μM
(cp: 40 μM, 0~5.6 mM)
Formaldehyde gas 57
PIPBA 350, 440/520 2 h 0.84 μM
(cp: 5 μM, 0~0.6 mM)
Cell (HeLa); zebrafish; tissues of mice 58
SO-GJP 366, 393/542 3 h 1.55 μM
(cp: 10 μM, 10~800 μM)
Cell (HeLa) Formaldehyde gas 59
AENO 390, 513 2.5 h 0.57 μM
(cp: 10 μM, 0~150 μM)
Cell (HeLa) Toffee 60
PBD-FA 470, 563 3 h 43.5/49.7 nM
(cp: 10 μM, 0~100/200~500 μM)
Cell (HeLa) 61
DPFP 455, 555 ~0.5 h 10 μM
(cp: 5 μM, 0~250 μM)
Cell (HeLa) 62
P-FA 450, 480/550 1.5 h 0.96 μM
(cp: 10 μM, 0~800 μM)
Cell (HeLa) 63
Probe 1 430, 492/552 1.5 h 0.58 μM
(cp: 10 μM, 0~500 μM)
Cell (MGC-803); zebrafish 64
PrAK 468, 510 1 h 25 μM
(cp: 0.5 μM, 0~2 mM)
Cell (HEK293T) 65
FATP-1 405, 565 3 h 0.3 μM
(cp: 10 μM, 0~2 mM)
Cell (CCK-8 and SH-SY5Y); epileptic mice 66
2 and 3 300, 545 1 h 100 nM
(cp: 100 μM, 0~50 μM)
Formaldehyde gas 67
②The methylenehydrazine
Probe 1 350, 467 0.9 μM
(cp: 10 μM, 0~130 μM)
Seafood 68
Na-FA 440, 543 0.5 h 0.71 μM Cell (HeLa);liver tissue Patient urine 69,110
1 and 2 430, 541 8 min 0.78 μM
(cp: 1 μM, 0~10 μM)
Cell (4T-1 and 3T3);
tumor tissue
70
Na-FA-Lyso 440, 543 0.5 h 5.02 μM
(cp: 5 μM, 0~50 μM)
Cell (HeLa) 71
Na-FA-ER 440, 543 ~0.5 h 5.24 μM
(cp: 5 μM, 0~50 μM)
Cell (HeLa) 72
Mito-FA-FP 440, 550 ~0.5 h 12.4 μM
(cp: 5 μM, 0~50 μM)
Cell (HeLa);
zebrafish
73
NaP 440, 550 ~0.5 h 1.62 μM
(cp: 5 μM, 0~10 μM)
Cell (HeLa) 74
RBNA 440, 534 5 min 0.21 μM
(cp: 10 μM, 0~120 μM)
Cell (HeLa);
zebrafish
Seafood 75
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
NpFA 325, 550 65 s 8.3 nM
(cp: 1 μM, 0~12 μM)
Onion tissue; zebrafish Seafood 76
NPz 380, 512 4 min 0.25 ppm
(cp: 10 μM, 0~1.6 mM)
Formaldehyde gas 77
NA3 400, 515 9 min 0.104 μM
(cp: 5 μM, 0~200 μM)
Formaldehyde gas 78
HyAN 300, 445 5 min 0.23 μM
(cp: 20 μM, 0~200 μM)
Cell (HeLa) 79
BHA 420, 466 0.5 h 0.18 μM
(cp: 10 μM, 0~100 μM)
Cell (HeLa) 80
Naph-1 405, 510 2 h 0.35 μM
(cp: 10 μM, 0~100 μM)
Cell (HeLa) 81
DTH 385, 508/534 ~0.2 h 0.29 μM
(cp: 15 μM, 0~20 μM)
Cell (HeLa) Formaldehyde gas 82
CmNp-CHO 385, 526/550 1 min 8.3 ± 0.3 nM
(cp: 5 μM, 0~10 μM)
Cell (HeLa);
onion tissue; zebrafish
Seafood 83
PDI-HY 540, 582 2 min 1.5 μM
(cp: 5 μM, 2~10 μM)
Cell (HeLa) 84
FAP-1 440, 553 1.5 h 0.76 μM
(cp: 5 μM, 0~80 μM)
Leather 85
PFM 393, 500 1 min 0.4 μM
(cp: 10 μM, 0~200 μM)
Cell (HBMECs);
brain slices of mice
86
ANI 440, 518 3 min 0.988 μM
(cp: 10 μM, 0~13 mM)
Cell (HeLa) 87
MPAB 365, 525 6 min 20 nM
(cp: 10 μM, 0~30 μM)
Cell (SMMC-7721) Formaldehyde gas 88
Probe 475, 530/600 5 min 120 nM
(cp: 10 μM, 0~60 μM)
Formaldehyde gas 89
FAP 470, 550 ~0.6 h 0.89 μg/L (cp: 12.5 μM, 0.015~0.8 μg/L) Formaldehyde gas 90
③The formimine and others
dRB-EDA 560, 590 1 h Cell (L929) 91
R6-FA 530, 560 10 s 0.77 μM
(cp: 10 μM, 2~10 μM)
Cell (HeLa) Mushroom;
formaldehyde gas
92
L 520, 620 5 min 8.3 μM
(cp: 5 μM, 0~5 mM)
Cell (L929) 93
BOD-NH2 495, 515 2 h 50 nM
(cp: 10 μM, 0~500 μM)
Cell (HEK293, etc);
organs; mice
94
AnB 520, 535 0.165 μM
(cp: 5 μM, 0~10 mM)
95
Bodipy-OPDA 482, 548 1.5 h 0.104 μM
(cp: 10 μM, 0~1 mM)
Cell (HeLa) Formaldehyde gas 96
HCy1 720/800, 820 30 s 3.25 μM
(cp: 10 μM, 0~1 mM)
Formaldehyde gas 97
1 365, 415 6 min 10 μM
(cp: 10 μM, 0~23.3 mM)
Seafood 98
CHP 363, 480 ~1 h 0.58 mM
(cp: 250 μM, 0~1.2 mM)
Formaldehyde gas 99
AIE-FA 370, 530 90 s 40 nM
(cp: 10 μM, 0.1~1 μM)
Cell (HeLa) 100
Probe 420, 485 0.5 h 0.24 mM/ 0.7 ppm
Formaldehyde gas (in
hospital)
101
Name λex, λem
/nm
time Limit of detection
(the linear range)
Bio-imaging Applications ref
NPC 485, 545 2 min 84 nM
(cp: 1 μM, 0~2.5 μM)
Cell (HADF) Plywood 102
DAB 345, 430 0.25 h 79 nM
(cp: 10 μM, 0~800 μM)
Cell
(HeLa, HepG2 and WI-38)
103
NP-Lyso 380, 444 1 h 0.27 μM
(cp: 10 μM, 0~200 μM)
Cell
(L929 and HeLa)
104
NP1/NP2 380, 450 1.6/1.8 μM
(cp: 10 μM, 0~100 μM /0~250 μM)
Cell (L929) 105
CaP 270, 370/630 1 min Cell (HeLa);zebrafish;
mice
106
DP 365, 550/635 1 min Cell (HeLa);
mice
RNA 107
NP 446, 540/645 5 min Cell (U251 and HeLa);
mice
108
ABTB 365, 460/525 0.5 h 432 nM
(cp: 10 μM, 0~50 μM)
Cell (L929);
brain of AD mice
109
图1 探针1与甲醛的反应机理[38]
Fig.1 Reaction mechanism of probe 1 for FA[38]
图2 探针2、3和4的化学结构[39⇓~41]
Fig.2 Chemical structures of probe 2, 3, and 4[39⇓~41]
图3 探针5与甲醛的反应机理[42]
Fig.3 Reaction mechanism of probe 5 for FA[42]
图4 探针6与甲醛的反应机理[43]
Fig.4 Reaction mechanism of probe 6 for FA[43]
图5 探针7a~c的结构及与甲醛的反应机理[44]
Fig.5 Chemical structures of probe 7a~c and reaction mechanism for FA[44]
图6 探针8与甲醛的反应机理[68]
Fig.6 Reaction mechanism of probe 8 for FA[68]
图7 探针9a~g的结构及与甲醛的反应机理[69⇓⇓⇓⇓⇓⇓~76]
Fig.7 Chemical structures of probe 9a~g and reaction mechanism for FA[69⇓⇓⇓⇓⇓⇓~76]
图8 探针10与醛类的反应机理[91]
Fig.8 Reaction mechanism of probe 10 for aldehydes[91]
图9 探针11与甲醛的反应机理[94]
Fig.9 Reaction mechanism of probe 11 for FA[94]
图10 探针12与甲醛的反应机理[97]
Fig.10 Reaction mechanism of probe 12 for FA[97]
图11 探针13对二氧化硫和甲醛的可逆反应机理[106]
Fig.11 Reversible reaction mechanism of probe 13 for sulfur dioxide and FA[106]
图12 探针1和2分别在正常细胞和癌细胞中的共聚焦荧光显微成像[38,39]
Fig.12 Confocal fluorescence microscopy imaging of probe 1 and 2 in normal cells and cancer cells, respectivel[38,39]. Copyright 2015, American Chemical Society
图13 探针9b在不同深度肝组织中的双光子荧光成像[69]
Fig.13 Two-photon fluorescence imaging of probe 9b in liver tissues at different depths[69]. Copyright 2016, John Wiley and Sons
图14 探针6对植物根尖组织中内源性和外源性甲醛的比率成像[43]
Fig.14 The ratiometric imaging of probe 6 for endogenous and exogenous FA in a plant root tip tissue[43]. Copyright 2017, Royal Society of Chemistry
图15 探针14对斑马鱼内源性和外源性甲醛的比率成像[58]
Fig.15 The ratiometric imaging of probe 14 for endogenous and exogenous FA in zebrafish[58]. Copyright 2017, Royal Society of Chemistry
图16 探针15对麻醉小鼠外源性甲醛的近红外荧光成像[41]
Fig.16 The near-infrared fluorescence imaging of probe 15 for exogenous FA in anesthetized mice[41]. Copyright 2018, John Wiley and Sons
图17 探针8、16和17的化学结构[60,68,98]
Fig.17 Chemical structures of probe 8, 16 and 17[60,68,98]
图18 探针18对比MBTH法检测香菇中的甲醛[92]
Fig.18 Probe 18 compared with MBTH method to detect FA in mushroom[92]. Copyright 2016, Royal Society of Chemistry
图19 探针18负载于滤纸条上检测甲醛气体和室内空气[92]
Fig.19 Probe 18 loaded on the filter paper to detect FA gas and indoor air[92]. Copyright 2016, Royal Society of Chemistry
图20 探针19负载于TLC板上检测甲醛气体[56]
Fig.20 Probe 19 loaded on the TLC plate to detect FA gas[56]. Copyright 2018, American Chemical Society
[1]
Liu M, Wang Y, Wu Y Q, He Z Q, Wan H. J. Clean. Prod., 2018, 187: 361.

doi: 10.1016/j.jclepro.2018.03.239     URL    
[2]
Scheepers P, Graumans M, Beckmann G, van Dael M, Anzion R, Melissen M, Pinckaers N, van Wel L, de Werdt L, Gelsing V, van Linge A. Int. J. Environ. Res. Public Heal., 2018, 15(9): 2049.
[3]
Halla N, Fernandes I, Heleno S, Costa P, Boucherit-Otmani Z, Boucherit K, Rodrigues A, Ferreira I, Barreiro M. Molecules, 2018, 23(7): 1571.

doi: 10.3390/molecules23071571     URL    
[4]
Wang X C, Fu Y Q, Ren L F. Leather Sci. Eng., 2011, 21(3): 5.
(王学川, 伏芋桥, 任龙芳. 皮革科学与工程, 2011, 21(3): 5.).
[5]
Zhu X F, Ai B. Guangdong Chem. Ind., 2020, 47(8): 72.
(朱晓枫, 艾斌. 广东化工, 2020, 47(8): 72.).
[6]
Si Q B, Jin F L, Yang J T. New Chem. Materials, 2017(08): 125.
(佀庆波, 金范龙, 杨金潭. 化工新型材料, 2017(08): 125.).
[7]
Li P, Lu J L, Yang H Y, Zhang H. J. Capital Normal Univ., 2019, 40(3): 33.
(李平, 鲁俊良, 杨鸿燕, 张恒. 首都师范大学学报, 2019, 40(3): 33.).
[8]
Burgos-Barragan G, Wit N, Meiser J, Dingler F A, Pietzke M, Mulderrig L, Pontel L B, Rosado I V, Brewer T F, Cordell R L, Monks P S, Chang C J, Vazquez A, Patel K J. Nature, 2017, 548(7669): 549.

doi: 10.1038/nature23481     URL    
[9]
Ai L, Tan T, Tang Y H, Yang J, Cui D H, Wang R, Wang A B, Fei X C, Di Y L, Wang X M, Yu Y, Zhao S J, Wang W S, Bai S Y, Yang X, He R Q, Lin W Y, Han H B, Cai X, Tong Z Q. Commun. Biol., 2019, 2(1): 1.

doi: 10.1038/s42003-018-0242-0     URL    
[10]
Tong Z Q, Zhang J L, Luo W H, Wang W S, Li F X, Li H, Luo H J, Lu J, Zhou J N, Wan Y, He R Q. Neurobiol. Aging, 2011, 32(1): 31.

doi: 10.1016/j.neurobiolaging.2009.07.013     URL    
[11]
Kalasz H. Mini Rev. Med. Chem., 2003, 3(3): 175.

doi: 10.2174/1389557033488187     URL    
[12]
Tulpule K, Dringen R. J. Neurochem., 2013, 127(1): 7.

doi: 10.1111/jnc.12356     pmid: 23800365
[13]
Lai Y Q, Yu R, Hartwell H J, Moeller B C, Bodnar W M, Swenberg J A. Cancer Res., 2016, 76(9): 2652.

doi: 10.1158/0008-5472.CAN-15-2527     URL    
[14]
Kim K H, Jahan S A, Lee J T. J. Environ. Sci. Heal. C, 2011, 29(4): 277.

doi: 10.1080/10590501.2011.629972     pmid: 22107164
[15]
Mundt K A, Gentry P R, Dell L D, Rodricks J V, Boffetta P. Regul. Toxicol. Pharmacol., 2018, 92: 472.

doi: 10.1016/j.yrtph.2017.11.006     URL    
[16]
Kwon S C, Kim I, Song J, Park J. Ann. Occup. Environ. Med., 2018, 30: 5.

doi: 10.1186/s40557-018-0218-z     URL    
[17]
Szarvas T, Szatlóczky E, Volford J, Trézl L, Tyihák E, Rusznák I. J. Radioanal. Nucl. Chem., 1986, 106(6): 357.

doi: 10.1007/BF02163668     URL    
[18]
Chen L G, Jin H Y, Xu H Y, Sun L, Yu A M, Zhang H Q, Ding L. J. Agric. Food Chem., 2009, 57(10): 3989.

doi: 10.1021/jf900136x     URL    
[19]
Kato S, Burke P J, Koch T H, Bierbaum V M. Anal. Chem., 2001, 73(13): 2992.

pmid: 11467545
[20]
Ogunwale M A, Li M X, Ramakrishnam Raju M V, Chen Y Z, Nantz M H, Conklin D J, Fu X A. ACS Omega, 2017, 2(3): 1207.

doi: 10.1021/acsomega.6b00489     pmid: 28393137
[21]
Feng L, Musto C J, Suslick K S. J. Am. Chem. Soc., 2010, 132(12): 4046.

doi: 10.1021/ja910366p     URL    
[22]
Wang B H, Anslyn E V.Chemosensors: Principles, Strategies and Applications. Hoboken: John Wiley & Sons, Inc., 2011.
[23]
Wu D, Sedgwick A C, Gunnlaugsson T, Akkaya E U, Yoon J, James T D. Chem. Soc. Rev., 2017, 46(23): 7105.

doi: 10.1039/C7CS00240H     URL    
[24]
Ning P, Wang W J, Chen M, Feng Y, Meng X M. Chin. Chem. Lett., 2017, 28(10): 1943.

doi: 10.1016/j.cclet.2017.09.026     URL    
[25]
Wen Y, Huo F J, Yin C X. Chin. Chemical Lett., 2019, 30(10): 1834.

doi: 10.1016/j.cclet.2019.07.006     URL    
[26]
Sun X L, James T D. Chem. Rev., 2015, 115(15): 8001.

doi: 10.1021/cr500562m     URL    
[27]
Luo X, Gu L Y, Qian X H, Yang Y J. Chem. Commun., 2020, 56(64): 9067.

doi: 10.1039/D0CC00542H     URL    
[28]
Sun X L, Lacina K, Ramsamy E C, Flower S E, Fossey J S, Qian X H, Anslyn E V, Bull S D, James T D. Chem. Sci., 2015, 6(5): 2963.

doi: 10.1039/C4SC03983A     URL    
[29]
Wu L L, Sedgwick A C, Sun X L, Bull S D, He X P, James T D. Acc. Chem. Res., 2019, 52(9): 2582.

doi: 10.1021/acs.accounts.9b00302     URL    
[30]
Ohata J, Bruemmer K J, Chang C J. Acc. Chem. Res., 2019, 52(10): 2841.

doi: 10.1021/acs.accounts.9b00386     URL    
[31]
Singha S, Jun Y W, Sarkar S, Ahn K H. Acc. Chem. Res., 2019, 52(9): 2571.

doi: 10.1021/acs.accounts.9b00314     URL    
[32]
Song H H, Zhou Y M, Xu C G, Wang X, Zhang J L, Wang Y, Liu X Q, Guo M X, Peng X J. Dyes Pigments, 2019, 162: 160.

doi: 10.1016/j.dyepig.2018.10.023     URL    
[33]
Ashokkumar P, Bell J, Buurman M, Rurack K. Sens. Actuat. B: Chem., 2018, 256: 609.

doi: 10.1016/j.snb.2017.09.201     URL    
[34]
Yang Y S, Wu Z W, Cheng F M, Zhang P S, Zeng R J. J. Hunan Univ. Sci. Technol., 2019, 34(3): 84.
(杨贇山, 吴振威, 成奋民, 张培盛, 曾荣今. 湖南科技大学学报, 2019, 34(3): 84.).
[35]
Xu Z Q, Chen J H, Hu L L, Tan Y, Liu S H, Yin J. Chin. Chem. Lett., 2017, 28(10): 1935.

doi: 10.1016/j.cclet.2017.07.018     URL    
[36]
Tang Y H, Ma Y Y, Yin J L, Lin W Y. Chem. Soc. Rev., 2019, 48(15): 4036.

doi: 10.1039/C8CS00956B     URL    
[37]
Wu S P, Ruan S S, Song H H. J. Northwest Univ., 2019, 49(4): 538.
(吴少平, 阮淞淞, 宋欢欢. 西北大学学报, 2019, 49(4): 538.).
[38]
Roth A, Li H, Anorma C, Chan J. J. Am. Chem. Soc., 2015, 137(34): 10890.

doi: 10.1021/jacs.5b05339     URL    
[39]
Brewer T F, Chang C J. J. Am. Chem. Soc., 2015, 137(34): 10886.

doi: 10.1021/jacs.5b05340     URL    
[40]
Bruemmer K J, Walvoord R R, Brewer T F, Burgos-Barragan G, Wit N, Pontel L B, Patel K J, Chang C J. J. Am. Chem. Soc., 2017, 139(15): 5338.

doi: 10.1021/jacs.6b12460     pmid: 28375637
[41]
Bruemmer K J, Green O, Su T A, Shabat D, Chang C J. Angew. Chem. Int. Ed., 2018, 57(25): 7508.

doi: 10.1002/anie.201802143     URL    
[42]
He L W, Yang X L, Liu Y, Kong X Q, Lin W Y. Chem. Commun., 2016, 52(21): 4029.

doi: 10.1039/C5CC09796G     URL    
[43]
Li Z, Xu Y Q, Zhu H L, Qian Y. Chem. Sci., 2017, 8(8): 5616.

doi: 10.1039/C7SC00373K     URL    
[44]
Brewer T F, Burgos-Barragan G, Wit N, Patel K J, Chang C J. Chem. Sci., 2017, 8(5): 4073.

doi: 10.1039/C7SC00748E     URL    
[45]
Xie X L, Tang F Y, Shangguan X Y, Che S Y, Niu J Y, Xiao Y S, Wang X, Tang B. Chem. Commun., 2017, 53(48): 6520.

doi: 10.1039/C7CC03050A     URL    
[46]
Yang H, Fang G M, Guo M M, Ning P, Feng Y, Yu H Z, Meng X M. Sens. Actuat. B: Chem., 2018, 270: 318.

doi: 10.1016/j.snb.2018.05.069     URL    
[47]
Li M, Kong X Q, Dong B L, Zhang N, Song W H, Lu Y R, Lin W Y. New J. Chem., 2019, 43(30): 11844.

doi: 10.1039/C9NJ02352F     URL    
[48]
Wang Y L, Chen Y F, Huang Y, Zhang Q, Zhang Y C, Li J W, Jia C M. Anal. Methods, 2019, 11(17): 2311.

doi: 10.1039/C9AY00281B     URL    
[49]
Li J B, Wang Q Q, Yuan L, Wu Y X, Hu X X, Zhang X B, Tan W H. Anal., 2016, 141(11): 3395.

doi: 10.1039/C6AN00473C     URL    
[50]
Singha S, Jun Y W, Bae J, Ahn K H. Anal. Chem., 2017, 89(6): 3724.

doi: 10.1021/acs.analchem.7b00044     URL    
[51]
Xie Z D, Ge J Y, Zhang H T, Bai T W, He S Y, Ling J, Sun H Y, Zhu Q. Sens. Actuat. B: Chem., 2017, 241: 1050.

doi: 10.1016/j.snb.2016.10.039     URL    
[52]
Yang X L, He L W, Xu K X, Yang Y Z, Lin W Y. Anal. Methods, 2018, 10(25): 2963.

doi: 10.1039/C8AY00849C     URL    
[53]
Zhou Y, Yan J Y, Zhang N N, Li D J, Xiao S Z, Zheng K B. Sens. Actuat. B: Chem., 2018, 258: 156.

doi: 10.1016/j.snb.2017.11.043     URL    
[54]
Chen H, Zhou Y, Zheng K B, Zhang N N, Tan X C, Chen W F. ChemistrySelect, 2019, 4(33): 9622.

doi: 10.1002/slct.201902120    
[55]
Zhang D, Liu D M, Li M, Yang Y Q, Wang Y, Yin H Y, Liu J H, Jia B, Wu X J. Anal. Chimica Acta, 2018, 1033: 180.

doi: 10.1016/j.aca.2018.05.065     URL    
[56]
Zhao X J, Ji C D, Ma L, Wu Z, Cheng W, Yin M Z. ACS Sens., 2018, 3(10): 2112.

doi: 10.1021/acssensors.8b00664     URL    
[57]
Zhai B B, Zhang Y Q, Hu Z W, He J P, Liu J, Gao C, Li W. Dyes Pigments, 2019, 171: 107743.

doi: 10.1016/j.dyepig.2019.107743     URL    
[58]
Dou K, Chen G, Yu F B, Liu Y X, Chen L X, Cao Z P, Chen T, Li Y L, You J M. Chem. Sci., 2017, 8(11): 7851.

doi: 10.1039/C7SC03719H     URL    
[59]
Gu J P, Li X Q, Zhou G F, Liu W Q, Gao J W, Wang Q M. J. Hazard. Mater., 2020, 386: 121883.

doi: 10.1016/j.jhazmat.2019.121883     URL    
[60]
Xu J C, Zhang Y, Zeng L T, Liu J B, Kinsella J M, Sheng R L. Talanta, 2016, 160: 645.

doi: 10.1016/j.talanta.2016.08.010     URL    
[61]
Yang X L, He L W, Xu K X, Yang Y Z, Lin W Y. New J. Chem., 2018, 42(15): 12361.

doi: 10.1039/C8NJ02467G     URL    
[62]
Xie Z D, Yin B, Shen J J, Hong D Q, Zhu L Q, Ge J Y, Zhu Q. Org. Biomol. Chem., 2018, 16(25): 4628.

doi: 10.1039/C8OB00989A     URL    
[63]
Ji C D, Ma L, Chen H T, Cai Y, Zhao X J, Yin M Z. ACS Appl. Bio Mater., 2019, 2(1): 555.

doi: 10.1021/acsabm.8b00699     URL    
[64]
Hao Y Q, Zhang Y T, Zhang A M, Sun Q L, Zhu J, Qu P, Chen S, Xu M T. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 229: 117988.

doi: 10.1016/j.saa.2019.117988     URL    
[65]
Zhang Y Q, Du Y M, Li M J, Zhang D, Xiang Z, Peng T. Angew. Chemie, 2020, 132 (38): 16494.
[66]
Chen J, Shao C W, Wang X A, Gu J, Zhu H L, Qian Y. Chem. Commun., 2020, 56(27): 3871.

doi: 10.1039/D0CC00676A     URL    
[67]
Bhowmik D, Dutta A, Maitra U. Chem. Commun., 2020, 56(80): 12061.

doi: 10.1039/D0CC04183A     URL    
[68]
Liu C X, Shi C X, Li H X, Du W W, Li Z X, Wei L H, Yu M M. Sens. Actuat. B: Chem., 2015, 219: 185.

doi: 10.1016/j.snb.2015.04.131     URL    
[69]
Tang Y H, Kong X Q, Xu A, Dong B L, Lin W Y. Angew. Chem. Int. Ed., 2016, 55(10): 3356.

doi: 10.1002/anie.201510373     URL    
[70]
Lee Y H, Tang Y H, Verwilst P, Lin W Y, Kim J S. Chem. Commun., 2016, 52(75): 11247.

doi: 10.1039/C6CC06158C     URL    
[71]
Tang Y H, Kong X Q, Liu Z R, Xu A, Lin W Y. Anal. Chem., 2016, 88(19): 9359.

doi: 10.1021/acs.analchem.6b02879     URL    
[72]
Tang Y H, Ma Y Y, Xu A, Xu G P, Lin W Y. Methods Appl. Fluoresc., 2017, 5(2): 024005.

doi: 10.1088/2050-6120/aa6773     URL    
[73]
Xin F Y, Tian Y, Gao C C, Guo B P, Wu Y L, Zhao J F, Jing J, Zhang X L. Anal., 2019, 144(7): 2297.

doi: 10.1039/C8AN02108B     URL    
[74]
Xin F Y, Tian Y, Jing J, Zhang X L. Anal. Methods, 2019, 11(23): 2969.

doi: 10.1039/C9AY00553F     URL    
[75]
Jiang L R, Hu Q, Chen T H, Min D Y, Yuan H Q, Bao G M. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2020, 228: 117789.

doi: 10.1016/j.saa.2019.117789     URL    
[76]
Yuan G Q, Ding H Y, Peng L P, Zhou L Y, Lin Q L. Food Chem., 2020, 331: 127221.

doi: 10.1016/j.foodchem.2020.127221     URL    
[77]
Dong B L, Song X Z, Tang Y H, Lin W Y. Sens. Actuat. B: Chem., 2016, 222: 325.

doi: 10.1016/j.snb.2015.07.039     URL    
[78]
Liu C, Cheng A W, Xia X K, Liu Y F, He S W, Guo X, Sun J Y. Anal. Methods, 2016, 8(13): 2764.

doi: 10.1039/C6AY00108D     URL    
[79]
Han B C, Sun J, Chen K, Chen Z Y, Huang M H, Gao Z Z, Hou X F. Tetrahedron, 2018, 74(50): 7193.

doi: 10.1016/j.tet.2018.10.051     URL    
[80]
Chen H W, Li H, Song Q H. ACS Omega, 2018, 3(12): 18189.

doi: 10.1021/acsomega.8b02590     URL    
[81]
Chen W, Yang M, Luo N, Wang F L, Yu R Q, Jiang J H. Anal., 2019, 144(23): 6922.

doi: 10.1039/C9AN01778J     URL    
[82]
Cao Y P, Teng Z D, Zhang J, Cao T, Qian J, Wang J M, Qin W W, Guo H C. Sens. Actuat. B: Chem., 2020, 320: 128354.

doi: 10.1016/j.snb.2020.128354     URL    
[83]
Ding H Y, Yuan G Q, Peng L P, Zhou L Y, Lin Q L. J. Agric. Food Chem., 2020, 68(11): 3670.

doi: 10.1021/acs.jafc.9b08114     URL    
[84]
Cheng H R, Zou L W, Yang L, Wang Z G, Lu X J. ChemistrySelect, 2019, 4(1): 432.

doi: 10.1002/slct.201803673     URL    
[85]
Wang Y S, Sun X L, Han Q X, James T D, Wang X C. Dyes Pigments, 2021, 188: 109175.

doi: 10.1016/j.dyepig.2021.109175     URL    
[86]
Liang X G, Chen B, Shao L X, Cheng J, Huang M Z, Chen Y, Hu Y Z, Han Y F, Han F, Li X. Theranostics, 2017, 7(8): 2305.

doi: 10.7150/thno.19554     URL    
[87]
Wu F, Zhang Y, Huang L, Xu D, Wang H Y. Anal. Methods, 2017, 9(37): 5472.

doi: 10.1039/C7AY01786C     URL    
[88]
Bi A Y, Gao T, Cao X Z, Dong J, Liu M, Ding N H, Liao W H, Zeng W B. Sens. Actuat. B: Chem., 2018, 255: 3292.

doi: 10.1016/j.snb.2017.09.156     URL    
[89]
Chen J, Chen K, Han B C, Xue Y T, Chen W J, Gao Z Z, Hou X F. Tetrahedron, 2020, 76(50): 131681.

doi: 10.1016/j.tet.2020.131681     URL    
[90]
Ge H W, Liu G Q, Yin R H, Sun Z L, Chen H X, Yu L, Su P C, Sun M T, Alamry K A, Marwani H M, Wang S H. Microchem. J., 2020, 156: 104793.

doi: 10.1016/j.microc.2020.104793     URL    
[91]
Li Z, Xue Z W, Wu Z S, Han J H, Han S F. Org. Biomol. Chem., 2011, 9(22): 7652.

doi: 10.1039/c1ob06448g     URL    
[92]
He L W, Yang X L, Ren M G, Kong X Q, Liu Y, Lin W Y. Chem. Commun., 2016, 52(61): 9582.

doi: 10.1039/C6CC04254F     URL    
[93]
Liu C, Jiao X J, He S, Zhao L C, Zeng X S. Dyes Pigments, 2017, 138: 23.

doi: 10.1016/j.dyepig.2016.11.020     URL    
[94]
Song X Y, Han X Y, Yu F B, Zhang J J, Chen L X, Lv C. Anal., 2018, 143(2): 429.

doi: 10.1039/C7AN01488K     URL    
[95]
Song H, Rajendiran S, Kim N, Jeong S K, Koo E, Park G, Thangadurai T D, Yoon S. Tetrahedron Lett., 2012, 53(37): 4913.

doi: 10.1016/j.tetlet.2012.06.117     URL    
[96]
Cao T, Gong D Y, Han S C, Iqbal A, Qian J, Liu W, Qin W W, Guo H C. Talanta, 2018, 189: 274.

doi: 10.1016/j.talanta.2018.07.001     URL    
[97]
Wei K, Ma L, Ma G P, Ji C D, Yin M Z. Dyes Pigments, 2019, 165: 294.

doi: 10.1016/j.dyepig.2019.02.026     URL    
[98]
Zhou W, Dong H, Yan H, Shi C X, Yu M M, Wei L H, Li Z X. Sens. Actuat. B: Chem., 2015, 209: 664.

doi: 10.1016/j.snb.2014.12.043     URL    
[99]
Hidayah N, Purwono B, Nurohmah B A, Pranowo H D. Indones. J. Chem., 2019, 19(4): 1074.

doi: 10.22146/ijc.44028     URL    
[100]
Chen W, Han J Y, Wang X N, Liu X J, Liu F, Wang F L, Yu R Q, Jiang J H. ACS Omega, 2018, 3(10): 14417.

doi: 10.1021/acsomega.8b01660     pmid: 30411068
[101]
Martínez-Aquino C, Costero A, Gil S, Gaviña P. Molecules, 2018, 23(10): 2646.

doi: 10.3390/molecules23102646     URL    
[102]
Gangopadhyay A, Maiti K, Ali S S, Pramanik A K, Guria U N, Samanta S K, Sarkar R, Datta P, Mahapatra A K. Anal. Methods, 2018, 10(24): 2888.

doi: 10.1039/C8AY00514A     URL    
[103]
Jana A, Joseph M M, Munan S, K S, Maiti K K, Samanta A. J. Photochem. Photobiol. B: Biol., 2021, 214: 112091.

doi: 10.1016/j.jphotobiol.2020.112091     URL    
[104]
Cai S T, Liu C, Gong J, He S, Zhao L C, Zeng X S. Spectrochimica Acta A: Mol. Biomol. Spectrosc., 2021, 245: 118949.

doi: 10.1016/j.saa.2020.118949     URL    
[105]
Cai S T, Liu C, Jiao X J, Zhao L C, Zeng X S. Tetrahedron, 2020, 76(45): 131617.

doi: 10.1016/j.tet.2020.131617     URL    
[106]
Ma Y Y, Tang Y H, Zhao Y P, Lin W Y. Anal. Chem., 2019, 91(16): 10723.

doi: 10.1021/acs.analchem.9b02119     URL    
[107]
Ma Y Y, Gao W J, Zhu L L, Zhao Y P, Lin W Y. Anal., 2020, 145(5): 1865.

doi: 10.1039/C9AN02454A     URL    
[108]
Ma Y Y, Gao W J, Zhu L L, Zhao Y P, Lin W Y. Chem. Commun., 2019, 55(75): 11263.

doi: 10.1039/C9CC04411F     URL    
[109]
Bi A Y, Liu M, Huang S, Zheng F, Ding J P, Wu J Y, Tang G, Zeng W B. Chem. Commun., 2021, 57(28): 3496.

doi: 10.1039/D1CC00429H     URL    
[110]
Ai L, Wang J, Li T T, Zhao C, Tang Y H, Wang W S, Zhao S J, Jiang W J, Di Y L, Fei X C, Luo H J, Li H, Luo W H, Yu Y, Lin W Y, He R Q, Tong Z Q. Ann. Clin. Biochem.: Int. J. Lab. Med., 2019, 56(2): 210.

doi: 10.1177/0004563218812986     pmid: 30373389
[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[6] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[11] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[12] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[13] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[14] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[15] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.