English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 884-897 DOI: 10.7536/PC210407 前一篇   后一篇

• 综述 •

基于智能手机的即时检测

颜廷义1, 张光耀1,2,*(), 喻琨1, 李梦洁1, 曲丽君1,2,*(), 张学记3,*()   

  1. 1 青岛大学纺织服装学院智能可穿戴技术研究中心 青岛 266071
    2 青岛大学省部共建生物多糖纤维成形与生态纺织国家重点实验室 青岛 266071
    3 深圳大学生物医学工程学院 深圳 518060
  • 收稿日期:2021-04-08 修回日期:2021-06-17 出版日期:2022-04-24 发布日期:2021-07-29
  • 通讯作者: 张光耀, 曲丽君, 张学记
  • 基金资助:
    国家自然科学基金项目(21890742); 国家自然科学基金项目(21727815); 山东省自然科学基金项目(ZR2020QB092); 青岛市博士后应用研究项目(202142); 省部共建生物多糖纤维成形与生态纺织国家重点实验室自主课题项目(ZKT23); 省部共建生物多糖纤维成形与生态纺织国家重点实验室自主课题项目(GZRC202025)

Smartphone-Based Point-of-Care Testing

Tingyi Yan1, Guangyao Zhang1,2(), Kun Yu1, Mengjie Li1, Lijun Qu1,2(), Xueji Zhang3()   

  1. 1 Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University,Qingdao 266071, China
    2 State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University,Qingdao 266071, China
    3 School of Biomedical Engineering, Shenzhen University,Shenzhen 518060, China
  • Received:2021-04-08 Revised:2021-06-17 Online:2022-04-24 Published:2021-07-29
  • Contact: Guangyao Zhang, Lijun Qu, Xueji Zhang
  • Supported by:
    National Natural Science Foundation of China(21890742); National Natural Science Foundation of China(21727815); Natural Science Foundation of Shandong Province(ZR2020QB092); Postdoctoral Applied Research Project of Qingdao(202142); State Key Laboratory of Bio-Fibers and Eco-Textiles(ZKT23); State Key Laboratory of Bio-Fibers and Eco-Textiles(GZRC202025)

新冠肺炎疫情的爆发使人们对即时检测(POCT)的需求不断增加,而智能手机作为目前人类最离不开的工具,在POCT中具有巨大的应用潜力。基于智能手机的POCT有以下独特的优点:(1)操作简单,不需要专业培训;(2)无需长时间等待,可以及时获得测试结果;(3)制作成本低,有利于在资源有限地区使用。因此,基于智能手机的POCT正迅速成为传统实验室检测的潜在替代方法。在这里,我们以POCT所检测的对象(体液、挥发性有机化合物、生命体征)为分类的基础,并结合目前主流的传感策略,包括比色技术、荧光技术、电化学技术、压电传感、热电传感、超声传感、光电传感等,对近三年基于智能手机的传感器在POCT中的应用进行了全面的回顾。我们评估了这些传感器的性能以及发展潜力,此外,还介绍了POCT中使用的新兴技术,如纳米技术、柔性电子器件、微流体技术、生物可降解技术、自供能技术、多路检测等。最后,总结了目前基于智能手机的POCT面临的问题,并对其未来的发展进行了展望。

The outbreak of the COVID-19 has increased the demand for point-of-care testing (POCT), and as the most indispensable tools for human beings at present, smartphones have great application potential in POCT. Smartphone-based POCT has the following unique advantages: (1) easy to operate and without the need for professional training; (2) shorter wait times and quicker test results; (3) low fabrication cost and convenient to use in limited-resource areas. Therefore, smartphone-based POCT is rapidly emerging as a potential alternative to traditional laboratory testing. Herein, we perform a comprehensive review of recent progress and applications of smartphone-based sensors in POCT for the past three years, which uses the tested objects (body fluids, volatile organic compounds, vital signs) by POCT as the basis for classification, and combines with the current mainstream sensing strategies, including colorimetric, fluorescent, electrochemical technology, piezoelectric, pyroelectric, ultrasonic and photoelectric sensor, etc. We evaluate the performance and development potential of these sensors, in addition, the emerging technologies used in POCT are introduced, such as nanotechnology, flexible electronic devices, microfluidic technology, biodegradable technology, self-powered technology, multi-channel detection and so on. Finally, current problems are summarized and the future development of the smartphone-based POCT is discussed.

Contents

1 Introduction

2 Body fluids detection

2.1 Blood

2.2 Sweat

2.3 Saliva

2.4 Tear

2.5 Urine

3 VOCs detection

3.1 Hydrocarbon

3.2 Formaldehyde

3.3 Acetone and ethanol

4 Vital signs detection

4.1 Pulse and blood pressure

4.2 Body temperature

4.3 Heartbeat and respiration

5 Conclusion and outlook

()
图1 基于血液检测的POCT:(A) 基于智能手机的比色检测系统[29];(B) 基于智能手机的声流控平台[33];(C) μTADs上生物发光反应[34];(D) μTADs抗体检测分析步骤[34]
Fig. 1 POCT based on blood test. (A) Smartphone-based colorimetric detection system[29]. (B) Smartphone-based acoustofluidic platform[33]. (C) Bioluminescence reaction on μTADs[34]. (D) Procedure for antibody detection with μTADs[34]
图2 基于汗液检测的POCT:(A) 可自愈汗液传感器[43];(B) 穿戴式汗液葡萄糖传感器[44];(C) 微流控单向阀[44];(D)无电池多通道汗液传感器[45];(E, F) 基于智能手机的荧光成像系统[46]
Fig. 2 POCT based on sweat test. (A) Self-healing sweat sensor[43]. (B) Wearable sweat glucose sensor[44]. (C) Microfluidic check valve[44]. (D) Battery-free multi-channel sweat sensor[45]. (E, F) Smartphone-based fluorescence imaging system[46]
图3 基于唾液检测的POCT:(A)智能手机荧光阅读器[51];(B) CRISPR荧光检测系统[51]
Fig. 3 POCT based on saliva test. (A) Smartphone-based fluorescence reader[51]. (B) CRISPR-Fluorescence Detection System[51]
图4 用于泪液代谢物比色传感的微流体隐形眼镜[54,55]
Fig. 4 Microfluidic contact lenses for the colorimetric sensing of tear metabolites[54,55]
图5 基于智能手机的无创葡萄糖监测隐形眼镜[56]
Fig. 5 Smartphone-based non-invasive glucose monitoring contact lens[56]
图6 基于智能手机的尿酸检测[61]
Fig. 6 Smartphone-based uric acid detection[61]
图7 微悬臂传感机理[64]
Fig. 7 Milli-Cantilever sensing mechanism[64]
图8 基于智能手机的甲醛传感器[66]
Fig. 8 Smartphone-based formaldehyde sensor[66]
图9 基于丙酮和乙醇检测的POCT:(A) 智能手环[68];(B, C) 基于多个CMUT传感器的无线便携式VOCs传感系统[69]
Fig. 9 POCT based on acetone and ethanol test. (A)Schematic illustration of wearable smart wristband[68]. (B, C) Wireless portable VOCs sensing system based on multiple CMUT sensors[69]
图10 基于脉搏和血压检测的POCT:(A) 基于智能手机的指尖接触式压力传感器[72];(B) 纳米半球阵列的构造[72];(C) 柔性可降解可穿戴压力传感器的制备工艺[73]
Fig. 10 POCT based on pulse and blood test. (A) Smartphone-based fingertip-contacted pressure sensor[72]. (B) Nanos hemispherical structure[72]. (C) Fabrication process of flexible degradable wearable pressure sensor[73]
图11 基于体温检测的POCT:(A) 便携式红外热电堆传感器[75];(B) 应用程序用户界面[75];(C) 利用热腕带进行偏移校正[76]
Fig. 11 POCT based on body temperature test. (A) Portable infrared thermopile sensor[75]. (B) Application user interface[75]. (C) Offset correction by Thermal wristband[76]
图12 基于心率和呼吸检测的POCT:(A) 非接触式心跳和呼吸监测[77];(B) 空心微结构自供电压力传感器[77];(C) 无线可穿戴超声波传感器[78]
Fig. 12 POCT based on heartbeat and respiration test. (A) Non-contact heartbeat and respiration monitoring[77]. (B) HM-SPS strip[77]. (C) Wireless wearable ultrasound sensor[78]
表1 基于智能手机的POCT应用
Table 1 Application of the smartphone-based POCT
[1]
Huang Y, Liu G D, Zhang X J. Progress in Chemistry, 2020, 32(9): 1241.

doi: 10.7536/PC200522    
(黄炎, 刘国东, 张学记. 化学进展, 2020, 32(9): 1241.)

doi: 10.7536/PC200522    
[2]
Seo S E, Tabei F, Park S J, Askarian B, Kim K H, Moallem G, Chong J W, Kwon O S. J. Ind. Eng. Chem., 2019, 77: 1.

doi: 10.1016/j.jiec.2019.04.037     URL    
[3]
Seshadri D R, Li R T, Voos J E, Rowbottom J R, Alfes C M, Zorman C A, Drummond C K. Npj Digit. Med., 2019, 2(1): 1.

doi: 10.1038/s41746-018-0076-7     URL    
[4]
Li Z, Paul R, Ba Tis T, Saville A C, Hansel J C, Yu T, Ristaino J B, Wei Q S. Nat. Plants, 2019, 5(8): 856.

doi: 10.1038/s41477-019-0476-y     URL    
[5]
Zhang Y P, Liu X T, Qiu S, Zhang Q Q, Tang W, Liu H T, Guo Y L, Ma Y Q, Guo X J, Liu Y Q. J. Am. Chem. Soc., 2019, 141(37): 14643.

doi: 10.1021/jacs.9b05724     URL    
[6]
Lan L Y, Le X H, Dong H Y, Xie J, Ying Y B, Ping J F. Biosens. Bioelectron., 2020, 165: 112360.

doi: 10.1016/j.bios.2020.112360     URL    
[7]
Zhao F N, He J W, Li X J, Bai Y P, Ying Y B, Ping J F. Biosens. Bioelectron., 2020, 170: 112636.

doi: 10.1016/j.bios.2020.112636     URL    
[8]
Li Z, Zhang S W, Yu T, Dai Z M, Wei Q S. Anal. Chem., 2019, 91(16): 10448.

doi: 10.1021/acs.analchem.9b00750     URL    
[9]
Li Z, Wang Z W, Khan J, LaGasse M K, Suslick K S. ACS Sens., 2020, 5(9): 2783.

doi: 10.1021/acssensors.0c00583     URL    
[10]
Mukherjee S, Shah M, Chaudhari K, Jana A, Sudhakar C, Srikrishnarka P, Islam M R, Philip L, Pradeep T. ACS Omega, 2020, 5(39): 25253.

doi: 10.1021/acsomega.0c03465     pmid: 33043203
[11]
Yen Y K, Lee K Y, Lin C Y, Zhang S T, Wang C W, Liu T Y. ACS Omega, 2020, 5(39): 25209.

doi: 10.1021/acsomega.0c03366     URL    
[12]
Ma Z, Chen P, Cheng W, Yan K, Pan L J, Shi Y, Yu G H. Nano Lett., 2018, 18(7): 4570.

doi: 10.1021/acs.nanolett.8b01825     URL    
[13]
Ross G M S, Bremer M G E G, Nielen M W F. Anal. Bioanal. Chem., 2018, 410(22): 5353.

doi: 10.1007/s00216-018-0989-7     URL    
[14]
Mishra R K, Martín A, Nakagawa T, Barfidokht A, Lu X L, Sempionatto J R, Lyu K M, Karajic A, Musameh M M, Kyratzis I L, Wang J. Biosens. Bioelectron., 2018, 101: 227.

doi: 10.1016/j.bios.2017.10.044     URL    
[15]
Christodouleas D C, Kaur B, Chorti P. ACS Cent. Sci., 2018, 4(12): 1600.

doi: 10.1021/acscentsci.8b00625     URL    
[16]
Kanchi S, Sabela M I, Mdluli P S, Inamuddin, Bisetty K. Biosens. Bioelectron., 2018, 102: 136.

doi: 10.1016/j.bios.2017.11.021     URL    
[17]
Xu D, Huang X, Guo J, Ma X. Biosens. Bioelectron, 2018, 110: 78.

doi: 10.1016/j.bios.2018.03.018     URL    
[18]
Kim J, Campbell A S, Ávila B E F, Wang J. Nat. Biotechnol., 2019, 37(4): 389.

doi: 10.1038/s41587-019-0045-y     URL    
[19]
He F L, Li K J, Lyu X F, Li X Q, Deng Y L. Space Med. Med. Eng., 2020, 33(1): 74.
(何芳兰, 李堃杰, 吕雪飞, 李晓琼, 邓玉林. 航天医学与医学工程, 2020, 33(1): 74.).
[21]
Lee J, Song J, Choi J H, Kim S, Kim U, Nguyen V T, Lee J S, Joo C. Sci. Rep., 2020, 10(1): 1.

doi: 10.1038/s41598-019-56847-4     URL    
[22]
Priye A, Ball C S, Meagher R J. Anal. Chem., 2018, 90(21): 12385.

doi: 10.1021/acs.analchem.8b03521     URL    
[23]
Wang X, Li F, Cai Z Q, Liu K F, Li J, Zhang B Y, He J B. Anal. Bioanal. Chem., 2018, 410(10): 2647.

doi: 10.1007/s00216-018-0939-4     pmid: 29455281
[24]
Wang H Q, Yang L, Chu S Y, Liu B H, Zhang Q K, Zou L M, Yu S M, Jiang C L. Anal. Chem., 2019, 91(14): 9292.

doi: 10.1021/acs.analchem.9b02297     URL    
[25]
Aydindogan E, Ceylan A E, Timur S. Talanta, 2020, 208: 120446.

doi: 10.1016/j.talanta.2019.120446     URL    
[26]
Li B H, Wang J H, Tu H H, Yang Z J, Dongfang Z, Feng H H, Yang J. Anal. Bioanal. Chem., 2021, 413(2): 533.

doi: 10.1007/s00216-020-03024-6     URL    
[27]
Aydindogan E, Guler Celik E, Timur S. Anal. Chem., 2018, 90(21): 12325.

doi: 10.1021/acs.analchem.8b03120     pmid: 30222319
[28]
Sun Y F, Zhou Z P, Shu T, Qian L S, Su L, Zhang X J. Progress in Chemistry, 2021, 33: 179.
(孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 化学进展, 2021, 33: 179.).

doi: 10.7536/PC200637    
[29]
Liu F, Chen R, Song W L, Li L W, Lei C Y, Nie Z. Anal. Chem., 2021, 93(7): 3517.

doi: 10.1021/acs.analchem.0c04894     URL    
[30]
Kong J E, Wei Q S, Tseng D, Zhang J Z, Pan E, Lewinski M, Garner O B, Ozcan A, di Carlo D. ACS Nano, 2017, 11(3): 2934.

doi: 10.1021/acsnano.6b08274     URL    
[31]
Dutta D, Sailapu S K, Chattopadhyay A, Ghosh S S. ACS Appl. Mater. Interfaces, 2018, 10(4): 3210.

doi: 10.1021/acsami.7b13782     URL    
[32]
Hou L, Qin Y X, Li J Y, Qin S Y, Huang Y L, Lin T R, Guo L Q, Ye F G, Zhao S L. Biosens. Bioelectron., 2019, 143: 111605.

doi: 10.1016/j.bios.2019.111605     URL    
[33]
Zhang L Y, Tian Z H, Bachman H, Zhang P R, Huang T J. ACS Nano, 2020, 14(3): 3159.

doi: 10.1021/acsnano.9b08349     URL    
[34]
Tomimuro K, Tenda K, Ni Y, Hiruta Y, Merkx M, Citterio D. ACS Sens., 2020, 5(6): 1786.

doi: 10.1021/acssensors.0c00564     URL    
[35]
Emaminejad S, Gao W, Wu E, Davies Z A, Yin Yin Nyein H, Challa S, Ryan S P, Fahad H M, Chen K, Shahpar Z, Talebi S, Milla C, Javey A, Davis R W. PNAS, 2017, 114(18): 4625.

doi: 10.1073/pnas.1701740114     pmid: 28416667
[36]
Bariya M, Nyein H Y Y, Javey A. Nat. Electron., 2018, 1(3): 160.

doi: 10.1038/s41928-018-0043-y     URL    
[37]
Dang W T, Manjakkal L, Navaraj W T, Lorenzelli L, Vinciguerra V, Dahiya R. Biosens. Bioelectron., 2018, 107: 192.

doi: 10.1016/j.bios.2018.02.025     URL    
[38]
Nyein H Y Y, Tai L C, Ngo Q P, Chao M H, Zhang G B, Gao W, Bariya M, Bullock J, Kim H, Fahad H M, Javey A. ACS Sens., 2018, 3(5): 944.

doi: 10.1021/acssensors.7b00961     URL    
[39]
Terse-Thakoor T, Punjiya M, Matharu Z, Lyu B Y, Ahmad M, Giles G E, Owyeung R, Alaimo F, Shojaei Baghini M, BrunyÉ T T, Sonkusale S. Npj Flex. Electron., 2020, 4(1): 1.

doi: 10.1038/s41528-020-0064-2     URL    
[40]
Zhu X F, Ju Y H, Chen J, Liu D Y, Liu H. ACS Sens., 2018, 3(6): 1135.

doi: 10.1021/acssensors.8b00168     URL    
[41]
Zhang J R, Rupakula M, Bellando F, Garcia Cordero E, Longo J, Wildhaber F, Herment G, GuÉrin H, Ionescu A M. ACS Sens., 2019, 4(8): 2039.

doi: 10.1021/acssensors.9b00597     URL    
[42]
Wang T T, Wang R Y, Zhang Z F, Qing L S. J. Instrum. Anal., 2020, 39(12): 1561.
(王甜甜, 王润月, 张志锋, 青琳森. 分析测试学报, 2020, 39(12): 1561.).
[43]
Yoon J H, Kim S M, Eom Y, Koo J M, Cho H W, Lee T J, Lee K G, Park H J, Kim Y K, Yoo H J, Hwang S Y, Park J, Choi B G. ACS Appl. Mater. Interfaces, 2019, 11(49): 46165.

doi: 10.1021/acsami.9b16829     URL    
[44]
Xiao J Y, Liu Y, Su L, Zhao D, Zhao L, Zhang X J. Anal. Chem., 2019, 91(23): 14803.

doi: 10.1021/acs.analchem.9b03110     URL    
[45]
Bandodkar A J, Gutruf P, Choi J, Lee K, Sekine Y, Reeder J T, Jeang W J, Aranyosi A J, Lee S P, Model J B, Ghaffari R, Su C J, Leshock J P, Ray T, Verrillo A, Thomas K, Krishnamurthi V, Han S, Kim J, Krishnan S, Hang T, Rogers J A. Sci. Adv., 2019, 5(1): eaav3294.

doi: 10.1126/sciadv.aav3294     URL    
[46]
Sekine Y, Kim S B, Zhang Y, Bandodkar A J, Xu S, Choi J, Irie M, Ray T R, Kohli P, Kozai N, Sugita T, Wu Y X, Lee K, Lee K T, Ghaffari R, Rogers J A. Lab a Chip, 2018, 18(15): 2178.

doi: 10.1039/C8LC00530C     URL    
[47]
Lee Y, Howe C, Mishra S, Lee D S, Mahmood M, Piper M, Kim Y, Tieu K, Byun H S, Coffey J P, Shayan M, Chun Y, Costanzo R M, Yeo W H. PNAS, 2018, 115(21): 5377.

doi: 10.1073/pnas.1719573115     URL    
[48]
Soni A, Surana R K, Jha S K. Sens. Actuat. B: Chem., 2018, 269: 346.

doi: 10.1016/j.snb.2018.04.108     URL    
[49]
Shin Low S, Pan Y X, Ji D Z, Li Y R, Lu Y L, He Y, Chen Q M, Liu Q J. Sens. Actuat. B: Chem., 2020, 308: 127718.

doi: 10.1016/j.snb.2020.127718     URL    
[50]
Chen J, Zhu X F, Ju Y H, Ma B, Zhao C, Liu H. Sens. Actuat. B: Chem., 2019, 285: 56.

doi: 10.1016/j.snb.2019.01.017     URL    
[51]
Ning B, Yu T, Zhang S W, Huang Z, Tian D, Lin Z, Niu A, Golden N, Hensley K, Threeton B, Lyon C J, Yin X M, Roy C J, Saba N S, Rappaport J, Wei Q S, Hu T Y. Sci. Adv., 2021, 7(2): abe3703.
[52]
Yang C, Huang X S, Li X L, Yang C D, Zhang T, Wu Q N liu D, Lin H T, Chen W R, Hu N, Xie X. Adv. Sci., 2021, 8(6): 2002971.

doi: 10.1002/advs.202002971     URL    
[53]
Yang X, Yao H Y, Zhao G N, Ameer G A, Sun W, Yang J, Mi S L. J. Mater. Sci., 2020, 55(22): 9551.

doi: 10.1007/s10853-020-04688-2     URL    
[54]
Moreddu R, Wolffsohn J S, Vigolo D, Yetisen A K. Sens. Actuat. B: Chem., 2020, 317: 128183.

doi: 10.1016/j.snb.2020.128183     URL    
[55]
Moreddu R, Elsherif M, Adams H, Moschou D, Cordeiro M F. Lab. Chip, 2020, 20: 3970.

doi: 10.1039/D0LC00438C     URL    
[56]
Lin Y R, Hung C C, Chiu H Y, Chang B H, Li B R, Cheng S J, Yang J W, Lin S F, Chen G Y. Sensors, 2018, 18(10): 3208.

doi: 10.3390/s18103208     URL    
[57]
Ji D Z, Liu Z X, Liu L, Low S S, Lu Y L, Yu X J, Zhu L, Li C D, Liu Q J. Biosens. Bioelectron., 2018, 119: 55.

doi: 10.1016/j.bios.2018.07.074     URL    
[58]
Yang R B, Cheng W B, Chen X F, Qian Q, Zhang Q, Pan Y J, Duan P, Miao P. ACS Omega, 2018, 3(9): 12141.

doi: 10.1021/acsomega.8b01270     URL    
[59]
Michael I, Kim D, Gulenko O, Kumar S, Kumar S, Clara J, Ki D Y, Park J, Jeong H Y, Kim T S, Kwon S, Cho Y K. Nat. Biomed. Eng., 2020, 4(6): 591.

doi: 10.1038/s41551-020-0557-2     pmid: 32424198
[60]
He X C, Pei Q B, Xu T L, Zhang X J. Sens. Actuat. B: Chem., 2020, 304: 127415.

doi: 10.1016/j.snb.2019.127415     URL    
[61]
Lu F, Yang Y L, Liu Y C, Wang F B, Ji X H, He Z K. Anal., 2021, 146(3): 949.

doi: 10.1039/D0AN02029J     URL    
[62]
Alves I P, Reis N M. Biosens. Bioelectron., 2019, 145: 111624.

doi: 10.1016/j.bios.2019.111624     URL    
[63]
Jalal A H, Alam F, Roychoudhury S, Umasankar Y, Pala N, Bhansali S. ACS Sens., 2018, 3(7): 1246.

doi: 10.1021/acssensors.8b00400     URL    
[64]
Qin X C, Wu T, Zhu Y, Shan X N, Liu C B, Tao N J. Anal. Chem., 2020, 92(12): 8480.

doi: 10.1021/acs.analchem.0c01240     URL    
[65]
Kou D H, Zhang Y C, Zhang S F, Wu S L, Ma W. Chem. Eng. J., 2019, 375: 121987.

doi: 10.1016/j.cej.2019.121987     URL    
[66]
Guo X L, Chen Y, Jiang H L, Qiu X B, Yu D L. Sensors, 2018, 18(9): 3141.

doi: 10.3390/s18093141     URL    
[67]
Li B C, Dong Q, Downen R S, Tran N, Jackson J H, Pillai D, Zaghloul M, Li Z Y. Sens. Actuat. B: Chem., 2019, 287: 584.

doi: 10.1016/j.snb.2019.02.077     URL    
[68]
Shrestha S, Harold C, Boubin M, Lawrence L. Smart Biomedical and Physiological Sensor Technology XVI. April 14-18, 2019. Baltimore, USA. SPIE, 2019: 11020.
[69]
Yoon I, Eom G, Lee S, Kim B K, Kim S K, Lee H J. Sensors, 2019, 19(6): 1401.

doi: 10.3390/s19061401     URL    
[70]
Zhu B W, Ling Y Z, Yap L W, Yang M J, Lin F G, Gong S, Wang Y, An T C, Zhao Y M, Cheng W L. ACS Appl. Mater. Interfaces, 2019, 11(32): 29014.

doi: 10.1021/acsami.9b06260     URL    
[71]
Yokota T, Nakamura T, Kato H, Mochizuki M, Tada M, Uchida M, Lee S, Koizumi M, Yukita W, Takimoto A, Someya T. Nat. Electron., 2020, 3(2): 113.

doi: 10.1038/s41928-019-0354-7     URL    
[72]
Meng K Y, Wu Y F, He Q, Zhou Z H, Wang X, Zhang G Q, Fan W J, Liu J, Yang J. ACS Appl. Mater. Interfaces, 2019, 11(50): 46399.

doi: 10.1021/acsami.9b12747     URL    
[73]
Guo Y, Zhong M J, Fang Z W, Wan P B, Yu G H. Nano Lett., 2019, 19(2): 1143.

doi: 10.1021/acs.nanolett.8b04514     URL    
[74]
Chandrasekhar A, Kim C S, Naji M, Natarajan K, Hahn J O, Mukkamala R. Sci. Transl. Med., 2018, 10(431): eaap8674.

doi: 10.1126/scitranslmed.aap8674     URL    
[75]
Chaglla E J, Celik N, Balachandran W. Sensors, 2018, 18(10): 3315.

doi: 10.3390/s18103315     URL    
[76]
Yoshikawa H, Uchiyama A, Higashino T. Sensors, 2019, 19(18): 3826.

doi: 10.3390/s19183826     URL    
[77]
Chen S W, Wu N, Ma L, Lin S Z, Yuan F, Xu Z S, Li W B, Wang B, Zhou J. ACS Appl. Mater. Interfaces, 2018, 10(4): 3660.

doi: 10.1021/acsami.7b17723     URL    
[78]
Chen A, Halton A J, Rhoades R D, Booth J C, Shi X H, Bu X L, Wu N, Chae J. ACS Sens., 2019, 4(4): 944.

doi: 10.1021/acssensors.9b00043     URL    
[79]
Xu G, Cheng C, Yuan W, Liu Z Y, Zhu L H, Li X T, Lu Y L, Chen Z T, Liu J L, Cui Z, Liu J J, Men H, Liu Q J. Sens. Actuat. B: Chem., 2019, 297: 126743.

doi: 10.1016/j.snb.2019.126743     URL    
[80]
Maier D, Laubender E, Basavanna A, Schumann S, Güder F, Urban G A, Dincer C. ACS Sens., 2019, 4(11): 2945.

doi: 10.1021/acssensors.9b01403     URL    
[81]
Wu C S, Wang A C, Ding W B, Guo H Y, Wang Z L. Adv. Energy Mater., 2019, 9(1): 1802906.

doi: 10.1002/aenm.201802906     URL    
[82]
Liu W L, Wang Z, Wang G, Liu G L, Chen J, Pu X J, Xi Y, Wang X, Guo H Y, Hu C G, Wang Z L. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[83]
Dong K, Peng X, Wang Z L. Adv. Mater., 2020, 32: e1902549.
[84]
Ghosh S K, Roy K, Mishra H K, Sahoo M R, Mahanty B, Vishwakarma P N, Mandal D. ACS Sustainable Chem. Eng., 2020, 8(2): 864.

doi: 10.1021/acssuschemeng.9b05058     URL    
[85]
Maity K, Garain S, Henkel K, Schmeißer D, Mandal D. ACS Appl. Polym. Mater., 2020, 2(2): 862.

doi: 10.1021/acsapm.9b00846     URL    
[86]
Kang J R, Yang X, Zhang D J, Hu J, Yang H. J. Instrum. Anal., 2019, 38(3): 364.
(康静茹, 杨欣, 张德军, 胡军, 杨海. 分析测试学报, 2019, 38(3): 364.).
[87]
Yan Z C, Pan T S, Wang D K, Li J C, Jin L, Huang L, Jiang J H, Qi Z H, Zhang H L, Gao M, Yang W Q, Lin Y. ACS Appl. Mater. Interfaces, 2019, 11(13): 12261.

doi: 10.1021/acsami.8b22613     URL    
[88]
Sempionatto J R, Lin M, Yin L, De La Paz E, Pei K, Sonsa-Ard T, De Loyola Silva A N, Khorshed A A, Zhang F, Tostado N, Xu S, Wang J. Nat. Biomed. Eng., 2021.
[89]
Solmaz M E, Mutlu A Y, Alankus G, Kılıç V, Bayram A, Horzum N. Sens. Actuat. B: Chem., 2018, 255: 1967.

doi: 10.1016/j.snb.2017.08.220     URL    
[90]
Draz M S, Vasan A, Muthupandian A, Kanakasabapathy M K, Thirumalaraju P, Sreeram A, Krishnakumar S, Yogesh V, Lin W, Yu X G, Chung R T, Shafiee H. Sci. Adv., 2020, 6(51): abd5354.
[91]
Nakasi R, Mwebaze E, Zawedde A. Algorithms, 2021, 14(1): 17.

doi: 10.3390/a14010017     URL    
[92]
Choi J, Chang S J, Bang J H, Park J S, Lee H R. Proceedings of the Ninth International Symposium on Information and Communication Technology - SoICT 2018. December 6/7, 2018. Danang City, Viet Nam. New York: ACM Press, 2018: 405.
[1] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[2] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[3] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[4] 李雯雯, 段忆翔. 人体呼出气分析的技术进展及其在非侵入式医学诊断方面的临床应用前景[J]. 化学进展, 2015, 27(4): 321-335.
[5] 张晨 赵美萍. 人体呼出气中挥发性有机化合物的检测方法*[J]. 化学进展, 2010, 22(01): 140-147.
[6] 明伟华,府寿宽. 对应于绿色环境保护的涂料发展动向[J]. 化学进展, 1998, 10(02): 194-.
阅读次数
全文


摘要

基于智能手机的即时检测