English
新闻公告
More
化学进展 DOI: 10.7536/PC200720 前一篇   后一篇

• •

激活型有机光声造影剂应用研究

刘加伟1, 王婧1, 王其1,2, 范曲立1, 黄维3   

  1. 1. 南京邮电大学 有机电子与信息显示国家重点实验室培育基地 信息材料与纳米技术研究院 南京 210023;
    2. 东南大学 生物电子学国家重点实验室 南京 210096;
    3. 西北工业大学 柔性电子研究院 西安 710072
  • 出版日期:2020-12-09 发布日期:2020-12-28
  • 通讯作者: 王其, 范曲立 E-mail:iamqwang@njupt.edu.cn;iamqlfan@njupt.edu.cn
  • 基金资助:
    国家自然科学基金项目(Nos.21602112,21674048);东南大学生物电子学国家重点实验室开放研究基金资助课题(No.OPSKLB202006);江苏省研究生科研与实践创新计划项目(No.KYCX20_0752)资助

Research on Application of Activatable Organic Photoacoustic Contrast Agents

Jiawei Liu1, Jing Wang1, Qi Wang1,2, Quli Fan1, Wei Huang3   

  1. 1. Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
    2. State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China;
    3. Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
  • Online:2020-12-09 Published:2020-12-28
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (Nos. 21602112, 21674048); The Open Research Fund of State Key Laboratory of Bioelectronics, Southeast University (No. OPSKLB202006); Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX20_0752)
光声(PA)成像作为一种结合了光学和声学成像优势的新型成像方式,具有深层组织穿透和高空间分辨率等优点,在重大疾病的早期影像诊断方面有着巨大的应用前景。然而传统的PA造影剂依然存在信噪比低、选择性及特异性差等不足,容易产生假阳性诊断结果。激活型PA造影剂可以有效的降低背景噪声,并提升成像的灵敏度和特异性,是目前PA造影剂设计与构筑的主要趋势。本综述首先简单介绍了PA成像的原理,然后结合近几年在金属离子、酶、活性氮和活性氧等相关方面的生物成像应用,梳理了可激活探针在不同微环境中的响应方式。最后,对激活型探针在PA成像中的应用进行了总结和展望。
Photoacoustic (PA) imaging, as a new type of imaging technique that offers strong optical absorption contrast and high ultrasonic resolution, shows great application prospects in the early disease diagnosis for its characteristics of deep tissue penetration and high spatial resolution. However, traditional "always on" PA contrast agents have many disadvantages such as low signal-to-noise ratio, poor selectivity and specificity. In contrast, activatable PA contrast agents, where the imaging signal can be changed in response to pathologic parameters, have shown decreased background signal and improved selectivity and specificity in early disease detection. Moreover, these contrast agents can obtain pathological parameters and information of various diseases at the molecular level by rational design to their structures, providing important guidelines for the optimization of treatment options. Therefore, activatable PA contrast agents hold greater promise in clinical practice than traditional "always on" PA contrast agents. In this review, we describe the recent advances in the development of activatable PA contrast agents. The design mechanisms and proof-of-concept applications of these activatable PA contrast agents are summarized in detail. The use of these activatable probes to detect different pathologic parameters (such as metal ions, enzymes, reactive nitrogen and reactive oxygen) is highlighted. Finally, current challenges and future perspectives in this emerging field are also analyzed.

中图分类号: 

()
[1] He S, Song J, Qu J, Cheng Z. Chem. Soc. Rev., 2018, 47(12):4258.
[2] HongG, Antaris A L, Dai H. Nat. Biomed. Eng., 2017, 1(1):10.
[3] Wang Q, Xu J, Geng R, Cai J, Li J, Xie C, Tang W, Shen Q, Huang W, Fan Q. Biomaterials, 2020, 231:119671.
[4] Weber J, Beard P C, Bohndiek S E. Nat. Methods, 2016, 13(8):639.
[5] Lemaster J E, Jokerst J V. Wiley Interdisciplinary Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol., 2017, 9(1):11.
[6] Upputuri P K, Pramanik M. J. Biomed. Opt., 2019, 24(4):040901.
[7] Jiang Y, Pu K. Small, 2017, 13(30):1700710.
[8] Wang Q, Dai Y, Xu J, Cai J, Niu X, Zhang L, Chen R, Shen Q, Huang W, Fan Q. Adv. Funct. Mater., 2019, 29(31):1901480.
[9] Wang Q, Xia B, Xu J, Niu X, Cai J, Shen Q, Wang W, Huang W, Fan Q. Mater. Chem. Front., 2019, 3(4):650.
[10] Ye J, Li Z, Fu Q, Li Q, Zhang X, Su L, Yang H, Song J. Adv. Funct. Mater., 2020, 2001771.
[11] Garcea S, Wang Y, Withers P. Compos. Sci. Technol., 2018, 156:305.
[12] Parada S A, Eichinger J K, Dumont G D, Parada C A, Greenhouse A R, Provencher M T, Higgins L D, Warner J J. Arthroscopy, 2018, 34(1):84.
[13] Poelma C. Exp. Fluids, 2017, 58(1):3.
[14] Huang Q, Zeng Z. BioMed Res. Int., 2017:1.
[15] Renard D. Eur. J. Neurol., 2018, 25(3):441.
[16] Steinberg I, Huland D M, Vermesh O, Frostig H E, Tummers W S, Gambhir S S. Photoacoustics, 2019, 14:77.
[17] 刘迎亚(Liu Y Y), 范霄(Fan X), 李艳艳(Li Y Y), 渠陆陆(Qu L L), 覃海月(Qin H Y), 曹英男(Cao Y N), 李海涛(Li H T). 化学进展(Progress in Chemistry), 2015, 27(10):1459.
[18] Xu M, Wang L V. Rev. Sci. Instrum., 2006, 77(4):041101.
[19] 卢晓梅(Lu X M), 陈鹏飞(Chen P F), 胡文博(Hu W B), 唐玉富(Tang Y F), 黄维(Huang W), 范曲立(Fan Q L). 化学进展(Progress in Chemistry), 2017, 29(1):119.
[20] 吴锦钧(Wu J J), 杨震(Yang Zhen), 焦剑梅(Jiao J M), 孙鹏飞(Sun P F), 范曲立(Fan Q L), 黄维(Huang W). 化学进展(Progress in Chemistry), 2017, 029(2):216.
[21] Chen C, Ou H, Liu R, Liu R, Ding D. Adv. Mater., 2020, 32(3):1806331.
[22] Ou H, Li J, Chen C, Gao H, Xue X, Ding D. Sci. China Mater., 2019, 62(11):1740.
[23] Tang Y, Pei F, Lu X, Fan Q, Huang W. Adv. Opt. Mater., 2019, 7(21):1900917.
[24] Wang X, Wang X, Jin S, Muhammad N, Guo Z. Chem. Rev., 2019, 119(2):1138.
[25] Miao Q, Pu K. Bioconjug. Chem., 2016, 27(12):2808.
[26] Lyu Y, Pu K. Adv. Sci. (Weinh), 2017, 4(6):1600481.
[27] Fu Q, Zhu R, Song J, Yang H, Chen X. Adv. Mater., 2019, 31(6):e1805875.
[28] Carter K P, Young A M, Palmer A E. Chem. Rev., 2014, 114(8):4564.
[29] Knox H J, Chan J. Acc. Chem. Res., 2018, 51(11):2897.
[30] Wang S, Sheng Z, Yang Z, Hu D, Long X, Feng G, Liu Y, Yuan Z, Zhang J, Zheng H, Zhang X. Angew. Chem. Int. Ed. Engl., 2019, 58(36):12415.
[31] Wang S, Yu G, Ma Y, Yang Z, Liu Y, Wang J, Chen X. ACS Appl. Mater. Interfaces, 2019, 11(2):1917.
[32] Li H, Zhang P, Smaga L P, Hoffman R A, Chan J. J. Am. Chem. Soc., 2015, 137(50):15628.
[33] Zeng L, Ma G, Xu H, Mu J, Li F, Gao X, Deng Z, Qu J, Huang P, Lin J. Small, 2019, 15(6):1803866.
[34] Liu Y, Wang S, Ma Y, Lin J, Wang H Y, Gu Y, Chen X, Huang P. Adv. Mater., 2017, 29(17):1606129.
[35] Huang Y, Li F, Ma G, Yang W, Zhang X, Lin J, Luo Y, Huang P. Talanta, 2018, 187:65.
[36] Roberts S, Seeger M, Jiang Y, Mishra A, Sigmund F, Stelzl A, Lauri A, Symvoulidis P, Rolbieski H, Preller M, Deán-Ben X L, Razansky D, Orschmann T, Desbordes S C, Vetschera P, Bach T, Ntziachristos V, Westmeyer G G. J. Am. Chem. Soc., 2017, 140(8):2718.
[37] Cash K J, Li C, Xia J, Wang L V, Clark H A. ACS nano, 2015, 9(2):1692.
[38] Ho I T, Sessler J L, Gambhir S S, Jokerst J V. Analyst, 2015, 140(11):3731.
[39] Xiang J, Liu C, Zhou L, Yang X, Li Y, Jiang Y, Mahmood T, Zhang P, Gong P, Cai L. Anal. Chem., 2020, 92(7):4721.
[40] Lee C H, Folz J, Zhang W, Jo J, Tan J W Y, Wang X, Kopelman R. Anal. Chem., 2017, 89(15):7943.
[41] Mu J, Lin J, Huang P, Chen X. Chem. Soc. Rev., 2018, 47(15):5554.
[42] Razgulin A, Ma N, Rao J. Chem. Soc. Rev., 2011, 40(7):4186.
[43] 张继东(Zhang J D), 刘鸿泽(Liu H Z), 孟丽(Meng L). 有机化学(Chinese Journal of Organic Chemistry), 2019, 39(11):3132.
[44] Wu C, Zhang R, Du W, Cheng L, Liang G. Nano Lett., 2018, 18(12):7749.
[45] Zhang D, Qi G-B, Zhao Y-X, Qiao S-L, Yang C, Wang H. Adv. Mater., 2015, 27(40):6125.
[46] Li L L, Ma H L, Qi G B, Zhang D, Yu F, Hu Z, Wang H. Adv. Mater., 2016, 28(2):254.
[47] Lin Y X, Wang Y, Qiao S L, An H W, Wang J, Ma Y, Wang L, Wang H. Biomaterials, 2017, 141:199.
[48] Dragulescu-Andrasi A, Kothapalli S-R, Tikhomirov G A, Rao J, Gambhir S S. J. Am. Chem. Soc., 2013, 135(30):11015.
[49] Wang Y, Hu X, Weng J, Li J, Fan Q, Zhang Y, Ye D. Angew. Chem. Int. Ed. Engl., 2019, 58(15):4886.
[50] Li Q, Li S, He S, Chen W, Cheng P, Zhang Y, Miao Q, Pu K. Angew. Chem. Int. Ed. Engl., 2020, 59(18):7018.
[51] Gao X, Ma G, Jiang C, Zeng L, Jiang S, Huang P, Lin J. Anal Chem, 2019, 91(11):7112.
[52] Levi J, Kothapalli S R, Bohndiek S, Yoon J K, Dragulescu-Andrasi A, Nielsen C, Tisma A, Bodapati S, Gowrishankar G, Yan X, Chan C, Starcevic D, Gambhir S S. Clin. Cancer Res., 2013, 19(6):1494.
[53] Zhang J, Smaga L P, Satyavolu N S R, Chan J, Lu Y. J. Am. Chem. Soc., 2017, 139(48):17225.
[54] Meng X, Zhang J, Sun Z, Zhou L, Deng G, Li S, Li W, Gong P, Cai L. Theranostics, 2018, 8(21):6025.
[55] Bauerová K, Bezek A. Gen. Physiol. Biophys., 1999, 18:15.
[56] Martin L D, Krunkosky T M, Dye J A, Fischer B M, Jiang N F, Rochelle L G, Akley N J, Dreher K L, Adler K B. Environ. Health Perspect., 1997, 105(5):1301.
[57] Baran C P, Zeigler M M, Tridandapani S, Marsh C B. Curr. Pharm. Des., 2004, 10(8):855.
[58] Tapeinos C, Pandit A. Adv. Mater., 2016, 28(27):5553.
[59] Ye H, Zhou Y, Liu X, Chen Y, Duan S, Zhu R, Liu Y, Yin L. Biomacromolecules, 2019, 20(7):2441.
[60] 矫春鹏(Jiao C P),刘媛媛(Liu Y Y),路文娟(Lu W J), 张平平(Zhang P P),王延风(Wang Y F). 有机化学(Chinese Journal of Organic Chemistry), 2019, 39(3):591.
[61] Xie C, Zhen X, Lyu Y, Pu K. Adv. Mater., 2017, 29(44):1703693.
[62] Chen Q, Liang C, Sun X, Chen J, Yang Z, Zhao H, Feng L, Liu Z. Proc. Natl. Acad. Sci. U S A, 2017, 114(21):5343.
[63] Zheng J, Zeng Q, Zhang R, Xing D, Zhang T. J. Am. Chem. Soc., 2019, 141(49):19226.
[64] Wang Z, Zhen X, Upputuri P K, Jiang Y, Lau J, Pramanik M, Pu K, Xing B. ACS Nano, 2019, 13(5):5816.
[65] Yang Y, Wang S, Lu L, Zhang Q, Yu P, Fan Y, Zhang F. Angew. Chem. Int. Ed., 2020, DOI:10.1002/anie.202007649.
[66] Yin C, Zhen X, Fan Q, Huang W, Pu K. ACS Nano, 2017, 11(4):4174.
[67] Yang Z, Dai Y, Yin C, Fan Q, Zhang W, Song J, Yu G, Tang W, Fan W, Yung B C, Li J, Li X, Li X, Tang Y, Huang W, Song J, Chen X. Adv. Mater., 2018, 30(23):1707509.
[68] Pu K, Shuhendler A J, Jokerst J V, Mei J, Gambhir S S, Bao Z, Rao J. Nat. Nanotechnol., 2014, 9(3):233.
[69] Qin X, Li F, Zhang Y, Ma G, Feng T, Luo Y, Huang P, Lin J. Anal. Chem., 2018, 90(15):9381.
[70] Zhang J, Zhen X, Upputuri P K, Pramanik M, Chen P, Pu K. Adv. Mater., 2017, 29(6):1604764.
[71] Lu X, Zhao M, Chen P, Fan Q, Wang W, Huang W. J. Mater. Chem. B, 2018, 6(27):4531.
[72] Toriumi N, Asano N, Ikeno T, Muranaka A, Hanaoka K, Urano Y, Uchiyama M. Angew. Chem., Int. Ed., 2019, 58(23):7788.
[73] Adrogué H J, Madias N E. N. Engl. J. Med., 1998, 338(2):107.
[74] Ma G, Gao X, Jiang C, Xing S, Wei C, Huang P, Lin J. Anal. Chem., 2019, 91(21):13570.
[75] Chen Q, Liu X, Zeng J, Cheng Z, Liu Z. Biomaterials, 2016, 98:23.
[76] Guha S, Shaw G K, Mitcham T M, Bouchard R R, Smith B D. Chem. Commun., 2016, 52(1):120.
[77] Miao Q, Lyu Y, Ding D, Pu K. Adv. Mater., 2016, 28(19):3662.
[78] Chen Q, Liu X, Chen J, Zeng J, Cheng Z, Liu Z. Adv. Mater., 2015, 27(43):6820.
[79] Huang G, Si Z, Yang S, Li C, Xing D. J. Mater. Chem., 2012, 22(42):22575.
[80] Ju K Y, Kang J, Pyo J, Lim J, Chang J H, Lee J K. Nanoscale, 2016, 8(30):14448.
[81] Hu X, Zhan C, Tang Y, Lu F, Li Y, Pei F, Lu X, Ji Y, Li J, Wang W, Fan Q, Huang W. Chem. Commun., 2019, 55(43):6006.
[82] Wang R. Physiol. Rev., 2012, 92(2):791.
[83] Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. J. Am. Chem. Soc., 2019, 141(45):17973.
[84] Li X, Tang Y, Li J, Hu X, Yin C, Yang Z, Wang Q, Wu Z, Lu X, Wang W, Huang W, Fan Q. Chem. Commun., 2019, 55(42):5934.
[85] Ma T, Zheng J, Zhang T, Xing D. Nanoscale, 2018, 10(28):13462.
[86] Denninger J W, Marletta M A. Biochim. Biophys. Acta, 1999, 1411(2-3):334.
[87] Wang L, Zhang J, An X, Duan H. Org. Biomol. Chem., 2020, 18(8):1522.
[88] Teng L, Song G, Liu Y, Han X, Li Z, Wang Y, Huan S, Zhang X B, Tan W. J. Am. Chem. Soc., 2019, 141(34):13572.
[89] Reinhardt C J, Zhou E Y, Jorgensen M D, Partipilo G, Chan J. J. Am. Chem. Soc., 2018, 140(3):1011.
[90] Kleinman W A, Richie J P. Biochem. Pharmacol., 2000, 60(1):19.
[91] Jung H S, Chen X, Kim J S, Yoon J. Chem. Soc. Rev., 2013, 42(14):6019.
[92] Yin C, Tang Y, Li X, Yang Z, Li J, Li X, Huang W, Fan Q. Small, 2018, 14(11):1703400.
[93] Tang L, Yu F, Tang B, Yang Z, Fan W, Zhang M, Wang Z, Jacobson O, Zhou Z, Li L, Liu Y, Kiesewetter D O, Tang W, He L, Ma Y, Niu G, Zhang X, Chen X. ACS Appl. Mater. Interfaces, 2019, 11(31):27558.
[94] Knox H J, Hedhli J, Kim T W, Khalili K, Dobrucki L W, Chan J. Nat. Commun., 2017, 8(1):1794.
[95] Huang J, Wu Y, Zeng F, Wu S. Theranostics, 2019, 9(24):7313.
[96] Ng K K, Shakiba M, Huynh E, Weersink R A, Roxin á, Wilson B C, Zheng G. Acs Nano, 2014, 8(8):8363.
[97] Xiao H, Wu C, Li P, Gao W, Zhang W, Zhang W, Tong L, Tang B. Chem. Sci., 2017, 8(10):7025.
[1] 包予晗, 郭子峰, 李金涛, 张明祖, 何金林, 倪沛红. 基于阿霉素纳米共递体系的抗肿瘤联合治疗[J]. 化学进展, 2023, 35(8): 1123-1135.
[2] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[9] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[10] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[11] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[12] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[13] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[14] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[15] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
阅读次数
全文


摘要

激活型有机光声造影剂应用研究