English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 355-367 DOI: 10.7536/PC200550 前一篇   后一篇

• 综述 •

多孔氮化石墨烯(C2N)的合成及应用

罗贤升1, 邓汉林1, 赵江颖2, 李志华2, 柴春鹏1, 黄木华1,*()   

  1. 1 北京理工大学材料学院 北京 100081
    2 甘肃省银光化学工业集团有限公司 白银 730900
  • 收稿日期:2020-05-22 修回日期:2020-07-23 出版日期:2021-03-20 发布日期:2020-12-28
  • 通讯作者: 黄木华
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21772013); 北京市自然科学基金项目(2202049)

Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N)

Xiansheng Luo1, Hanlin Deng1, Jiangying Zhao2, Zhihua Li2, Chunpeng Chai1, Muhua Huang1,*()   

  1. 1 School of Material Science and Engineering, Beijing Institute of Technology,Beijing 100081, China
    2 Gansu Yinguang Chemical Industry Group Co., Ltd,Baiyin 730900, China;
  • Received:2020-05-22 Revised:2020-07-23 Online:2021-03-20 Published:2020-12-28
  • Contact: Muhua Huang
  • Supported by:
    the National Natural Science Foundation of China(21772013); Beijing Natural Science Foundation(2202049)

多孔氮化石墨烯C2N材料,凭借氮原子均匀掺杂石墨烯而形成具有周期性孔洞的二维富氮网络结构,近年来受到学术界的高度关注。本文综述了C2N材料的最新研究进展,包括其合成方法、出众的结构力学、光吸收、热学和电磁性能,以及在电子器件、吸附分离、绿色催化和生物应用等方面的应用。预期C2N材料将在未来一段时间内形成研究热潮。

A brand-new nitrogenated graphene-like two-dimensional material(C2N) has attracted considerable attention due to its special two-dimension nitro-rich network, which possesses regularly distributed N-containing holes. This article summarizes recent proceeding of the C2N material including synthesis, excellent mechanical, optical absorption, thermal, electrical and magnetic properties, as well as various applications, such as electronic devices, adsorption materials, green catalysts, drug carriers and so on. The C2N material is predicted to cause a research upsurge in the future.

Contents

1 Introduction

2 Structure and properties of C2N

2.1 Monolayer structure

2.2 Mechanical property

2.3 Optical property

2.4 Thermal property

2.5 Electronic and magnetic property

3 Synthesis and characterization of C2N

3.1 Bottom-up method

3.2 Top-down method

4 Applications of C2N

4.1 Electronic devices

4.2 Gas adsorption and separation

4.3 Green catalysis

4.4 Biological applications

5 Conclusion and outlook

()
图1 (1)常见二维材料:六方氮化硼[3]和石墨烯[4];(2)代表性富氮无限网络结构:CTF-1[10,11],aza-CMP[13],aza-MGP[14],g-C3N4[15],C3N[21,22]和C2N
Fig.1 (1) Novel two-dimensional materials: h-BN[3] and graphene[4].(2) Representative nitro-rich infinite framework: CTF-1[10,11], aza-CMP[13], aza-MGP[14], g-C3N4[15], C3N[21,22], and C2N
图2 单层C2N原子结构俯视图[26]
Fig.2 Top view of atomic structure of single-layer C2N[26]
图3 椅式或锯齿形方向说明,及不同应变类型的单层C2N的应变-应力关系[27]
Fig.3 Illustration of the armchair and zigzag directions, and strain-stress relations for monolayer h2D-C2N with different types of strain[27]
图4 单光子和双光子诱导的C2N QD荧光,紫外线照射下由C2N QD荧光墨水书写的“C2N”照片[34]
Fig.4 Single-photon- and two-photon-induced fluorescence of C2N QDs, and photograph of “C 2N” characters composed from a C2N QD-based ink under UV irradiation[34]
图5 C2N/SiO2结构示意图,及热松弛过程中C2N能量及两组分温度随时间的变化曲线[37]
Fig.5 Atomistic configurations of C2N/SiO2, and time evolutions of C2N total energy as well as of C2N and SiO2 temperatures during thermal relaxation[37]
图6 C2N的合成方法(1)[25]
Fig.6 Synthesis of C2N materials(1)[25]
图7 C2N的合成方法(2)[46]
Fig.7 Synthesis of C2N materials(2)[46]
图8 C2N的合成方法(3)[47]
Fig.8 Synthesis of C2N materials(3)[47]
表1 通过不同途径合成C2N材料的比较。
Table 1 Comparison on C2N materials via different ways.
图9 C2N薄层和量子点的合成方法及TEM图像[34,50]
Fig.9 Synthesis and TEM images of C2N nanosheet and quantum dot[34,50]
图10 C2N型电极材料[70]
Fig.10 C2N material used as electrode materials[70]
图11 C2N材料的吸附分离应用:(1)储氢[82];(2)温室气体吸附[83];(3)酸性污染气体吸附[85]
Fig.11 Application of C2N materials in adsorption separation:(1) hydrogen storage[82],(2) greenhouse gas adsorption[83],(3) acidic polluted gas adsorption[85]
图12 C2N型绿色催化剂:(1)CO2电还原[96];(2)水裂解[93];(3)N2固定[102]
Fig.8 C2N-based green catalysts:(1) CO2reduction[96],(2) water splitting[93],(3) N2fixation[102]
图13 C2N型生物材料:(1) 固载蛋白质[117];(2) 固载DNA[115];(3) 药物载体[119]
Fig.13 C2N-based biological materials:(1) protein immobilization[117],(2) DNA immobilization[115](3) drug carriers[119]
[1]
Bernardi M, Palummo M, Grossman J C. Nano Lett., 2013, 13:3664.
[2]
Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D, Ye P D. ACS Nano, 2014, 8:4033.
[3]
Li L H, Chen Y. Adv. Funct. Mater., 2016, 26:2594.
[4]
Chen H Q, Müller M B, Gilmore K J, Wallace G G, Li D. Adv. Mater., 2008, 20:3557.
[5]
Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Nano Lett., 2008, 8:902.
[6]
Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F, Cheng H M. ACS Nano, 2010, 4:3187.
[7]
Merchant C A, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein M D, Venta K, Luo Z T, Johnson A T C, Drndi M. Nano Lett., 2010, 10:2915.
[8]
Lee S U, Belosludov R V, Mizuseki H, Kawazoe Y. Small, 2009, 5:1769.
[9]
Chen X, He D P, Mu S C. Progress in Chemistry, 2013, 25(8):60.
陈旭, 何大平, 木士春. 化学进展. 2013, 25(8):60.
[10]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47:3450.
[11]
Yu S Y, Mahmood J, Noh H J, Seo J M, Jung S M, Shin S H, Im Y K, Jeon I Y, Baek J B. Angew. Chem. Int. Ed., 2018, 57:8438.
[12]
Liu M Y, Huang Q, Wang S L, Li Z Y, Li B Y, Jin S B, Tan B E. Angew. Chem. Int. Ed., 2018, 57:11968.
[13]
Kou Y, Xu Y H, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2011, 50:8753.
[14]
Yuan F Y, Li J, Namuangruk S, Kungwan N, Guo J, Wang C C. Chem. Mater., 2017, 29:3971.
[15]
Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8:76.
[16]
Zhang J S, Wang B, Wang X C. Progress in Chemistry, 2014, 26(1):19.
张金水, 王博, 王心晨. 化学进展, 2014, 26(1):19.
[17]
Sun J Y, Li X X, Yang J L. Nanoscale, 2018, 10:3738.
[18]
Qi Y H, Liu L, Liang Y H, Hu J S, Cui W Q, Progress in Chemistry, 2015, 27(1):38.
齐跃红, 刘利, 梁英华, 胡金山, 崔文权. 化学进展, 2015, 27(1):38.
[19]
Pan Z, Zhang G, Wang X. Angew. Chem., Int. Ed., 2019,58∶7102.
[20]
Fang Y X, Xu Y T, Li X C, Ma Y W, Wang X C. Angew. Chem. Int. Ed., 2018, 57:9749.
[21]
Mahmood J, Lee E K, Jung M, Shin D, Choi H J, Seo J M, Jung S M, Kim D, Li F, Lah M S, Park N, Shin H J, Oh J H, Baek J B. PNAS, 2016, 113:7414.
[22]
Yang S, Li W, Ye C, Wang G, Tian H, Zhu C, He P, Ding G, Xie X, Liu Y, Lifshitz Y, Lee S, Kang Z, Jiang M. Adv. Mater., 2017,29∶1605625.
[23]
Alhameedi K, Hussain T, Bae H, Jayatilaka D, Lee H, Karton A. Carbon, 2019, 152:344.
[24]
Makaremi M, Mortazavi B, Singh C V. J. Phys. Chem. C, 2017, 121(34):18575.
[25]
Mahmood J, Lee E K, Jung M, Shin D, Jeon I Y, Jung S M, Choi H J, Seo J M, Bae S Y, Sohn S D, Park N, Oh J H, Shin H J, Baek J B. Nat. Commun., 2015, 6:6486.
[26]
Sahin H. Phys. Rev. B, 2015, 92:085421.
[27]
Guan S, Cheng Y C, Liu C, Han J F, Lu Y H, Yang S A, Yao Y G. Appl. Phys. Lett., 2015, 107:231904.
[28]
Yagmurcukardes M, Horzum S, Torun E, Peeters F M, Tugrul Senger R. Phys. Chem. Chem. Phys., 2016, 18:3144.
[29]
Mortazavi B, Rahaman O, Rabczuk T, Pereira L F C. Carbon, 2016, 106:1.
[30]
Zhang R Q, Li B, Yang J L. Nanoscale, 2015, 7:14062.
[31]
Sun J Y, Zhang R Q, Li X X, Yang J L. Appl. Phys. Lett., 2016, 109:133108.
[32]
Phuc H V, Tuan V V, Hieu N N, Ilyasov V V, Fedorov I A, Hoi B D, Phuong L T T, Hieu N V, Feddi E, Nguyen C V. J. Electron. Mater., 2018, 47:4594.
[33]
Guan Z Y, Ni S. Appl. Phys. A, 2017, 123:678.
[34]
Hu X H, Zhong L F, Shu C H, Fang Z S, Yang M J, Li J, Yu D S. J. Am. Chem. Soc., 2020, 142:4621.
[35]
Ouyang T, Xiao H P, Tang C, Zhang X L, Hu M, Zhong J X. Nanotechnology, 2017, 28:045709.
[36]
Wang X Y, Hong Y, Ma D W, Zhang J C. J. Mater. Chem. C, 2017, 5:5119.
[37]
Rajabpour A, Bazrafshan S, Volz S. Phys. Chem. Chem. Phys., 2019, 21:2507.
[38]
Wang Y S, Song N H, Jia M, Yang D P, Panashe C, Yang Y Y, Wang J J. Phys. Chem. Chem. Phys., 2017, 19:15021.
[39]
He J J, Guo Y D, Yan X H, Zeng H L, Ni Y. Solid State Commun., 2019, 289:61.
[40]
Saraiva-Souza A, Smeu M, da Silva Filho J G, Girão E C, Guo H. J. Mater. Chem. C, 2017, 5:11856.
[41]
He J J, Guo Y D, Yan X H. Sci. Rep., 2017, 7:43922.
[42]
Gong S, Wan W H, Guan S, Tai B, Liu C, Fu B T, Yang S A, Yao Y G. J. Mater. Chem. C, 2017, 5:8424.
[43]
Choudhuri I, Pathak B. ChemPhysChem, 2017, 18:2336.
[44]
Liang Z H, Xu B, Xiang H, Xia Y D, Yin J, Liu Z G. RSC Adv., 2016, 6:54027.
[45]
Mahmood J, Kim D, Jeon I, Lah M S, Baek J. Synlett, 2013, 24:246.
[46]
Shinde S S, Lee C H, Yu J Y, Kim D H, Lee S U, Lee J H. ACS Nano, 2018, 12:596.
[47]
Walczak R, Kurpil B, Savateev A, Heil T, Schmidt J, Qin Q, Antonietti M, Oschatz M. Angew. Chem. Int. Ed., 2018, 57:10765.
[48]
Liu X X, Luo X S, Deng H L, Fan W H, Wang S F, Yang C J, Sun X Y, Chen S L, Huang M H. Chem. Mater., 2019, 31:5421.
[49]
Huang M, Luo X S, Deng H L, Liu X X, CN 109081781, 2018(黄木华, 罗贤升, 邓汉林, 刘向向. CN 109081781, 2018)
[50]
Wang L, Zheng X S, Chen L, Xiong Y J, Xu H X. Angew. Chem. Int. Ed., 2018, 57:3454.
[51]
Xu J T, Mahmood J, Dou Y H, Dou S X, Li F, Dai L M, Baek J B. Adv. Mater., 2017, 29:1702007.
[52]
Hussain T, Searles D J, Hankel M. Carbon, 2020, 160:125.
[53]
Wu D H, Yang B C, Chen H Y, Ruckenstein E. Energy Storage Mater., 2019, 16:574.
[54]
Huang C M, Mahmood J, Wei Z X, Wang D, Liu S H, Zhao Y M, Noh H J, Ma J M, Xu J T, Baek J B. Mater. Today Energy, 2019, 14:100359.
[55]
Wu J B, Wang L W. J. Mater. Chem. A, 2018, 6:2984.
[56]
Lin H, Jin R C, Wang A L, Zhu S G, Li H Z. Ceram. Int., 2019, 45:17996.
[57]
Nguyen H T T, Vu T V, Pham V T, Hieu N N, Phuc H V, Hoi B D, Binh N T T, Idrees M, Amin B, Nguyen C V. RSC Adv., 2020, 10:2967.
[58]
Guan Z Y, Lian C S, Hu S L, Ni S, Li J, Duan W H. J. Phys. Chem. C, 2017, 121:3654.
[59]
Mukhopadhyay T K, Datta A. J. Phys. Chem. C, 2018, 122:28918.
[60]
Li X H, Wang B J, Cai X L, Yu W Y, Zhu Y Y, Li F Y, Fan R X, Zhang Y S, Ke S H. Nanoscale Res. Lett., 2018, 13:300.
[61]
Wang X L, Wang Y Y, Quhe R G, Tang Y N, Dai X Q, Tang W H. J. Alloy. Compd., 2020, 816:152559.
[62]
Ma Z, Wang Y S, Wei Y T, Li C, Zhang X W, Wang F. Phys. Chem. Chem. Phys., 2019, 21:21753.
[63]
Long X, Li X, Wei X L, Cao J X. Chem. Phys. Lett., 2019, 725:75.
[64]
Zheng Z D, Wang X C, Mi W B. Carbon, 2017, 117:393.
[65]
Zheng Z D, Wang X C, Mi W B. Phys. E: Low-Dimensional Syst. Nanostructures, 2017, 94:148.
[66]
Wang X L, Quhe R G, Cui W, Zhi Y S, Huang Y Q, An Y H, Dai X Q, Tang Y N, Chen W G, Wu Z P, Tang W H. Carbon, 2018, 129:738.
[67]
Zhang Z H, Xie Z F, Liu J, Tian Y, Zhang Y, Wei X, Guo T T, Ni L, Fan J B, Weng Y J, Zha Z D, Duan L. Phys. Chem. Chem. Phys., 2020, 22:5873.
[68]
Jiang J W, Wang X C, Song Y, Mi W B. Appl. Surf. Sci., 2018, 440:42.
[69]
Wang D D, Han D X, Liu L, Niu L. RSC Adv., 2016, 6:28484.
[70]
Ding Y C, Xiao B, Li J L, Deng Q J, Xu Y H, Wang H F, Rao D W. J. Phys. Chem. C, 2019, 123:3353.
[71]
Du J, Xia C X, Wang T X, Xiong W Q, Li J B. J. Mater. Chem. C, 2016, 4:9294.
[72]
Tromer R M, da Luz M G E, Ferreira M S, Pereira L F C. J. Phys. Chem. C, 2017, 121:3055.
[73]
Zhu J Z, Zulfiqar M, Zeng S M, Zhao Y C, Ni J. AIP Adv., 2018, 8:055333.
[74]
Yang Y M, Guo M, Zhang G, Li W F. Carbon, 2017, 117:120.
[75]
Bafekry A, Stampfl C, Ghergherehchi M, Farjami S S. Carbon, 2020, 157:371.
[76]
Yang Y M, Li W F, Zhou H C, Zhang X M, Zhao M W. Sci. Rep., 2016, 6:29218.
[77]
Liu B, Law A W K, Zhou K. J. Membr. Sci., 2018, 550:554.
[78]
Qu Y Y, Li F, Zhou H C, Zhao M W. Sci. Rep., 2016, 6:19952.
[79]
Zhu L, Xue Q Z, Li X F, Wu T T, Jin Y K, Xing W. J. Mater. Chem. A, 2015, 3:21351.
[80]
Xu B, Xiang H, Wei Q, Liu J Q, Xia Y D, Yin J, Liu Z G. Phys. Chem. Chem. Phys., 2015, 17:15115.
[81]
Guerrero-AvilÉs R, Orellana W. Int. J. Hydrog. Energy, 2018, 43:22966.
[82]
Varunaa R, Ravindran P. Phys. Chem. Chem. Phys., 2019, 21:25311.
[83]
Liu Y Z, Meng Z S, Guo X J, Xu G J, Rao D W, Wang Y H, Deng K M, Lu R F. Phys. Chem. Chem. Phys., 2017, 19:28323.
[84]
Peng W M, Guo Y H, Zhang Y M, Wu W X, Liu Y X, Zhou Z P. Mater. Chem. Phys., 2020, 240:122184.
[85]
Bhattacharyya K, Pratik S M, Datta A. J. Phys. Chem. C, 2018, 122:2248.
[86]
Su Y T, Ao Z M, Ji Y M, Li G Y, An T C. Appl. Surf. Sci., 2018, 450:484.
[87]
Yong Y L, Cui H L, Zhou Q X, Su X Y, Kuang Y M, Li X H. Appl. Surf. Sci., 2019, 487:488.
[88]
Zhu Y Q, Cao T, Cao C B, Luo J, Chen W X, Zheng L R, Dong J C, Zhang J, Han Y H, Li Z, Chen C, Peng Q, Wang D S, Li Y D. ACS Catal., 2018, 8:10004.
[89]
Wang X C, Chen X F, Thomas A, Fu X Z, Antonietti M. Adv. Mater., 2009, 21:1609.
[90]
Mahmood J, Li F, Jung S M, Okyay M S, Ahmad I, Kim S J, Park N, Jeong H Y, Baek J B. Nat. Nanotechnol., 2017, 12:441.
[91]
Mahmood J, Jung S M, Kim S J, Park J, Yoo J W, Baek J B. Chem. Mater., 2015, 27:4860.
[92]
Mahmood J, Li F, Kim C, Choi H J, Gwon O, Jung S M, Seo J M, Cho S J, Ju Y W, Jeong H Y, Kim G, Baek J B. Nano Energy, 2018, 44:304.
[93]
Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z. J. Mater. Chem. A, 2018, 6:11446.
[94]
Li X Y, Zhong W H, Cui P, Li J, Jiang J. J. Phys. Chem. Lett., 2016, 7:1750.
[95]
Kim J, Gwon O, Kwon O, Mahmood J, Kim C, Yang Y J, Lee H, Lee J H, Jeong H Y, Baek J B, Kim G. ACS Nano, 2019, 13:5502.
[96]
Zhao J, Zhao J X, Li F Y, Chen Z F. J. Phys. Chem. C, 2018, 122:19712.
[97]
Huang Q L, Liu H M, An W, Wang Y Q, Feng Y H, Men Y. ACS Sustainable Chem. Eng., 2019, 7:19113.
[98]
Li F Y, Chen Z F. Nanoscale, 2018, 10:15696.
[99]
He B L, Shen J S, Tian Z X. Phys. Chem. Chem. Phys., 2016, 18:24261.
[100]
Li F Y, Liu X Y, Chen Z F. Small Methods, 2019, 3:1800480.
[101]
Zhao J, Chen Z, Zhao J X, Li F Y. Appl. Surf. Sci., 2019, 498:143868.
[102]
Qian Y M, Liu Y Y, Zhao Y, Zhang X H, Yu G H. EcoMat, 2020,2∶12014.
[103]
Chen Z W, Yan J M, Jiang Q. Small Methods, 2019, 3:1800291.
[104]
Zhou Y, Xu Y, Wu L X. Phys. Lett. A, 2020, 384:126326.
[105]
Ashwin Kishore M R, Sjåstad A O, Ravindran P. Carbon, 2019, 141:50.
[106]
Kishore M R A, Ravindran P. ChemPhysChem, 2017, 18:1526.
[107]
Ashwin Kishore M R, Ravindran P. J. Phys. Chem. C, 2017, 121:22216.
[108]
Kumar R, Das D, Singh A K. J. Catal., 2018, 359:143.
[109]
Zhou H, Cai W S, Li J W, Liu X Y, Xiong W, Zhou Y, Xu Z, Wang B, Ye C. Phys. Chem. Chem. Phys., 2020, 22:1485.
[110]
Wang H M, Li X X, Yang J L. ChemPhysChem, 2016, 17:2100.
[111]
Zhang R Q, Zhang L L, Zheng Q J, Gao P F, Zhao J, Yang J L. J. Phys. Chem. Lett., 2018, 9:5419.
[112]
Wang B, Yuan H K, Chang J L, Chen X R, Chen H. Appl. Surf. Sci., 2019, 485:375.
[113]
Zhang X, Chen A, Zhang Z H, Jiao M G, Zhou Z. Nanoscale Adv., 2019, 1:154.
[114]
Luo X K, Wang G Z, Huang Y H, Wang B, Yuan H K, Chen H. Phys. Chem. Chem. Phys., 2017, 19:28216.
[115]
Gu Z L, Zhao L, Liu S T, Duan G X, Perez-Aguilar J M, Luo J D, Li W F, Zhou R H. ACS Nano, 2017, 11:3198.
[116]
Mukhopadhyay T K, Bhattacharyya K, Datta A. ACS Appl. Mater. Interfaces, 2018, 10:13805.
[117]
Li B Y, Li W F, Perez-Aguilar J M, Zhou R H. Small, 2017, 13:1603685.
[118]
Liu L, Zhang S T, Zhao L, Gu Z L, Duan G X, Zhou B, Yang Z X, Zhou R H. Small, 2018, 14:1803509.
[119]
Zhang S T, Liu L, Duan G X, Zhao L, Liu S T, Zhou B, Yang Z X. ACS Appl. Mater. Interfaces, 2019, 11:34575.
[120]
Li X L, Wang H X, Chen H, Zheng Q, Zhang Q B, Mao H Y, Liu Y W, Cai S L, Sun B, Dun C C, Gordon M P, Zheng H M, Reimer J A, Urban J J, Ciston J, Tan T W, Chan E M, Zhang J, Liu Y. Chem, 2020, 6:933.
[121]
Kojima T, Nakae T, Xu Z, Saravanan C, Watanabe K, Nakamura Y, Sakaguchi H. Chem. Asian J., 2019, 14:4400.
[122]
Mahmood J, Ahmad I, Jung M, Seo J M, Yu S Y, Noh H J, Kim Y H, Shin H J, Baek J B. Commun. Chem., 2020, 3:31.
[1] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[2] 张静, 张小涛, 任晓辰, 胡文平. 印刷有机数字电路及应用[J]. 化学进展, 2021, 33(3): 490-502.
[3] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[4] 程倩, 于佳酩, 霍薪竹, 沈雨萌, 刘守新. 稀土氟化物上转换荧光增强及应用[J]. 化学进展, 2019, 31(12): 1681-1695.
[5] 段树铭, 任晓辰*, 张小涛, 程姗姗, 胡文平*. 丝网印刷柔性电子器件[J]. 化学进展, 2018, 30(4): 429-438.
[6] 吴锦钧, 杨震, 焦剑梅, 孙鹏飞, 范曲立, 黄维. 水溶性苝酰亚胺类材料的合成及其生物应用[J]. 化学进展, 2017, 29(2/3): 216-230.
[7] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[8] 李恬, 王祎龙, 郭方方, 时东陆. 复杂形貌磁性复合微球制备及其生物应用[J]. 化学进展, 2013, 25(12): 2053-2067.
[9] 陈梦君, 杨万泰, 尹梅贞* . 纳米粒子的分类合成及其在生物领域的应用[J]. 化学进展, 2012, 24(12): 2403-2414.
[10] 刘洪梅,赵健伟. 分子整流的实验与理论研究进展*[J]. 化学进展, 2009, 21(6): 1154-1163.
[11] 张祯,麻远,赵玉芬. 微波辅助的Friedel-Crafts反应[J]. 化学进展, 2008, 20(0203): 312-317.
[12] 赵忠奎,李宗石,王桂茹,乔卫红,程侣伯. 杂多酸催化剂及其在精细化学品合成中的应用[J]. 化学进展, 2004, 16(04): 620-.
[13] 李永舫. 导电聚合物[J]. 化学进展, 2002, 14(03): 207-.