English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 802-817 DOI: 10.7536/PC200677 前一篇   后一篇

• 研究论文 •

基于碳基透明电极的柔性有机电致发光二极管

吴磊1, 刘利会1,*(), 陈淑芬1,*()   

  1. 1 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子和信息显示协同创新中心 南京 210023
  • 收稿日期:2020-06-28 修回日期:2020-08-22 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 刘利会, 陈淑芬
  • 作者简介:
    * Corresponding author e-mail: (Shufen Chen);
  • 基金资助:
    国家重点研发计划(2017YFB0404501); 国家重大科学研究计划(973 project,2015CB932203); 国家自然科学基金重大研究计划(91833306); 国家自然科学基金项目(61705111); 国家自然科学基金项目(61704091); 江苏省杰出青年基金项目(BK20160039); 有机电子与信息显示协同创新中心,南京邮电大学启动基金项目(NY217010)

Flexible Organic Light-Emitting Diodes Using Carbon-Based Transparent Electrodes

Lei Wu1, Lihui Liu1,*(), Shufen Chen1,*()   

  1. 1 Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2020-06-28 Revised:2020-08-22 Online:2021-05-20 Published:2020-12-22
  • Contact: Lihui Liu, Shufen Chen
  • Supported by:
    National Key Research and Development Program of China(2017YFB0404501); National Foundation for Science and Technology Development of China(973 project,2015CB932203); National Major Fundamental Research Program of China(91833306); National Natural Science Foundation of China(61705111); National Natural Science Foundation of China(61704091); Science Fund for Distinguished Young Scholars of Jiangsu Province of China(BK20160039); Synergetic Innovation Center for Organic Electronics and Information Displays, the Startup Foundation of Nanjing University of Posts and Telecommunications(NY217010)

随着消费升级和5G技术的发展,显示技术正朝着超高分辨率、大尺寸、轻薄、柔性和低成本方向蓬勃发展。有机发光二极管(OLED)具有自发光、超薄、节能、大面积、易实现柔性及三维显示等优点,是最具竞争力的颠覆性显示技术。柔性透明电极材料对实现可弯曲、可折叠、可穿戴柔性OLED至关重要。而传统的氧化铟锡(ITO)电极弯折易碎、原材料稀少、价格逐年上升,不适合未来柔性OLED的大范围推广应用。而碳基材料具有原材料丰富、制造成本低、制备工艺简单、机械性能优越等特点,是最有前途的替代ITO的新兴柔性电极材料。其中一维碳纳米管、二维石墨烯、三维互穿网络导电聚合物等新型碳基导电材料以优异的透光性、导电性、柔性和化学可修饰性得到广泛的关注,并在光电器件领域取得了重要研究成果。对此,本文系统地介绍了碳纳米管、石墨烯和导电聚合物几种典型碳基柔性透明电极材料的光电性质、制备方法和图案化工艺,并总结了近年来基于碳基电极材料的柔性OLED研究进展,最后分析了当前柔性OLED大规模生产和应用中存在的问题,并对未来的发展方向做出了展望。

Due to the consuming upgrade and development of 5G technology, the future display technology focuses on ultra-high resolution, large-area, light weight, flexibility and low-cost. Organic light-emitting diodes(OLEDs) have attracted considerable attention as one of the most promising next-generation display technologies due to the advantages of self-emitting, ultra-thin thickness, low electric power consumption, large-area, and high flexibility. Flexible transparent conducting electrodes(TCEs) are primary to achieve the flexible, foldable and wearable OLEDs. However, novel TCEs are required to replace traditional indium tin oxide(ITO), due to its inherent brittle nature and steadily rising price. Carbon-based materials are the most promising alternate flexible TCEs because of their abundant resources and simple, cost-effective fabrication processes. Among the carbon-based materials, one-dimensional(1D) carbon nanotubes, 2D graphene and 3D interpenetrating network conducting polymers are drawing extensive interest owning to the excellent optical transparency, conductivity, flexibility and chemical functionalization characteristics, leading to remarkable achievements in optoelectronic devices as TCEs. In this review, carbon-based flexible TCEs, including carbon nanotubes, graphene and conducting polymers, are introduced, including the basic optoelectronic properties, preparation methods, and pattern technologies. Furthermore, a comprehensive overview of recent research progress for the flexible OLEDs using carbon-based TCEs are presented and summarized. Finally, we address the key challenges in current scale production and applications, and provide some potential proposals for future flexible OLEDs.

Contents

1 Introduction

2 Carbon-based flexible transparent electrodes

2.1 Carbon nanotube electrode

2.2 Graphene electrode

2.3 Conductive polymer electrode

2.4 Pattern methods

3 Research progress of FOLEDs using carbon-based electrodes

3.1 FOLED based on carbon nanotube electrode

3.2 FOLED based on graphene electrode

3.3 FOLED based on conductive polymer electrode

3.4 FOLED based on composite electrode

4 Conclusion and outlook

()
图1 (a)超长碳纳米管薄片电极的SEM图[28];(b)具有垂直阵列的蛇形结构的CNT电极[23];(c)利用PDMS模板制备六边形网格状的CNT电极的示意图[30];(d)喷涂法在纺织物上制备CNT电极示意图[32];(e)活性炭辊筒清洁石墨烯表面的示意图;(f)石墨烯表面清洁前后的AFM图[33]
Fig. 1 (a) SEM image of ultralong carbon nanotube sheet electrode[28]. Copyright 2005, American Association for the Advancement of Science;(b) Snake-shaped CNT electrode with a vertical array[23]. Copyright 2017, Wiley-VCH;(c) Schematic diagram of preparation of hexagonal meshed CNT electrode using PDMS template[30];(d) Schematic diagram of CNT electrode prepared on textile by spraying[32]. Copyright 2020, American Chemical Society;(e) Schematic diagram of activated carbon roller cleaning graphene surface;(f) AFM graph of graphene surface before and after cleaning[33]. Copyright 2019, Wiley-VCH
表1 不同透明导电电极材料性能对比
Table 1 Comparison of the performance, advantages and disadvantages of different transparent conducting electrode materials
图2 (a)丝网印刷的示意图;(b)丝网印刷的网格状PEDOT:PSS电极图及示意图[70];(c)基于丝网印刷蜂巢状的AgNW电极的图案化电容器[71];(d)3D打印所制备的图案化电极[72]
Fig. 2 (a) Schematic diagram of screen printing;(b) Screen-printed grid-like PEDOT:PSS electrode diagram and schematic[70]. Copyright 2018, Wiley-VCH;(c) Patterned capacitor based on screen-printed honeycomb AgNW electrode[71]. Copyright 2019, Wiley-VCH;(d) Patterned electrodes prepared by 3D printing[72]. Copyright 2020, Springer Nature
图3 (a)喷墨打印电极所制备的图案化OLED[73];(b)转印到皮肤上的图案化电极[83];(c)转印到不同衬底上的图案化电极[84];(d)定向润湿技术的机理示意图;(e)定向润湿所形成的PEDOT:PSS条纹图案[79];(f)不同图案PEDOT:PSS阵列的SEM图[78];(g)掩膜喷涂流程图示及形成的图案化器件[82]
Fig.3 (a) Patterned OLED prepared by inkjet printing electrode[73];(b) Patterned PEDOT:PSS electrodes transferred to the skin[83]. Copyright 2019, Wiley-VCH;(c) Patterned electrodes transferred to different substrates[84]. Copyright 2015, Wiley-VCH;(d) schematic diagram of directional wetting technology;(e) PEDOT: PSS stripe pattern formed by directional wetting[79]. Copyright 2019, Springer Nature;(f) SEM images of PEDOT: PSS arrays with different patterns[78]. Copyright 2011, Royal Society of Chemistry;(g) mask spraying process diagram and patterned devices[82]. Copyright 2018, Wiley-VCH
图4 (a)基于石墨烯电极的OLED器件结构;(b)基于石墨烯电极的OLED器件工作时的发光图片[87];(c)四层石墨烯电极的OLED器件结构;(d)PFSA掺杂前后OLED器件的J-V曲线[88];(e)超洁净的大尺寸透明石墨烯电极;(f)基于超洁净石墨烯电极的大尺寸OLED[89];(g)不同宽度条纹阵列石墨烯电极的SEM图;(h)所制备的OLED器件结构示意图;(i)不同层数石墨烯OLED的J-V曲线[90]
Fig. 4 (a) OLED device structure based on graphene electrode;(b) Photographs of OLED devices based on graphene electrodes during operation[87]. Copyright 2009, Royal Society of Chemistry;(c) OLED device structure based on four-layer graphene electrode;(d) J-V curves of OLED devices before and after PFSA doping[88]. Copyright 2018, Springer Nature;(e) Ultra-clean large-size transparent graphene electrode;(f) Large-size OLED based on ultra-clean graphene electrode[89]. Copyright 2017, Springer Nature;(g) SEM images of graphene electrodes with stripe arrays of different widths;(h) Schematic diagram of the prepared OLED device structure;(i) J-V curve of graphene OLED with different layers[90]. Copyright 2018, Wiley-VCH
图5 (a)同时兼具导电电极和空穴注入功能的电极结构(AnoHIL)示意图;(b)基于AnoHIL电极的绿光OLED器件结构示意图[49];(c)全溶液制备的双PEDOT:PSS电极的OLED发光图;(d)全溶液制备的双PEDOT:PSS电极的OLED器件结构[64];(e)基于石墨烯与碳纳米管复合电极的OLED器件结构[95]
Fig. 5 (a) Schematic diagram of the PEDOT:PSS film acting as a conductive electrode and a hole injection layer(AnoHIL);(b) Structure diagram of green OLED based on AnoHIL electrode[49]. Copyright 2017, Springer Nature;(c) The working picture of full-solution prepared double PEDOT: PSS electrode OLED;(d) OLED device structure of double PEDOT:PSS electrode prepared by full-solution methods[64]. Copyright 2017, Wiley-VCH;(e) OLED device structure based on graphene and CNT composite electrodes[95]. Copyright 1991, Royal Society of Chemistry
表2 基于不同碳基电极的OLED器件性能
Table 2 Performance parameters of OLED devices based on different carbon-based electrodes
[1]
Pope M, Kallmann H P, Magnante P. J. Chem. Phys., 1963, 38(8):2042.

doi: 10.1063/1.1733929     URL    
[2]
Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51(12):913.

doi: 10.1063/1.98799     URL    
[3]
Gustafsson G, Cao Y, Treacy G M, Klavetter F, Colaneri N, Heeger A J. Nature, 1992, 357(6378):477.

doi: 10.1038/357477a0     URL    
[4]
Jou J H, Kumar S, Agrawal A, Li T H, Sahoo S. J. Mater. Chem. C, 2015, 3(13):2974.

doi: 10.1039/C4TC02495H     URL    
[5]
Ma D G. Chin. J. Liq. Cryst. Displays, 2016, 31(3):229.
( 马东阁. 液晶与显示, 2016, 31(3):229.)
[6]
Li W Z. Technol. Innov. Appli., 2020,(08):135.
( 李伟章. 科技创新与应用. 2020,(8):135.).
[7]
Xu X J. Doctoral Dissertation of Institute of Chemistry Chinese Academy of Sciences, 2007.
( 徐新军. 中国科学院化学研究所博士论文, 2007.).
[8]
Giovanni L, Giovanni F C, Aurelio B, Nicolas Z M, Giuseppe C, Björn K, Wang Q, Norbert K, Stefan H, Emil J W L, Franco C. Nanoscale, 2012, 12(9):5444.

doi: 10.1039/D0NR00724B     URL    
[9]
Han J W, Jung B, Kim D W, Lim K T, Jeong S Y, Kim Y H. Org. Electron., 2019, 73:13.

doi: 10.1016/j.orgel.2019.05.018     URL    
[10]
Wang B H, Facchetti A. Adv. Mater., 2019, 31(28):1901408.

doi: 10.1002/adma.v31.28     URL    
[11]
Chen Z H, Fang R, Li W, Guan J G. Adv. Mater., 2019, 31(35):1900756.

doi: 10.1002/adma.v31.35     URL    
[12]
Hao X M. Sens. World, 2019, 25(12):39.
( 郝晓明. 传感器世界, 2019, 25(12):39.)
[13]
Koo J H, Kim D C, Shim H J, Kim T H, Kim D H. Adv. Funct. Mater., 2018, 28(35):1801834.

doi: 10.1002/adfm.v28.35     URL    
[14]
Tao J S, Wang R P, Yu H, Chen L L, Fang D J, Tian Y, Xie J Y, Jia D M, Liu H, Wang J S, Tang F C, Song L, Li H B. ACS Appl. Mater. Interfaces, 2020, 12(8):9701.

doi: 10.1021/acsami.0c01048     URL    
[15]
Lim M S, Nam M, Choi S, Jeon Y, Son Y H, Lee S M, Choi K C. Nano Lett., 2020, 20(3):1526.

doi: 10.1021/acs.nanolett.9b03657     URL    
[16]
Kim K, Park Y G, Hyun B G, Choi M, Park J U. Adv. Mater., 2019, 31(20):1804690.

doi: 10.1002/adma.v31.20     URL    
[17]
Wei B W, Wu X K, Lian L, Yang S, Dong D, Feng D X, He G F. Org. Electron., 2017, 43:182.

doi: 10.1016/j.orgel.2017.01.030     URL    
[18]
Iijima S, Ichihashi T. Nature, 1993, 363(6430):603.

doi: 10.1038/363603a0     URL    
[19]
Guo X Q, Bai Y Q, Bai Q Z, Wen N, Nie N. Carbon, 2018, (2):40.
( 郭晓琦, 白云起, 白青子, 温楠, 聂宁. 炭素, 2018, (2):40.).
[20]
Qu T Y, Sun Y, Chen M L, Liu Z B, Zhu Q B, Wang B W, Zhao T Y, Liu C, Tan J, Qiu S, Li Q W, Han Z, Wang W, Cheng H M, Sun D M. Adv. Mater., 2020, 32(9):1907288.

doi: 10.1002/adma.v32.9     URL    
[21]
Li X L. Mod. Manuf. Technol. Equip., 2019, (4): 106,114.
( 李晓丽. 现代制造技术与装备, 2019, (4): 106,114.).
[22]
Su W G, Zhang C. Mod. Chem. Ind., 2019, 39(7):89.
( 苏暐光, 张策. 现代化工, 2019, 39(7):89.)
[23]
Hong S, Lee J, Do K, Lee M, Kim J H, Lee S, Kim D H. Adv. Funct. Mater., 2017, 27(48):1704353.

doi: 10.1002/adfm.v27.48     URL    
[24]
Yue C. Sci. Technol. Rev., 2012, 30(26):8.
( 岳臣. 科技导报, 2012, 30(26):8.)
[25]
Shen Q J, Liu X B, Jin W J. New Carbon Mater., 2013, 28(2):94.
( 申前进, 刘新斌, 晋卫军. 新型炭材料, 2013, 28(2):94.)
[26]
Zhang Y, Liu R N, Deng J H. Acad. J ZNU(Nat. Sci.), 2019, 39(2):21.

doi: 10.1007/BF00591920     URL    
( 张燕, 刘瑞楠, 邓建华. 天津师范大学学报(自然科学版), 2019, 39(2):21.)
[27]
de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Science, 2013, 339(6119):535.

doi: 10.1126/science.1222453     URL    
[28]
Zhang M, Fang S, Zakhidov A A, Lee S B, Aliev A E, Williams C D, Atkinson K R, Baughman R H. Science, 2005, 309(5738):1215.

doi: 10.1126/science.1115311     URL    
[29]
Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z N. Nat. Nanotechnol., 2011, 6(12):788.

doi: 10.1038/nnano.2011.184     URL    
[30]
Min H, Jang S, Kim D W, Kim J, Baik S, Chun S, Pang C. ACS Appl. Mater. Interfaces, 2020, 12(12):14425.

doi: 10.1021/acsami.9b23400     URL    
[31]
Sadi M S, Pan J J, Xu A C, Cheng D S, Cai G M, Wang X. Cellulose, 2019, 26(12):7569.

doi: 10.1007/s10570-019-02628-1     URL    
[32]
Gao Y, Guo F Y, Cao P, Liu J C, Li D M, Wu J, Wang N, Su Y W, Zhao Y. ACS Nano, 2020, 14(3):3442.

doi: 10.1021/acsnano.9b09533     URL    
[33]
Sun L Z, Lin L, Wang Z H, Rui D R, Yu Z W, Zhang J C, Li Y, Liu X T, Jia K C, Wang K X, Zheng L M, Deng B, Ma T B, Kang N, Xu H Q, Novoselov K S, Peng H L, Liu Z F. Adv. Mater., 2019, 31(43):1970303.

doi: 10.1002/adma.v31.43     URL    
[34]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696):666.

doi: 10.1126/science.1102896     URL    
[35]
Emtsev K V, Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov S A, Röhrl J, Rotenberg E, Schmid A K, Waldmann D, Weber H B, Seyller T. Nat. Mater., 2009, 8(3):203.

doi: 10.1038/nmat2382     URL    
[36]
Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L, Ruoff R S. Science, 2009, 324(5932):1312.

doi: 10.1126/science.1171245     URL    
[37]
Choucair M, Thordarson P, Stride J A. Nat. Nanotechnol., 2009, 4(1):30.

doi: 10.1038/nnano.2008.365     URL    
[38]
Zhao J P, Pei S F, Ren W C, Gao L B, Cheng H M. ACS Nano, 2010, 4(9):5245.

doi: 10.1021/nn1015506     URL    
[39]
Ling B K, Que W X, Zhou K, Li S, Zhang T S. Adv. Struct. Mater., 2017, 83:177.
[40]
Ma L P, Ren W C, Cheng H M. Small Methods, 2019, 3(7):1900049.

doi: 10.1002/smtd.v3.7     URL    
[41]
Bae S K, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Ri Kim H, Song Y I, Kim Y J, Kim K S, Özyilmaz B, Ahn J H, Hong B H, Iijima S. Nat. Nanotechnol., 2010, 5(8):574.

doi: 10.1038/nnano.2010.132     URL    
[42]
Wu T L, Yeh C H, Hsiao W T, Huang P Y, Huang M J, Chiang Y H, Cheng C H, Liu R S, Chiu P W. ACS Appl. Mater. Interfaces, 2017, 9(17):14998.

doi: 10.1021/acsami.7b03597     URL    
[43]
Kwon S J, Han T H, Ko T Y, Li N N, Kim Y, Kim D J, Bae S H, Yang Y, Hong B H, Kim K S, Ryu S, Lee T W. Nat. Commun., 2018, 9:2037.

doi: 10.1038/s41467-018-04385-4     URL    
[44]
Song J, Lee H, Jeong E G, Choi K C, Yoo S. Adv. Mater., 2020, 32(35):1907539.

doi: 10.1002/adma.v32.35     URL    
[45]
Khasim S, Pasha A, Badi N, Lakshmi M, Mishra Y K. RSC Adv., 2020, 10(18):10526.

doi: 10.1039/D0RA01116A     URL    
[46]
Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. Science, 2000, 290(5499):2123.

doi: 10.1126/science.290.5499.2123     URL    
[47]
Bießmann L, Saxena N, Hohn N, Hossain M A, Veinot J G C, Müller-Buschbaum P. Adv. Electron. Mater., 2019, 5(2):1800654.

doi: 10.1002/aelm.v5.2     URL    
[48]
Kim T, Park S, Seo J, Lee C W, Kim J. Org. Electron., 2019, 74:77.

doi: 10.1016/j.orgel.2019.06.033     URL    
[49]
Jeong S H, Woo S H, Han T H, Park M H, Cho H, Kim Y H, Cho H, Kim H, Yoo S, Lee T W. NPG Asia Mater., 2017, 9(7):e411.

doi: 10.1038/am.2017.108     URL    
[50]
Nardes A M, Kemerink M, de Kok M M, Vinken E, Maturova K, Janssen R A J. Org. Electron., 2008, 9(5):727.

doi: 10.1016/j.orgel.2008.05.006     URL    
[51]
Oh J Y, Shin M, Lee J B, Ahn J H, Baik H K, Jeong U. ACS Appl. Mater. Interfaces, 2014, 6(9):6954.

doi: 10.1021/am500769k     URL    
[52]
Song W, Fanady B, Peng R X, Hong L, Wu L R, Zhang W X, Yan T T, Wu T, Chen S H, Ge Z Y. Adv. Energy Mater., 2020, 10(15):2000136.

doi: 10.1002/aenm.v10.15     URL    
[53]
Kim D H, Park N H, Kim T W. Nano Energy, 2019, 65:104027.

doi: 10.1016/j.nanoen.2019.104027     URL    
[54]
Zheng Y Q, Yu J L, Wang C, Yang F, Wei B, Zhang J H, Zeng C H, Yang Y. J. Phys. D: Appl. Phys., 2018, 51(22):225302.

doi: 10.1088/1361-6463/aabf7c     URL    
[55]
Teo M Y, Kim N, Kee S, Kim B S, Kim G, Hong S, Jung S, Lee K. ACS Appl. Mater. Interfaces, 2017, 9(1):819.

doi: 10.1021/acsami.6b11988     URL    
[56]
Wang Y, Zhu C X, Raphael P, Bao Z N. Sci. Adv., 2017, 3(3):1602076.

doi: 10.1126/sciadv.1602076     pmid: 28345040
[57]
Huseynova G, Hyun Kim Y, Lee J H, Lee J. J. Inf. Disp., 2020, 21(2):71.

doi: 10.1080/15980316.2019.1707311     URL    
[58]
Luo R B, Li H B, Du B, Zhou S S, Zhu Y X. Org. Electron., 2020, 76:105451.

doi: 10.1016/j.orgel.2019.105451     URL    
[59]
Kim N, Lienemann S, Petsagkourakis I, Alemu Mengistie D, Kee S, Ederth T, Gueskine V, Leclère P, Lazzaroni R, Crispin X, Tybrandt K. Nat. Commun., 2020, 11(1):1.

doi: 10.1038/s41467-019-13993-7     URL    
[60]
Zhang H K, Zhang Y K, Yang G, Ren Z W, Yu W, Shen D, Lee C S, Zheng Z J, Li G. Sci. China Chem., 2019, 62(7):875.

doi: 10.1007/s11426-019-9481-3     URL    
[61]
Dong Q F, Zhou Y H, Pei J N, Liu Z Y, Li Y W, Yao S Y, Zhang J B, Tian W J. Org. Electron., 2010, 11(7):1327.

doi: 10.1016/j.orgel.2010.04.012     URL    
[62]
Kang D J, Cho H H, Lee I, Kim K H, Kim H J, Liao K, Kim T S, Kim B J. ACS Appl. Mater. Interfaces, 2015, 7(4):2668.

doi: 10.1021/am507710p     URL    
[63]
Zhong Z M, Ma Y W, Liu H L, Peng F, Ying L, Wang S R, Li X G, Peng J B, Cao Y. ACS Appl. Mater. Interfaces, 2020, 12(18):20750.

doi: 10.1021/acsami.0c03821     URL    
[64]
Kee S, Kim N, Park B, Kim B S, Hong S, Lee J, Jeong S, Kim A, Jang S, Lee K. Adv. Mater., 2018, 30(3):1703437.

doi: 10.1002/adma.v30.3     URL    
[65]
Woon K L, Wong W S, Chanlek N, Nakajima H, Tunmee S, Lee V S, Ariffin A, Songsiriritthigul P. RSC Adv., 2020, 10(30):17673.

doi: 10.1039/D0RA02575E     URL    
[66]
Cai W Z, Österberg T, Jafari M J, Musumeci C, Wang C F, Zuo G Z, Yin X L, Luo X H, Johansson J, Kemerink M, Ouyang L Q, Ederth T, Inganäs O. J. Mater. Chem. C, 2020, 8(1):328.

doi: 10.1039/C9TC05018C     URL    
[67]
Chen Y, Zhang N, Li Y F, Bi Y G, Yue Y Y, Feng J, Sun H B. Adv. Opt. Mater., 2018, 6(13):1701348.

doi: 10.1002/adom.v6.13     URL    
[68]
Jung W B, Jang S, Cho S Y, Jeon H J, Jung H T. Adv. Mater., 2020, 32(35):1907101.

doi: 10.1002/adma.v32.35     URL    
[69]
Cui N, Tang Q X, Ren H, Zhao X L, Tong Y H, Liu Y C. J. Mater. Chem. C, 2019, 7(18):5385.

doi: 10.1039/C9TC01182J     URL    
[70]
Zhou L, Yu M J, Chen X L, Nie S H, Lai W Y, Su W M, Cui Z, Huang W. Adv. Funct. Mater., 2018, 28(11):1870072.

doi: 10.1002/adfm.v28.11     URL    
[71]
Li D D, Liu X, Chen X, Lai W Y, Huang W. Adv. Mater. Technol., 2019, 4(8):1900196.

doi: 10.1002/admt.v4.8     URL    
[72]
Yuk H, Lu B Y, Lin S, Qu K, Xu J K, Luo J H, Zhao X H. Nat. Commun., 2020, 11:1604.

doi: 10.1038/s41467-020-15316-7     URL    
[73]
Park J, Yoon H, Kim G, Lee B, Lee S, Jeong S, Kim T, Seo J, Chung S, Hong Y. Adv. Funct. Mater., 2019, 29(34):1902412.

doi: 10.1002/adfm.v29.34     URL    
[74]
Yoon D, Kang M Y, Kim J, Kang K T. Appl. Sci., 2018, 8(2):203.

doi: 10.3390/app8020203     URL    
[75]
Ding Z C, Xing R B, Fu Q, Ma D G, Han Y C. Org. Electron., 2011, 12(4):703.

doi: 10.1016/j.orgel.2011.01.027     URL    
[76]
Fanzio P, Cagliani A, Peterffy K G, Sasso L. Microelectron. Eng., 2017, 176:15.

doi: 10.1016/j.mee.2017.01.011     URL    
[77]
Wang S J, Dou X Y, Chen L, Fang Y, Wang A Q, Shen H B, Du Z L. Nanoscale, 2018, 10(24):11651.

doi: 10.1039/C8NR02082E     URL    
[78]
Radivo A, Sovernigo E, Caputo M, Zilio S D, Endale T, Pozzato A, Goldoni A, Tormen M. RSC Adv., 2014, 4(64):34014.

doi: 10.1039/C4RA04807E     URL    
[79]
Kang S J, Lee B Y, Lee S H, Lee S D. Sci. Rep., 2019, 9:13066.

doi: 10.1038/s41598-019-49322-7     URL    
[80]
Zhang M, Höfle S, Czolk J, Mertens A, Colsmann A. Nanoscale, 2015, 7(47):20009.

doi: 10.1039/c5nr05820a     pmid: 26566172
[81]
Kim G, Shin D, Lee J, Park J. Org. Electron., 2019, 66:116.

doi: 10.1016/j.orgel.2018.12.033     URL    
[82]
Han D, Khan Y, Gopalan K, Pierre A, Arias A C. Adv. Funct. Mater., 2018, 28(37):1802986.

doi: 10.1002/adfm.v28.37     URL    
[83]
Zhang S M, Ling H N, Chen Y H, Cui Q Y, Ni J H, Wang X C, Hartel M C, Meng X, Lee K, Lee J, Sun W J, Lin H S, Emaminejad S, Ahadian S, Ashammakhi N, Dokmeci M R, Khademhosseini A. Adv. Funct. Mater., 2020, 30(6):1906016.

doi: 10.1002/adfm.v30.6     URL    
[84]
Kim N, Kang H, Lee J H, Kee S, Lee S H, Lee K. Adv. Mater., 2015, 27(14):2317.

doi: 10.1002/adma.v27.14     URL    
[85]
Jiang S, Hou P X, Chen M L, Wang B W, Sun D M, Tang D M, Jin Q, Guo Q X, Zhang D D, Du J H, Tai K P, Tan J, Kauppinen E I, Liu C, Cheng H M. Sci. Adv., 2018, 4(5):9264.

doi: 10.1126/sciadv.aap9264     pmid: 29736413
[86]
Yu Z B, Liu Z T, Wang M L, Sun M L, Lei G T, Pei Q B. J. Photon. Energy, 2011, 1(1):11003.

doi: 10.1117/1.3528271     URL    
[87]
Jia S, Sun H D, Du J H, Zhang Z K, Zhang D D, Ma L P, Chen J S, Ma D G, Cheng H M, Ren W C. Nanoscale, 2016, 8(20):10714.

doi: 10.1039/c6nr01649a     pmid: 27153523
[88]
Kwon S J, Han T H, Ko T Y, Li N N, Kim Y, Kim D J, Bae S H, Yang Y, Hong B H, Kim K S, Ryu S, Lee T W. Nat. Commun., 2018, 9:2037.

doi: 10.1038/s41467-018-04385-4     URL    
[89]
Zhang Z K, Du J H, Zhang D D, Sun H D, Yin L C, Ma L P, Chen J S, Ma D G, Cheng H M, Ren W C. Nat. Commun., 2017, 8:14560.

doi: 10.1038/ncomms14560     URL    
[90]
Chen Y, Zhang N, Li Y F, Bi Y G, Yue Y Y, Feng J, Sun H B. Adv. Opt. Mater., 2018, 6(13):1701348.

doi: 10.1002/adom.v6.13     URL    
[91]
Chen S F, Zhang Q, Shang W J, Liu L H, Yu H T, Zhang S, Deng L L, Wang M, Wang M H, Li X, Mi B X, Huang W. Sci. Rep., 2018, 8:8155.

doi: 10.1038/s41598-018-26464-8     URL    
[92]
Wu T L, Yeh C H, Hsiao W T, Huang P Y, Huang M J, Chiang Y H, Cheng C H, Liu R S, Chiu P W. ACS Appl. Mater. Interfaces, 2017, 9(17):14998.

doi: 10.1021/acsami.7b03597     URL    
[93]
Liu L H, Shang W J, Han C, Zhang Q, Yao Y, Ma X Q, Wang M H, Yu H T, Duan Y, Sun J, Chen S F, Huang W. ACS Appl. Mater. Interfaces, 2018, 10(8):7289.

doi: 10.1021/acsami.7b19039     URL    
[94]
Zhang Q, Chen S F, Zhang S, Shang W J, Liu L H, Wang M H, Yu H T, Deng L L, Qi G Q, Wang L Y, Han S Y, Hu B, Kang Q, Liu Y J, Yi M D, Ma Y W, Yang W J, Feng J, Liu X G, Sun H B, Huang W. J. Mater. Chem. C, 2018, 6(8):1926.

doi: 10.1039/C7TC05148D     URL    
[95]
Lee B R, Kim J S, Nam Y S, Jeong H J, Jeong S Y, Lee G W, Han J T, Song M H. J. Mater. Chem., 2012, 22(40):21481.

doi: 10.1039/c2jm34700h     URL    
[96]
Kim N, Kee S, Lee S H, Lee B H, Kahng Y H, Jo Y R, Kim B J, Lee K. Adv. Mater., 2014, 26(14):2268.

doi: 10.1002/adma.v26.14     URL    
[97]
Fehse K, Walzer K, Leo K, Lövenich W, Elschner A. Adv. Mater., 2007, 19(3):441.

doi: 10.1002/(ISSN)1521-4095     URL    
[98]
Seo Y K, Joo C W, Lee J, Han J W, Cho N S, Lim K T, Yu S, Kang M H, Yun C H, Choi B H, Kim Y H. Org. Electron., 2017, 42:348.

doi: 10.1016/j.orgel.2016.12.059     URL    
[99]
Hippola C, Kaudal R, Manna E, Xiao T, Peer A, Biswas R, Slafer W D, Trovato T, Shinar J, Shinar R. Adv. Opt. Mater., 2018, 6(4):1701244.

doi: 10.1002/adom.v6.4     URL    
[100]
Cai M, Ye Z, Xiao T, Liu R, Chen Y, Mayer R W, Biswas R, Ho K M, Shinar R, Shinar J. Adv. Mater., 2012, 24(31):4337.

doi: 10.1002/adma.v24.31     URL    
[101]
Ang P Y, Will P A, Lenk S, Fischer A, Reineke S. Sci. Rep., 2019, 9:18601.

doi: 10.1038/s41598-019-54640-x     URL    
[102]
Höfle S, Schienle A, Bruns M, Lemmer U, Colsmann A. Adv. Mater., 2014, 26(17):2750.

doi: 10.1002/adma.201304666     URL    
[103]
Chiba T, Pu Y J, Kido J. Adv. Mater., 2015, 27(32):4681.

doi: 10.1002/adma.v27.32     URL    
[104]
Liu S H, Yu H W, Zhang Q Y, Qin F S, Zhang X, Zhang L T, Xie W F. J. Mater. Chem. C, 2019, 7(18):5426.

doi: 10.1039/C9TC00648F     URL    
[105]
Zhen H Y, Chen Y X, Zhang C L, Zhou Z G, Li K, Zhao Y, Mei X F, Ling Q D. J. Mater. Chem. C, 2017, 5(26):6400.

doi: 10.1039/C7TC01183K     URL    
[106]
Zimmermann J, Schlisske S, Held M, Tisserant J N, Porcarelli L, Sanchez-Sanchez A, Mecerreyes D, Hernandez-Sosa G. Adv. Mater. Technol., 2019, 4(3):1800641.

doi: 10.1002/admt.v4.3     URL    
[107]
Matyba P, Yamaguchi H, Eda G, Chhowalla M, Edman L, Robinson N D. ACS Nano, 2010, 4(2):637.

doi: 10.1021/nn9018569     pmid: 20131906
[108]
Liang J J, Li L, Niu X F, Yu Z B, Pei Q B. Nat. Photonics, 2013, 7(10):817.

doi: 10.1038/nphoton.2013.242     URL    
[109]
Shu Z, Kemper F, Beckert E, Eberhardt R, Tünnermann A. Mater. Today: Proc., 2017, 4(4):5039.
[110]
Li H Y, Liu Y F, Su A Y, Wang J T, Duan Y. Sci. Rep., 2019, 9:17998.

doi: 10.1038/s41598-019-54424-3     URL    
[111]
Meng H, Luo J X, Wang W, Shi Z J, Niu Q L, Dai L, Qin G G. Adv. Funct. Mater., 2013, 23(26):3324.

doi: 10.1002/adfm.v23.26     URL    
[112]
Gu Z Z, Tian Y, Geng H Z, Rhen D S, Ethiraj A S, Zhang X C, Jing L C, Wang T, Xu Z H, Yuan X T. Appl. Nanosci., 2019, 9(8):1971.

doi: 10.1007/s13204-019-01006-4     URL    
[113]
Gan D L, Huang Z Q, Wang X, Jiang L L, Wang C M, Zhu M Y, Ren F Z, Fang L M, Wang K F, Xie C M, Lu X. Adv. Funct. Mater., 2020, 30(5):1907678.

doi: 10.1002/adfm.v30.5     URL    
[114]
Nair N M, Pakkathillam J K, Kumar K, Arunachalam K, Ray D, Swaminathan P. ACS Appl. Electron. Mater., 2020, 2(4):1000.

doi: 10.1021/acsaelm.0c00061     URL    
[115]
Zhang Q, Lu Y, Liu Z W, Yu H T, Duan Y, Liu L H, Chen S F, Huang W. Org. Electron., 2019, 72:30.

doi: 10.1016/j.orgel.2019.05.046    
[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[3] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[4] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[5] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[6] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[7] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[8] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[9] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[10] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[11] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[12] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[13] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[14] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[15] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.