English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 838-854 DOI: 10.7536/PC200622 前一篇   后一篇

• 研究论文 •

共轭微孔聚合物的制备与应用

王玉冰1, 陈杰2, 延卫1,*(), 崔建文3   

  1. 1 西安交通大学环境科学与工程系 西安 710049
    2 福州大学环境与资源学院 福州 350116
    3 新疆知信科技有限公司 乌鲁木齐 830011
  • 收稿日期:2020-06-08 修回日期:2020-08-05 出版日期:2021-05-20 发布日期:2020-12-22
  • 通讯作者: 延卫
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(51978569)

Preparation and Application of Conjugated Microporous Polymers

Yubing Wang1, Jie Chen2, Wei Yan1,*(), Jianwen Cui3   

  1. 1 Department of Environmental Science and Engineering, Xi'an Jiaotong University,Xi'an 710049, China
    2 College of Environment and Resources, Fuzhou University,Fuzhou 350116, China
    3 Xinjiang Zhixin Technology Co.Ltd, Urumqi 830011, China
  • Received:2020-06-08 Revised:2020-08-05 Online:2021-05-20 Published:2020-12-22
  • Contact: Wei Yan
  • Supported by:
    National Natural Science Foundation of China(51978569)

共轭微孔聚合物(CMPs)是一类有机多孔聚合物,与常规共轭聚合物或多孔材料相比,其最大的特点是既有π共轭骨架又具有大量微孔。这类材料在解决能源和环境问题方面显示出巨大的潜力,已在气体吸附、非均相催化、发光材料、化学传感器、电能存储和生物杂化物等领域显示出巨大的应用前景。目前已开发出多种用于CMPs结构单元设计与合成的新方法,用于制备具有不同结构和特定性质的多种CMPs,有效推动了该领域的快速发展。本综述总结了CMPs的理论模型和结构设计,合成原理、常用合成方法和影响因素分析,以及CMPs在各领域的应用。

As a unique class within the versatile family of microporous materials, compared with ordinary conjugated polymers or porous materials, conjugated microporous polymers(CMPs) not only have π-conjugated framework but also have many micropores. Since their discovery in 2007, CMPs have been intensively studied as an important subclass of porous materials, and various interesting properties and possible applications have been discovered and described. A wide range of chemical reactions, building blocks and synthetic method offer a tremendous number of CMPs with different properties and specific structures, which drives the rapid growth of the field. CMPs have shown great potential in solving energy and environmental problems, in particular, they have demonstrated huge application prospect in gas adsorption, heterogeneous catalysis, light emittance, sensing, energy storage and biological applications. Since first discovered, CMPs are unparalleled among porous materials because they possess extended π-conjugated backbones along with the chemical and thermal stability. Nowadays, the possibility to produce solvent processable CMPs or to generate thin films on electrodes all makes CMPs an exciting field for further research. In this review, we present the recent significant breakthroughs and the conventional functions and practices in the field of CMPs to find useful applications. We start with an initial historical look at origins of porous materials and a briefly contrast between CMPs and other porous materials. Then, we present an exhaustive analysis of the design strategies with special emphasis on the topologies of amorphous porous organic materials. As following, we discuss the chemical synthesis of CMPs that gives access to a range of potential applications, with a focus on the up-to-date overview of the main fields. Finally, we give an outlook of the challenges and restrictions which CMPs research in the future. We also draw some comparisons between CMPs and the growing range of conjugated crystalline covalent organic frameworks(COFs).

Contents

1 Introduction

2 Design of conjugated microporous polymers

2.1 Topology design

2.2 Structure design of conjugated microporous polymers

3 Synthesis of conjugated microporous polymers

3.1 Synthetic reaction principles

3.2 Synthetic methods

3.3 The influence of various variables on the synthesis products during the reaction

4 Applications of conjugated microporous polymers

4.1 Gas adsorption and storage

4.2 Gas separation

4.3 Adsorption of heavy metal, dyes, solvents and other chemicals

4.4 Heterogeneous catalysis

4.5 Light emitters

4.6 Chemosensors

4.7 Electrical energy storage

4.8 Biocomplex

5 Conclusion and outlook

()
图1 组分为A2O3的玻璃网络。黑圈为A原子,白圈为O原子[32]
Fig. 1 Glass network bearing composition of A2O3. Black circles represent A atoms, and white circles represent oxygen atoms[32]. Copyright 1932 American Chemical Society.
图2 (a) 具有金刚石拓扑结构的PAF-1模型[15];(b) 非晶硅的CRN模型,黄色为硅原子,红色为氧原子;(c) PAF-1的非晶模型[33]
Fig. 2 (a) Structural model for PAF-1 with dia topology[15]. Copyright 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;(b) CRN model for amorphous silica. Silicon and oxygen atoms are colored yellow and red, respectively.;(c) Amorphous model of PAF-1 [33]. Copyright 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图3 CMPs合成的常用合成机理
Fig. 3 Schematic representation of reactions for the synthesis of CMPs
图4 可溶性CMP合成示意图[49]
Fig. 4 Schematic representation of the synthesis of a soluble CMP[49]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
图5 (左)CMT前驱体分子结构;(右)直径为47 mm的独立CMT膜[57]
Fig. 5 (left) The structure of 3-TBTBP(precursor of CMT);(right) A free-standing CMT membrane with a diameter of ~47 mm[57]. Copyright 2020, Springer Nature
图6 具有氨基官能团的微孔有机纳米管网络的制备[73]
Fig. 6 Preparation of the microporous organic nanotube networks with amino functionality[73]. Copyright 2016, Royal Society of Chemistry(Great Britain)
图7 不同结构的连接单元合成螺二芴基CMP示意图[74]
Fig. 7 Schematic representation of the synthesis of spirobifluorene-based CMPs using linkers of different geometries[74]. Copyright 2009, Elsevier
图8 三嗪基多孔聚合物合成示意图[75]
Fig. 8 Schematic representation of the synthesis of triazine-based porous polymers[75]. Copyright? 2009, American Chemical Society
图9 PTPA合成示意图[79]
Fig. 9 Schematic representation of the synthesis of PTPA[79]. Copyright 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
表1 部分CMPs储氢能力汇总
Table 1 Hydrogen storage with some CMPs
表2 部分CMPs储二氧化碳能力汇总
Table 2 Carbon dioxide storage in some CMPs
表3 部分CMPs储甲烷能力汇总
Table 3 Methane storage in some CMPs
图10 (左)CMPAO结构示意图;(右)CMPAO-4吸附铀酰前后暴露在紫外线下的照片[142]
Fig. 10 (left) The structure of CMPAO;(right) The photographs of CMPAO-4 in the column exposed to UV light before and after uranyl adsorption[142]. Copyright 2019, Royal Society of Chemistry
图11 石墨烯基共轭微孔聚合物合成示意图[149]
Fig. 11 Schematic representation of Graphene-Based Conjugated Microporous Polymers.[149] Copyright 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
[1]
Han S, Wu D Q, Li S, Zhang F, Feng X L. Adv. Mater., 2014, 26(6):849.

doi: 10.1002/adma.v26.6     URL    
[2]
Slater A G, Cooper A I. Science, 2015, 348(6238):8075.
[3]
Xu S J, mLiang L Y, Li B Y, Luo Y L, Liu C M, Tan B E. Prog. Chem., 2011, 23(10):2085.
( 徐叔军, 梁丽芸, 李步怡, 罗亚莉, 刘承美, 谭必恩. 化学进展, 2011, 23(10):2085.)
[4]
Long J R, Yaghi O M. Chem. Soc. Rev., 2009, 38(5):1213.

doi: 10.1039/b903811f     URL    
[5]
Das S, Heasman P, Ben T, Qiu S L. Chem. Rev., 2017, 117(3):1515.

doi: 10.1021/acs.chemrev.6b00439     URL    
[6]
Tan L X, Tan B E. Acta Chim. Sinica, 2015, 73(06):530.

doi: 10.6023/A15020096     URL    
( 谭良骁, 谭必恩. 化学学报, 2015, 73(06):530.)
[7]
Tsyurupa M P, Davankov V A. React. Funct. Polym., 2006, 66(7):768.

doi: 10.1016/j.reactfunctpolym.2005.11.004     URL    
[8]
Tan L X, Tan B E. Chem. Soc. Rev., 2017, 46(11):3322.

doi: 10.1039/C6CS00851H     URL    
[9]
Budd P M, Ghanem B S, Makhseed S, McKeown N B, Msayib K J, Tattershall C E. Chem. Commun., 2004(2):230.
[10]
McKeown N B, Budd P M. Macromolecules, 2010, 43(12):5163.

doi: 10.1021/ma1006396     URL    
[11]
Jiang J X, Su F B, Trewin A, Wood C, Campbell N, Niu H J, Dickinson C, Ganin A, Rosseinsky M, Khimyak Y, Cooper A. Angew. Chem. Int. Ed., 2007, 46(45):8574.

doi: 10.1002/anie.v46:45     URL    
[12]
Xu Y H, Jin S B, Xu H, Nagai A, Jiang D L. Chem. Soc. Rev., 2013, 42(20):8012.

doi: 10.1039/c3cs60160a     URL    
[13]
Kuhn P, Antonietti M, Thomas A. Angew. Chem. Int. Ed., 2008, 47(18):3450.

doi: 10.1002/(ISSN)1521-3773     URL    
[14]
Katekomol P, Roeser J, Bojdys M, Weber J, Thomas A. Chem. Mater., 2013, 25(9):1542.

doi: 10.1021/cm303751n     URL    
[15]
Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W C, Xu J, Deng F, Simmons J, Qiu S L, Zhu G S. Angewandte Chemie Int. Ed., 2009, 48(50):9457.

doi: 10.1002/anie.200904637     URL    
[16]
Konstas K, Taylor J W, Thornton A W, Doherty C M, Lim W X, Bastow T J, Kennedy D F, Wood C D, Cox B J, Hill J M, Hill A J, Hill M R. Angew. Chem. Int. Ed., 2012, 51(27):6639.

doi: 10.1002/anie.201201381     URL    
[17]
Côté A P, Benin A I, Ockwig N W, O'keeffe M, Matzger A J, Yaghi O M. Science, 2005, 310(5751):1166.

doi: 10.1126/science.1120411     URL    
[18]
Huang N, Wang P, Jiang D L. Nat. Rev. Mater., 2016, 1(10):16068.

doi: 10.1038/natrevmats.2016.68     URL    
[19]
Holst J R, Trewin A, Cooper A I. Nat. Chem., 2010, 2(11):915.

doi: 10.1038/nchem.873     URL    
[20]
Hasell T, Cooper A I. Nat. Rev. Mater., 2016, 1(9):16053.

doi: 10.1038/natrevmats.2016.53     URL    
[21]
Xu S J, Luo Y L, Tan B E. Macromol. Rapid Commun., 2013, 34(6):471.

doi: 10.1002/marc.v34.6     URL    
[22]
Lee J S M, Cooper A I. Chem. Rev., 2020, 120(4):2171.

doi: 10.1021/acs.chemrev.9b00399     URL    
[23]
Ren S J, Dawson R, Laybourn A, Jiang J X, Khimyak Y, Adams D J, Cooper A I. Polym. Chem., 2012, 3(4):928.

doi: 10.1039/c2py00585a     URL    
[24]
Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357(6352):673.

doi: 10.1126/science.aan0202     URL    
[25]
Jiang J X, Su F B, Trewin A, Wood C D, Niu H J, Jones J T A, Khimyak Y Z, Cooper A I. J. Am. Chem. Soc., 2008, 130(24):7710.

doi: 10.1021/ja8010176     URL    
[26]
Cooper A I. Adv. Mater., 2009, 21(12):1291.

doi: 10.1002/adma.v21:12     URL    
[27]
Bildirir H, Osken I, Ozturk T, Thomas A. Chem. Eur. J., 2015, 21(26):9306.

doi: 10.1002/chem.v21.26     URL    
[28]
Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Chem. Soc. Rev., 2017, 46(11):3302.

doi: 10.1039/C7CS00071E     URL    
[29]
Wang H G, Cheng Z H, Liao Y Z, Li J H, Weber J, Thomas A, Faul C F J. Chem. Mater., 2017, 29(11):4885.

doi: 10.1021/acs.chemmater.7b00857     URL    
[30]
Cairns A B, Goodwin A L. Chem. Soc. Rev., 2013, 42(12):4881.

doi: 10.1039/c3cs35524a     URL    
[31]
Stachurski Z H, Welberry T R. Metall. Mater. Trans. A, 2011, 42(1):14.

doi: 10.1007/s11661-010-0270-y     URL    
[32]
Zachariasen W H. J. Am. Chem. Soc., 1932, 54(10):3841.

doi: 10.1021/ja01349a006     URL    
[33]
Trewin A, Cooper A. Angewandte Chemie Int. Ed., 2010, 49(9):1533.

doi: 10.1002/anie.200906827     URL    
[34]
Yassin A, Trunk M, Czerny F, Fayon P, Trewin A, Schmidt J, Thomas A. Adv. Funct. Mater., 2017, 27(26):1700233.

doi: 10.1002/adfm.v27.26     URL    
[35]
Nguyen T D, Phillips C L, Anderson J A, Glotzer S C. Comput. Phys. Commun., 2011, 182(11):2307.

doi: 10.1016/j.cpc.2011.06.005     URL    
[36]
Todorov I T, Smith W, Trachenko K, Dove M T. J. Mater. Chem., 2006, 16(20):1911.

doi: 10.1039/b517931a     URL    
[37]
Xu D, Sun L, Li G, Shang J, Yang R X, Deng W Q. Chem. Eur. J., 2016, 22(23):7944.

doi: 10.1002/chem.201504666     URL    
[38]
Kuhn P, Forget A, Su D S, Thomas A, Antonietti M. J. Am. Chem. Soc., 2008, 130(40):13333.

doi: 10.1021/ja803708s     URL    
[39]
Bhunia A, Vasylyeva V, Janiak C. Chem. Commun., 2013, 49(38):3961.

doi: 10.1039/c3cc41382a     URL    
[40]
Ren S J, Bojdys M J, Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I. Adv. Mater., 2012, 24(17):2357.

doi: 10.1002/adma.201200751     URL    
[41]
Zhang W, Li C, Yuan Y P, Qiu L G, Xie A J, Shen Y H, Zhu J F. J. Mater. Chem., 2010, 20(31):6413.

doi: 10.1039/c0jm01392g     URL    
[42]
Zhang W, Liang F, Li C, Qiu L G, Yuan Y P, Peng F M, Jiang X, Xie A J, Shen Y H, Zhu J F. J. Hazard. Mater., 2011, 186(2/3):984.

doi: 10.1016/j.jhazmat.2010.11.093     URL    
[43]
Cao Q, Chen Q, Han B H. Acta Chim. Sinica, 2015, 73(06):541.

doi: 10.6023/A15020126     URL    
( 操强, 陈琦, 韩宝航. 化学学报. 2015, 73(06):541.)
[44]
Kou Y, Xu Y H, Guo Z Q, Jiang D L. Angew. Chem. Int. Ed., 2011, 50(37):8753.

doi: 10.1002/anie.201103493     URL    
[45]
Palma-Cando A, Scherf U. Macromol. Chem. Phys., 2016, 217(7):827.

doi: 10.1002/macp.v217.7     URL    
[46]
Li C Y, Ward A L, Doris S E, Pascal T A, Prendergast D, Helms B A. Nano Lett., 2015, 15(9):5724.

doi: 10.1021/acs.nanolett.5b02078     URL    
[47]
McKeown N B, Budd P M. Chem. Soc. Rev., 2006, 35(8):675.

pmid: 16862268
[48]
Zhou B L, Chen L. Acta Chimica Sin., 2015, 73(6):487.
( 周宝龙, 陈龙. 化学学报, 2015, 73(6):487.)

doi: 10.6023/A15020090    
[49]
Cheng G, Hasell T, Trewin A, Adams D J, Cooper A I. Angew. Chem. Int. Ed., 2012, 51(51):12727.

doi: 10.1002/anie.201205521     URL    
[50]
He Q, Zhang C, Li X, Wang X, Mou P, Jiang J X. Acta Chim. Sinica, 2018, 76(3):202.

doi: 10.6023/A17110477     URL    
( 贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴. 化学学报, 2018, 76(3):202.)

doi: 10.6023/A17110477    
[51]
Deng S, Zhi J, Zhang X M, Wu Q Q, Ding Y, Hu A G. Angew. Chem. Int. Ed., 2014, 53(51):14144.

doi: 10.1002/anie.v53.51     URL    
[52]
Gu C, Huang N, Gao J, Xu F, Xu Y H, Jiang D L. Angew. Chem. Int. Ed., 2014, 53(19):4850.

doi: 10.1002/anie.201402141     URL    
[53]
Karan S, Jiang Z, Livingston A G. Science, 2015, 348(6241):1347.

doi: 10.1126/science.aaa5058     URL    
[54]
Jimenez-Solomon M F, Song Q L, Jelfs K E, Munoz-Ibanez M, Livingston A G. Nat. Mater., 2016, 15(7):760.

doi: 10.1038/nmat4638     pmid: 27135857
[55]
Lindemann P, Schade A, Monnereau L, Feng W, Batra K, Gliemann H, Levkin P, Bräse S, Wöll C, Tsotsalas M. J. Mater. Chem. A, 2016, 4(18):6815.

doi: 10.1039/C5TA09429A     URL    
[56]
Lindemann P, Tsotsalas M, Shishatskiy S, Abetz V, Krolla-Sidenstein P, Azucena C, Monnereau L, Beyer A, Gölzhäuser A, Mugnaini V, Gliemann H, Bräse S, Wöll C. Chem. Mater., 2014, 26(24):7189.

doi: 10.1021/cm503924h     URL    
[57]
Liu W, Jiang S D, Yan Y G, Wang W S, Li J, Leng K, Japip S, Liu J T, Xu H, Liu Y P, Park I H, Bao Y, Yu W, Guiver M D, Zhang S, Loh K P. Nat. Commun., 2020, 11:1633.

doi: 10.1038/s41467-020-15503-6     URL    
[58]
Ju P Y, Wu S J, Su Q, Li X D, Liu Z Q, Li G H, Wu Q L. J. Mater. Chem. A, 2019, 7(6):2660.

doi: 10.1039/C8TA11330K     URL    
[59]
Wu K Y, Guo J, Wang C C. Angew. Chem. Int. Ed., 2016, 55(20):6013.

doi: 10.1002/anie.v55.20     URL    
[60]
Bavykina A V, Olivos-Suarez A I, Osadchii D, Valecha R, Franz R, Makkee M, Kapteijn F, Gascon J. ACS Appl. Mater. Interfaces, 2017, 9(31):26060.

doi: 10.1021/acsami.7b07339     URL    
[61]
Liu H H, Wan D C, Du J, Jin M. ACS Appl. Mater. Interfaces, 2015, 7(37):20885.

doi: 10.1021/acsami.5b06283     URL    
[62]
Ye Y L, Jin M, Wan D C. J. Mater. Chem. A, 2015, 3(25):13519.

doi: 10.1039/C5TA02925B     URL    
[63]
Kim J G, Cha M C, Lee J, Choi T, Chang J Y. ACS Appl. Mater. Interfaces, 2017, 9(43):38081.

doi: 10.1021/acsami.7b14807     URL    
[64]
Kim D Y, Choi T J, Kim J G, Chang J Y. ACS Omega, 2018, 3(8):8745.

doi: 10.1021/acsomega.8b01416     URL    
[65]
Liu J, Tobin J M, Xu Z T, Vilela F. Polym. Chem., 2015, 6(41):7251.

doi: 10.1039/C5PY00772K     URL    
[66]
Yang X J, Tan L X, Xia L L, Wood C D, Tan B E. Macromol. Rapid Commun., 2015, 36(17):1553.

doi: 10.1002/marc.201500235     URL    
[67]
Tan L X, Tan B E. Chem. Eng. J., 2020, 390:124485.

doi: 10.1016/j.cej.2020.124485     URL    
[68]
He Z D, Zhong A Q, Zhang H, Xiong L F, Xu Y, Wang T Q, Zhou M H, Huang K. Macromol. Rapid Commun., 2016, 37(19):1566.

doi: 10.1002/marc.v37.19     URL    
[69]
Zhou M H, Zhang H, Xiong L F, He Z D, Zhong A Q, Wang T Q, Xu Y, Huang K. RSC Adv., 2016, 6(90):87745.

doi: 10.1039/C6RA18836B     URL    
[70]
Zhang H, Xiong L F, He Z D, Zhong A Q, Wang T Q, Xu Y, Zhou M H, Huang K. Polym. Chem., 2016, 7(30):4975.

doi: 10.1039/C6PY01052K     URL    
[71]
Xu Y, Wang T Q, He Z D, Zhong A Q, Huang K. Microporous Mesoporous Mater., 2016, 229:1.

doi: 10.1016/j.micromeso.2016.04.013     URL    
[72]
Zhang H, Xiong L F, He Z D, Zhong A Q, Wang T Q, Xu Y, Huang K. New J. Chem., 2016, 40(9):7282.

doi: 10.1039/C6NJ01457G     URL    
[73]
Xu Y, Wang T Q, He Z D, Zhong A Q, Huang K. RSC Adv., 2016, 6(46):39933.

doi: 10.1039/C6RA05753E     URL    
[74]
Schmidt J, Werner M, Thomas A. Macromolecules, 2009, 42(13):4426.

doi: 10.1021/ma9005473     URL    
[75]
Kuhn P, Thomas A, Antonietti M. Macromolecules, 2009, 42(1):319.

doi: 10.1021/ma802322j     URL    
[76]
Tan D Z, Fan W J, Xiong W N, Sun H X, Cheng Y Q, Liu X Y, Meng C G, Li A, Deng W Q. Macromol. Chem. Phys., 2012, 213(14):1409.

doi: 10.1002/macp.201290042     URL    
[77]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696):666.

doi: 10.1126/science.1102896     URL    
[78]
Dawson R, Laybourn A, Khimyak Y Z, Adams D J, Cooper A I. Macromolecules, 2010, 43(20):8524.

doi: 10.1021/ma101541h     URL    
[79]
Chen J, Yan W, Townsend E J, Feng J T, Pan L, Del Angel Hernandez V, Faul C F J. Angew. Chem. Int. Ed., 2019, 58(34):11715.

doi: 10.1002/anie.v58.34     URL    
[80]
Zhao Y F, Yao K X, Teng B Y, Zhang T, Han Y. Energy Environ. Sci., 2013, 6(12):3684.

doi: 10.1039/c3ee42548g     URL    
[81]
Talapaneni S N, Kim D, Barin G, Buyukcakir O, Je S H, Coskun A. Chem. Mater., 2016, 28(12):4460.

doi: 10.1021/acs.chemmater.6b01667     URL    
[82]
Chen L, Yang Y, Jiang D L. J. Am. Chem. Soc., 2010, 132(26):9138.

doi: 10.1021/ja1028556     URL    
[83]
Wu Z S, Chen L, Liu J Z, Parvez K, Liang H W, Shu J, Sachdev H, Graf R, Feng X L, Müllen K. Adv. Mater., 2014, 26(9):1450.

doi: 10.1002/adma.201304147     URL    
[84]
He Y F, Gehrig D, Zhang F, Lu C B, Zhang C, Cai M, Wang Y Y, Laquai F, Zhuang X D, Feng X L. Adv. Funct. Mater., 2016, 26(45):8255.

doi: 10.1002/adfm.201603693     URL    
[85]
Xie Y, Wang T T, Liu X H, Zou K, Deng W Q. Nat. Commun., 2013, 4:1960.

doi: 10.1038/ncomms2960     URL    
[86]
Jiang J X, Trewin A, Adams D J, Cooper A I. Chem. Sci., 2011, 2(9):1777.

doi: 10.1039/c1sc00329a     URL    
[87]
Xu Y H, Nagai A, Jiang D L. Chem. Commun., 2013, 49(16):1591.

doi: 10.1039/C2CC38211C     URL    
[88]
Xu Y H, Chen L, Guo Z Q, Nagai A, Jiang D L. J. Am. Chem. Soc., 2011, 133(44):17622.

doi: 10.1021/ja208284t     URL    
[89]
Sun L B, Zou Y C, Liang Z Q, Yu J H, Xu R R. Polym. Chem., 2014, 5(2):471.

doi: 10.1039/C3PY00980G     URL    
[90]
Li Z P, Li H, Xia H, Ding X S, Luo X L, Liu X M, Mu Y. Chem. Eur. J., 2015, 21(48):17355.

doi: 10.1002/chem.201502241     URL    
[91]
Geng T M, Zhu H, Song W, Zhu F, Wang Y. J. Mater. Sci., 2016, 51(8):4104.

doi: 10.1007/s10853-016-9732-y     URL    
[92]
Xu F, Chen X, Tang Z W, Wu D C, Fu R W, Jiang D L. Chem. Commun., 2014, 50(37):4788.

doi: 10.1039/C4CC01002G     URL    
[93]
Zhang C, He Y W, Mu P, Wang X, He Q, Chen Y, Zeng J H, Wang F, Xu Y H, Jiang J X. Adv. Funct. Mater., 2018, 28(4):1705432.

doi: 10.1002/adfm.201705432     URL    
[94]
Li Z H, Feng X C, Gao S T, Jin Y, Zhao W C, Liu H F, Yang X J, Hu S Q, Cheng K, Zhang J C. ACS Appl. Bio Mater., 2019, 2(2):613.

doi: 10.1021/acsabm.8b00676     URL    
[95]
Lu W G, Yuan D Q, Zhao D, Schilling C I, Plietzsch O, Muller T, Braäse S, Guenther J, Bluümel J, Krishna R, Li Z, Zhou H C. Chem. Mater., 2010, 22(21):5964.

doi: 10.1021/cm1021068     URL    
[96]
Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37(4):530.

doi: 10.1016/j.progpolymsci.2011.09.002     URL    
[97]
Dawson R, Stöckel E, Holst J R, Adams D J, Cooper A I. Energy Environ. Sci., 2011, 4(10):4239.

doi: 10.1039/c1ee01971f     URL    
[98]
Zeng W, Zhang Y, Zhao X B, Qin M L, Li X Y, Jin W S, Zhang D Q. Polymer, 2019, 174:96.

doi: 10.1016/j.polymer.2019.04.069     URL    
[99]
Yu M, Wang X Y, Yang X, Zhao Y, Jiang J X. Polym. Chem., 2015, 6(17):3217.

doi: 10.1039/C5PY00295H     URL    
[100]
Xu C, Xu Z, Lu Q Q, Shao M C, Zhou J H, Gai L G. ACS Sustainable Chem. Eng., 2019, 7(22):18341.
[101]
Giri A, Hussain M W, Sk B, Patra A. Chem. Mater., 2019, 31(20):8440.

doi: 10.1021/acs.chemmater.9b02563     URL    
[102]
Qiao S L, Li Z, Zhang B Y, Li Q Q, Jin W, Zhang Y R, Wang W B, Li Q, Liu X W. Microporous Mesoporous Mater., 2019, 284:205.

doi: 10.1016/j.micromeso.2019.03.042     URL    
[103]
Fu S Q, Yao J S, Yang Z Z, Sun H Q, Liu W L. J. Mater. Sci., 2018, 53(14):10469.

doi: 10.1007/s10853-018-2243-2     URL    
[104]
Li Y C, Li W Z, Cheng Z H, He Y, Li H M, Li H X, Liao Y Z. Chem. Nano. Mat., 2020, 6(1):58.
[105]
Xu G J, Zhu Y A, Xie W, Zhang S R, Yao C, Xu Y H. Chem. Asian J., 2019, 14(19):3259.

doi: 10.1002/asia.v14.19     URL    
[106]
Li H M, Li J H, Thomas A, Liao Y Z. Adv. Funct. Mater., 2019, 29(40):1904785.

doi: 10.1002/adfm.v29.40     URL    
[107]
Rong M, Yang L R, Wang L, Yu J M, Qu H N, Liu H Z. J. Colloid Interface Sci., 2019, 548:265.

doi: 10.1016/j.jcis.2019.04.036     URL    
[108]
Zhang B, Yan J, Li G, Wang Z G. Polym. Chem., 2019, 10(24):3371.

doi: 10.1039/C9PY00465C     URL    
[109]
Wang Z, Ma H, Zhai T L, Cheng G, Xu Q, Liu J M, Yang J K, Zhang Q M, Zhang Q P, Zheng Y S, Tan B E, Zhang C. Adv. Sci., 2018, 5(7):1800141.

doi: 10.1002/advs.201800141     pmid: 30027046
[110]
Yang X, Yu M, Zhao Y, Zhang C, Wang X Y, Jiang J X. J. Mater. Chem. A, 2014, 2(36):15139.

doi: 10.1039/C4TA02782E     URL    
[111]
Yao C, Cui D, Zhu Y A, Xie W, Zhang S R, Xu G J, Xu Y H. New J. Chem., 2019, 43(18):6838.

doi: 10.1039/C9NJ00688E     URL    
[112]
Xiang Z H, Cao D P, Wang W C, Yang W T, Han B Y, Lu J M. J. Phys. Chem. C, 2012, 116(9):5974.

doi: 10.1021/jp300137e     URL    
[113]
El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O'Keeffe M, Yaghi O M. Science, 2007, 316(5822):268.

doi: 10.1126/science.1139915     URL    
[114]
Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A O, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329(5990):424.

doi: 10.1126/science.1192160     URL    
[115]
Qian Q H, Asinger P A, Lee M J, Han G, Mizrahi Rodriguez K, Lin S, Benedetti F M, Wu A X, Chi W S, Smith Z P. Chem. Rev., 2020, 120(16):8161.

doi: 10.1021/acs.chemrev.0c00119     URL    
[116]
Lv B, Guo B S, Zhou Z M, Jing G H. Environ. Sci. Technol., 2015, 49(17):10728.

doi: 10.1021/acs.est.5b02356     URL    
[117]
Burtch N C, Jasuja H, Walton K S. Chem. Rev., 2014, 114(20):10575.

doi: 10.1021/cr5002589     URL    
[118]
Wang K K, Huang H L, Liu D H, Wang C, Li J P, Zhong C L. Environ. Sci. Technol., 2016, 50(9):4869.

doi: 10.1021/acs.est.6b00425     URL    
[119]
Yu S J, Wang X X, Pang H W, Zhang R, Song W C, Fu D, Hayat T, Wang X K. Chem. Eng. J., 2018, 333:343.

doi: 10.1016/j.cej.2017.09.163     URL    
[120]
Huang N, Zhai L P, Xu H, Jiang D L. J. Am. Chem. Soc., 2017, 139(6):2428.

doi: 10.1021/jacs.6b12328     URL    
[121]
Sun Q, Aguila B, Perman J, Earl L D, Abney C W, Cheng Y C, Wei H, Nguyen N, Wojtas L, Ma S Q. J. Am. Chem. Soc., 2017, 139(7):2786.

doi: 10.1021/jacs.6b12885     URL    
[122]
Chen J, Wang Y B, Ye C S, Lyu W, Zhu J W, Yan W, Qiu T. ACS Appl. Mater. Interfaces, 2020, 12(25):28681.

doi: 10.1021/acsami.0c07059     URL    
[123]
Ning G H, Chen Z X, Gao Q, Tang W, Chen Z X, Liu C B, Tian B B, Li X, Loh K P. J. Am. Chem. Soc., 2017, 139(26):8897.

doi: 10.1021/jacs.7b02696     URL    
[124]
Dawson R, Laybourn A, Clowes R, Khimyak Y Z, Adams D J, Cooper A I. Macromolecules, 2009, 42(22):8809.

doi: 10.1021/ma901801s     URL    
[125]
Li A, Sun H X, Tan D Z, Fan W J, Wen S H, Qing X J, Li G X, Li S Y, Deng W Q. Energy Environ. Sci., 2011, 4(6):2062.

doi: 10.1039/c1ee01092a     URL    
[126]
Liu X M, Xu Y H, Guo Z Q, Nagai A, Jiang D L. Chem. Commun., 2013, 49(31):3233.

doi: 10.1039/c3cc41082j     URL    
[127]
Liu Y Z, Zuo Y M, Li S, Li J N, Li L, Liu C X, Ashraf S, Li P F, Wang B. J. Mater. Chem. A, 2019, 7(38):21953.

doi: 10.1039/C9TA07193H     URL    
[128]
Wang C A, Wang W. Acta Chim. Sinica, 2015, 73(6):498.

doi: 10.6023/A15010019     URL    
( 王昌安, 王为. 化学学报. 2015, 73(6):498.)

doi: 10.6023/A15010019    
[129]
Zhao W, Jiao Y Z, Li J J, Wu L P, Xie A M, Dong W. J. Catal., 2019, 378:42.

doi: 10.1016/j.jcat.2019.07.056    
[130]
Chen L, Yang Y, Guo Z Q, Jiang D L. Adv. Mater., 2011, 23(28):3149.

doi: 10.1002/adma.v23.28     URL    
[131]
Jiang J X, Wang C, Laybourn A, Hasell T, Clowes R, Khimyak Y Z, Xiao J L, Higgins S J, Adams D J, Cooper A I. Angew. Chem. Int. Ed., 2011, 50(5):1072.

doi: 10.1002/anie.v50.5     URL    
[132]
Wang X P, Zhao X D, Dong W B, Zhang X H, Xiang Y G, Huang Q Y, Chen H. J. Mater. Chem. A, 2019, 7(27):16277.

doi: 10.1039/C9TA04018H     URL    
[133]
Prier C K, Rankic D A, MacMillan D W C. Chem. Rev., 2013, 113(7):5322.

doi: 10.1021/cr300503r     URL    
[134]
Wan G, Fu Y H, Guo J N, Xiang Z H. Acta Chim. Sinica, 2015, 73(6):557.

doi: 10.6023/A15020106     URL    
( 万刚, 付宇昂, 郭佳宁, 向中华. 化学学报, 2015, 73(6):557.)

doi: 10.6023/A15020106    
[135]
Meier C B, Sprick R S, Monti A, Guiglion P, Lee J S M, Zwijnenburg M A, Cooper A I. Polymer, 2017, 126:283.

doi: 10.1016/j.polymer.2017.04.017     URL    
[136]
Zhang W J, Tang J T, Yu W G, Huang Q, Fu Y, Kuang G C, Pan C Y, Yu G P. ACS Catal., 2018, 8(9):8084.

doi: 10.1021/acscatal.8b01478     URL    
[137]
Wang L, Wan Y Y, Ding Y J, Wu S K, Zhang Y, Zhang X L, Zhang G Q, Xiong Y J, Wu X J, Yang J L, Xu H X. Adv. Mater., 2017, 29(38):1702428.

doi: 10.1002/adma.201702428     URL    
[138]
Yuan S W, Dorney B, White D, Kirklin S, Zapol P, Yu L P, Liu D J. Chem. Commun., 2010, 46(25):4547.

doi: 10.1039/c0cc00235f     URL    
[139]
Wang X S, Liu J, Bonefont J M, Yuan D Q, Thallapally P K, Ma S Q. Chem. Commun., 2013, 49(15):1533.

doi: 10.1039/c2cc38067f     URL    
[140]
Yang R X, Wang T T, Deng W Q. Sci. Rep., 2015, 5(1):10155.

doi: 10.1038/srep10155     URL    
[141]
Xiang L, Zhu Y L, Gu S, Chen D Y, Fu X, Zhang Y D, Yu G P, Pan C Y, Hu Y H. Macromol. Rapid Commun., 2015, 36(17):1566.

doi: 10.1002/marc.201500159     pmid: 26088466
[142]
Xu M Y, Wang T, Gao P, Zhao L, Zhou L, Hua D B. J. Mater. Chem. A, 2019, 7(18):11214.

doi: 10.1039/C8TA11764K     URL    
[143]
Xiang Z H, Cao D P. Macromol. Rapid Commun., 2012, 33(14):1184.

doi: 10.1002/marc.201100865     URL    
[144]
Li L, Zhang B Y, Liu F X, Xue Z H, Lu X Q, Liu X H. Sensor Actuat. B: Chem., 2020, 306:127560.

doi: 10.1016/j.snb.2019.127560     URL    
[145]
Li Z, Zhang J T, Lou X W D. Angew. Chem. Int. Ed., 2015, 54(44):12886.

doi: 10.1002/anie.v54.44     URL    
[146]
Xu J, Yu F T, Hua J L, Tang W Q, Yang C, Hu S Z, Zhao S L, Zhang X S, Xin Z, Niu D F. Chem. Eng. J., 2020, 392:123694.

doi: 10.1016/j.cej.2019.123694     URL    
[147]
Frackowiak E, Béguin F. Carbon, 2001, 39(6):937.

doi: 10.1016/S0008-6223(00)00183-4     URL    
[148]
Zhang C, Qiao Y, Xiong P X, Ma W Y, Bai P X, Wang X, Li Q, Zhao J, Xu Y F, Chen Y, Zeng J H, Wang F, Xu Y H, Jiang J X. ACS Nano, 2019, 13(1):745.

doi: 10.1021/acsnano.8b08046     URL    
[149]
Zhuang X D, Zhang F, Wu D Q, Forler N, Liang H W, Wagner M, Gehrig D, Hansen M R, Laquai F, Feng X L. Angew. Chem. Int. Ed., 2013, 52(37):9668.

doi: 10.1002/anie.201304496     URL    
[150]
Liao Y Z, Wang H G, Zhu M F, Thomas A. Adv. Mater., 2018, 30(12):1705710.

doi: 10.1002/adma.v30.12     URL    
[151]
Fu Z W, Wang X Y, Gardner A M, Wang X, Chong S Y, Neri G, Cowan A J, Liu L J, Li X B, Vogel A, Clowes R, Bilton M, Chen L J, Sprick R S, Cooper A I. Chem. Sci., 2020, 11(2):543.

doi: 10.1039/C9SC03800K     URL    
[152]
Jin E Q, Asada M, Xu Q, Dalapati S, Addicoat M A, Brady M A, Xu H, Nakamura T, Heine T, Chen Q H, Jiang D L. Science, 2017, 357(6352):673.

doi: 10.1126/science.aan0202     URL    
[153]
Jin E Q, Lan Z A, Jiang Q H, Geng K Y, Li G S, Wang X C, Jiang D L. Chem, 2019, 5(6):1632.

doi: 10.1016/j.chempr.2019.04.015     URL    
[154]
Guo J L, Suástegui M, Sakimoto K K, Moody V M, Xiao G, Nocera D G, Joshi N S. Science, 2018, 362(6416):813.

doi: 10.1126/science.aat9777     URL    
[155]
Kornienko N, Zhang J Z, Sakimoto K K, Yang P D, Reisner E. Nat. Nanotechnol., 2018, 13(10):890.

doi: 10.1038/s41565-018-0251-7     pmid: 30291349
[156]
Ma Y, Zhou Y, Du W Q, Liao Z H, Qi Z J. Prog. Chem., 2015, 27(12):1799.
( 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 化学进展, 2015, 27(12):1799.)

doi: 10.7536/PC150636    
[157]
Sakimoto K K, Wong A B, Yang P. Science, 2016, 351(6268):74.

doi: 10.1126/science.aad3317     URL    
[158]
Cestellos-Blanco S, Zhang H, Yang P D. Faraday Discuss., 2019, 215:54.

doi: 10.1039/c8fd00187a    
[159]
Wang F, Ren F, Ma D, Mu P, Wei H J, Xiao C H, Zhu Z Q, Sun H X, Liang W D, Chen J X, Chen L H, Li A. J. Mater. Chem. A, 2018, 6(1):266.

doi: 10.1039/C7TA09405A     URL    
[160]
Babu H V, Bai M G M, Rajeswara Rao M. ACS Appl. Mater. Interfaces, 2019, 11(12):11029.

doi: 10.1021/acsami.8b19087     URL    
[161]
Sprick R S, Jiang J X, Bonillo B, Ren S J, Ratvijitvech T, Guiglion P, Zwijnenburg M A, Adams D J, Cooper A I. J. Am. Chem. Soc., 2015, 137(9):3265.

doi: 10.1021/ja511552k     URL    
[162]
Li L W, Cai Z X, Wu Q H, Lo W Y, Zhang N, Chen L X, Yu L P. J. Am. Chem. Soc., 2016, 138(24):7681.

doi: 10.1021/jacs.6b03472     URL    
[163]
Wang X Y, Chen L J, Chong S Y, Little M A, Wu Y Z, Zhu W H, Clowes R, Yan Y, Zwijnenburg M A, Sprick R S, Cooper A I. Nat. Chem., 2018, 10(12):1180.

doi: 10.1038/s41557-018-0141-5     URL    
[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[3] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[6] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[7] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[10] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[11] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[12] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[13] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[14] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[15] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
阅读次数
全文


摘要

共轭微孔聚合物的制备与应用