English
新闻公告
More
化学进展 2021, Vol. 33 Issue (3): 380-393 DOI: 10.7536/PC200611 前一篇   后一篇

• 综述 •

多肽基金属离子传感器

于帅兵1, 王召璐1, 庞绪良1, 王蕾1, 李连之1,*(), 林英武2,*()   

  1. 1 聊城大学化学化工学院 聊城 252059
    2 南华大学化学化工学院 衡阳 421001
  • 收稿日期:2020-06-03 修回日期:2020-07-31 出版日期:2021-03-20 发布日期:2020-12-22
  • 通讯作者: 李连之, 林英武
  • 作者简介:
    * Corresponding author e-mail: (Lianzhi Li); (Yingwu Lin)
  • 基金资助:
    国家自然科学基金项目(20471025); 国家自然科学基金项目(21142003); 国家自然科学基金项目(21977042); 聊城大学科研基金项目(318011919)

Peptide-Based Metal Ion Sensors

Shuaibing Yu1, Zhaolu Wang1, Xuliang Pang1, Lei Wang1, Lianzhi Li1,*(), Yingwu Lin2,*()   

  1. 1 School of Chemistry and Chemical Engineering, Liaocheng University,Liaocheng 252059, China
    2 School of Chemistry and Chemical Engineering, University of South China,Hengyang 421001, China
  • Received:2020-06-03 Revised:2020-07-31 Online:2021-03-20 Published:2020-12-22
  • Contact: Lianzhi Li, Yingwu Lin
  • Supported by:
    the National Natural Science Foundation of China(20471025); the National Natural Science Foundation of China(21142003); the National Natural Science Foundation of China(21977042); the Scientific Research Foundation of Liaocheng University(318011919)

多肽基金属离子传感器作为一种基于多肽序列而设计的新型传感器,越来越受到研究者的关注。多肽作为一类重要的生物小分子,具有合成方法成熟、简便、成本低,且能够以多齿配位状态与金属离子结合等优点。多肽基传感器对金属离子具有高灵敏性和高选择性,且可以通过调节多肽序列进一步优化。与其他类型传感器相比,多肽基金属离子传感器具有良好的水溶性、生物相容性以及低毒性,因而在环境检测和生物医学分析与诊断,尤其是金属离子成像等方面,有重要的应用前景。本文主要综述了近年来不同类型的多肽基金属离子传感器,包括基于紫外-可见吸收光谱法、荧光光谱法和电化学分析法等的研究进展,以及它们在一些领域中的应用,特别是针对具有高生物学毒性的重金属离子(如Hg2+、Cd2+),以及在生物体内发挥重要功能的金属离子(如Cu2+、Zn2+)等的检测与生物成像等。最后,文章总结了多肽基金属离子传感器的优缺点,并展望了其未来发展方向和应用前景。

Peptide-based metal ion sensors, as a new type of sensor designed based on peptide sequences, have attracted more and more attention from researchers. As important small biological molecules, peptides have advantages of simple and well-developed synthetic methods with low costs, and can provide multidentate coordination to metal ions. Peptide-based sensors have high sensitivity and high selectivity to metal ions, and can be further optimized by adjusting the peptide sequence. Compared with other types of sensors, peptide-based metal ion sensors have good water solubility, biocompatibility, and low toxicity, and therefore have important applications in environmental detection and bioanalytical diagnosis, especially for metal ion imaging. This review focuses on the progress of different types of peptide-based metal ion sensors in recent years, including those based on UV-Vis absorption spectroscopy, fluorescence spectroscopy, and electrochemical analysis, and their applications, especially for detections and bioimaging of highly toxic metal ions(Hg2+, Cd2+, etc.), and metal ions playing key roles in biological systems(Cu2+, Zn2+, etc.). Moreover, the advantages of peptide-based metal ion sensors are summarized and their future developments and applications are prospected.

Contents

1 Introduction

2 Peptide?based UV?vis colorimetric sensors

3 Peptide?based fluorescent chemical sensors

3.1 Mechanism of fluorescence chemical sensors

3.2 Modified peptides with dansyl

3.3 Modified peptides with pyrene

3.4 Modified peptides with FAM/FITC

3.5 Modified peptides with aggregation?induced emission fluorophore

3.6 Other peptide fluorescence sensors

4 Peptide?based electrochemical sensors

5 Conclusion and outlook

()
图1 Cu2+诱导p-AuNPs的聚集机制[24]
Fig.1 Illustration of Cu2+ ions induced p-AuNPs aggregation[24]
图2 (a) 未修饰的AuNPs和多肽检测Zn2+的示意图[28];(b) 将纳米金和多肽混合后以比色法检测Hg2+的示意图[30]
Fig.2 (a) Schematic diagram of the strategy of colorimetric Zn2+ assay based on unmodified AuNPs and a zinc-binding peptides[28];(b) Schematic diagram of the colorimetric detection of Hg2+ after mixing nanogold and peptide[30]
表1 多肽基荧光化学传感器及其检出限
Table 1 Peptide-based fluorescent chemical sensors and their limits of detection
图3 (a) 基于锌指蛋白的Zn2+荧光传感器[34];(b) 加入Zn2+后的多肽荧光光谱[35]
Fig.3 (a) Fluorescence sensor based on zinc finger protein[34];(b) Fluorescence spectra of peptides after addition of Zn2+[35]
图4 H2L的化学结构及与Cd2+结合示意图[40]
Fig.4 Chemical structure of H2L and its combination with Cd2+[40]
图5 D-P4与Cu2+、Hg2+和生物硫醇的结合模式[59]
Fig.5 Proposed binding modes of D-P4 with Cu2+, Hg2+ and biothiols[59]
图6 Pyrene-Cys-Gly-Pro-Cys-COOH对Cd2+的作用机理[63]
Fig.6 Action mechanism of Pyrene-Cys-Gly-Pro-Cys-COOH towards Cd2+[63]
图7 1与Hg2+的结合模式[71]
Fig.7 Proposed binding mode of 1 with Hg2+[71]
图8 传感器与Al3+的结合模式[74]
Fig.8 Proposed binding mode of sensor with Al3+[74]
图9 两种环十肽的化学结构:A包括两个组氨酸和两个天冬氨酸;B将组氨酸替换为磷酸化的丝氨酸以及天冬氨酸替换为谷氨酸[77]
Fig.9 Chemical structure of two cyclic decapeptides:A includes two histidines and two aspartic acids; B replaces histidine with phosphorylated serine and aspartic acid with glutamic acid[77]
图10 GSH-Fc的化学结构:包含可以与Au电极结合的巯基;具有电化学信号的二茂铁;具有多个金属配位的结合位点
Fig.10 Chemical structure of GSH-Fc including sulfhydryl that can bind to Au electrodes; ferrocene with electrochemical signals; and binding sites with multiple metal coordination
图11 三种不同类型电极的方波伏安曲线:金电极;多肽修饰的金电极;结合Pb2+的肽修饰金电极[83]
Fig.11 SWV curves of three different types of electrodes: bare Au electrode, peptide modified electrode, lead recorded at peptide modified electrode[83]
图12 纳米孔传感器的作用方式[86]
Fig.12 The action mode of nano-pore sensor[86]
[1]
Xu J, Cao Z, Zhang Y L, Yuan Z L, Lou Z M, Xu X H, Wang X K. Chemosphere, 2018, 195:351.
[2]
Hashim M A, Mukhopadhyay S, Sahu J N, Sengupta B. J. Environ. Manag., 2011, 92:2355.
[3]
Kuperman R G, Carreiro M M. Soil Biol. Biochem., 1997, 29:179.
[4]
Huang L H, Fan Z T, Yu C H, Hopke P K, Lioy P J, Buckley B T, Lin L, Ma Y J. Environ. Sci. Technol., 2013, 47:4408.
[5]
Poyil P. Cancer. Res., 2015,75∶2798.
[6]
Ascenzi P, Tundo G R, Coletta M. J. Inorg. Biochem., 2018, 187:116.
[7]
Todinova S, Raynova Y, Idakieva K. J. Therm. Anal. Calorim., 2018, 132:777.
[8]
Krishna S S. Nucleic Acids Res., 2003, 31:532.
[9]
Baker R D, Greer F R, Nutrition T C O. Pediatrics, 2010, 126:1040.
[10]
Zhou F F, Wang H Q, Liu P Y, Hu Q H, Wang Y Y, Liu C, Hu J K. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 190:104.
[11]
Tamanini E, Katewa A, Sedger L M, Todd M H, Watkinson M. Inorg. Chem., 2009, 48:319.
[12]
Tang X L, Peng X H, Dou W, Mao J, Zheng J R, Qin W W, Liu W S, Chang J, Yao X J. Org. Lett., 2008, 10:3653.
[13]
Liu Z P, Zhang C L, He W J, Yang Z H, Gao X, Guo Z J. Chem. Commun., 2010, 46:6138.
[14]
Divrikli U, Kartal A, Soylak M, Elci L. J. Hazard. Mater., 2007, 145:459.
[15]
Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R. Anal. Chimica Acta, 2010, 659:172.
[16]
Karimzadeh A, Hasanzadeh M, Shadjou N, de la Guardia M. Trac Trends Anal. Chem., 2018, 107:1.
[17]
Zhai H Q, Jin X L, Yue J J. Hubei Agricultural Sciences, 2010, 49(8):1995.
翟慧泉, 金星龙, 岳俊杰. 湖北农业科学, 2010, 49(8):1995.
[18]
Xu J G, Wang L, Xiao H Y, Gao M, Li J. Environmental Science Survey, 2010, 29(5):104.
徐继刚, 王雷, 肖海洋, 高明, 李静. 环境科学导刊, 2010, 29(5):104.
[19]
Malachowski L, Stair J, Holcombe J A. Pure Appl. Chem., 2004, 76:777.
[20]
Kim J S, Quang D T. Chem. Rev., 2007, 107:3780.
[21]
Schwarzenbach G. Helv. Chim. Acta, 1952, 35:2344.
[22]
Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318:430.
[23]
Murphy C J, Gole A M, Hunyadi S E, Stone J W, Sisco P N, Alkilany A, Kinard B E, Hankins P. Chem. Commun., 2008, 5:544.
[24]
Chen H X, Zhang J J, Liu X J, Gao Y M, Ye Z H, Li G X. Anal. Methods, 2014, 6:2580.
[25]
Li X Y, Wu Z T, Zhou X D, Hu J M. Biosens. Bioelectron., 2017, 92:496.
[26]
Chai F, Wang C G, Wang T T, Ma Z F, Su Z M. Nanotechnology, 2010, 21:025501.
[27]
Si S, Kotal A, Mandal T K. J. Phys. Chem. C, 2007, 111:1248.
[28]
Li W, Nie Z, He K Y, Xu X H, Li Y, Huang Y, Yao S Z. Chem. Commun., 2011, 47:4412.
[29]
Du J J, Sun Y H, Jiang L, Cao X B, Qi D P, Yin S Y, Ma J, Boey F Y C, Chen X D. Small, 2011, 7:1407.
[30]
Feng H Y, Gao L, Ye X H, Wang L, Xue Z C, Kong J M, Li L Z. Chem. Res. Chin. Univ., 2017, 33:155.
[31]
Vance D H, Czarnik A W. J. Am. Chem. Soc., 1994, 116:9397.
[32]
Wu F Y, Li Z, Wen Z C, Zhou N, Zhao Y F, Jiang Y B. Org. Lett., 2002, 4:3203.
[33]
Kuner T, Augustine G J. Neuron, 2000, 27:447.
[34]
Walkup G K, Imperiali B. J. Am. Chem. Soc., 1996, 118:3053.
[35]
Godwin H A, Berg J M. J. Am. Chem. Soc., 1996, 118:6514.
[36]
Wan J J, Duan W X, Chen K, Tao Y D, Dang J, Zeng K H, Ge Y S, Wu J, Liu D. Sensor Actuat. B: Chem., 2018, 255:49.
[37]
Wang B, Li H W, Gao Y, Zhang H Y, Wu Y Q. J. Fluoresc., 2011, 21:1921.
[38]
Donadio G, di Martino R, Oliva R, Petraccone L, del Vecchio P, di Luccia B, Ricca E, Isticato R, di Donato A, Notomista E. J. Mater. Chem. B, 2016, 4:6979.
[39]
Siepi M, Oliva R, Petraccone L, del Vecchio P, Ricca E, Isticato R, Lanzilli M, Maglio O, Lombardi A, Leone L, Notomista E, Donadio G. PLoS One, 2018, 13:e0204164.
[40]
Wang P, Wu J, Liu L X, Zhou P P, Ge Y S, Liu D, Liu W S, Tang Y. Dalton Trans., 2015, 44:18057.
[41]
Wang P, Wu J, Su P R, Xu C, Ge Y S, Liu D, Liu W S, Tang Y. Dalton Trans., 2016, 45:16246.
[42]
Wang P, Wu J, Zhou P P, Liu W S, Tang Y. J. Mater. Chem. B, 2015, 3:3617.
[43]
Wang P, Zhou D G, Chen B. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2018, 204:735.
[44]
Wang P, Wu J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 208:140.
[45]
Wang P, Zhou D G, Chen B. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 207:276.
[46]
Wang P, An Y, Liao Y W. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 216:61.
[47]
An Y, Wang P, Yue Z J. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2019, 216:319.
[48]
Xue S R, Wang P, Chen K. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 226:117616.
[49]
Wang P, Wu J, Zhao C H. Spectrochimica Acta Part A: Mol. Biomol. Spectrosc., 2020, 226:117600.
[50]
Joshi B P, Lee K H. Bioorg. Med. Chem., 2008, 16:8501.
[51]
Joshi B P, Park J Y, Lee K H. Sensor Actuat. B: Chem., 2014, 191:122.
[52]
Kim J M, Lohani C R, Neupane L N, Choi Y, Lee K H. Chem. Commun., 2012, 48:3012.
[53]
In B, Hwang G W, Lee K H. Bioorg. Med. Chem. Lett., 2016, 26:4477.
[54]
Jung K H, Oh E T, Park H J, Lee K H. Biosens. Bioelectron., 2016, 85:437.
[55]
Azuma T, Fukushima Y. J. Photopol. Sci. Technol., 2014, 27:685.
[56]
Zhang L L, Cao J, Chen K, Liu Y, Ge Y S, Wu J, Liu D. New J. Chem., 2019, 43:3071.
[57]
Li Y, Li L Z, Pu X W, Ma G L, Wang E Q, Kong J M, Liu Z P, Liu Y Z. Bioorg. Med. Chem. Lett., 2012, 22:4014.
[58]
Wang Z L, Feng H Y, Li Y, Xu T, Xue Z C, Li L Z. Chinese Journal of Inorganic Chemistry, 2015, 31(10):1946.
王召璐, 冯慧云, 李艳, 许涛, 薛泽春, 李连之. 无机化学学报, 2015,31(10):1946.
[59]
Pang X L, Gao L, Feng H Y, Li X D, Kong J M, Li L Z. New J. Chem., 2018, 42:15770.
[60]
Pang X L, Wang L, Gao L, Feng H Y, Kong J M, Li L Z. Luminescence, 2019, 34:585.
[61]
Pang X L, Dong J F, Gao L, Wang L, Yu S B, Kong J M, Li L Z. Dye. Pigment., 2020, 173:107888.
[62]
Thirupathi P, Lee K H. Bioorg. Med. Chem., 2013, 21:7964.
[63]
Jung K H, Oh S, Park J, Park Y J, Park S H, Lee K H. New J. Chem., 2018, 42:18143.
[64]
Hwang G W, Jeon J, Neupane L N, Lee K H. New J. Chem., 2018, 42:1437.
[65]
Mehta P K, Oh E T, Park H J, Lee K H. Sensor Actuat. B: Chem., 2017, 245:996.
[66]
Mehta P K, Oh E T, Park H J, Lee K H. Sensor Actuat. B: Chem., 2018, 256:393.
[67]
Jang S, Thirupathi P, Neupane L N, Seong J, Lee H, Lee W I, Lee K H. Org. Lett., 2012, 14:4746.
[68]
Lv X L, Wei Y, Luo S Z. Anal. Sci., 2012, 28:749.
[69]
Xu J B, Liu N, Hao C W, Han Q Q, Duan Y L, Wu J. Sensor Actuat. B: Chem., 2019, 280:129.
[70]
Wang P, Xue S R, Yang X P. Biosens. Bioelectron., 2020, 163:112283.
[71]
Neupane L N, Oh E T, Park H J, Lee K H. Anal. Chem., 2016, 88:3333.
[72]
Neupane L N, Hwang G W, Lee K H. Biosens. Bioelectron., 2017, 92:179.
[73]
Liu D N, Ji S L, Li H R, Hong L, Kong D L, Qi X, Ding D. Faraday Discuss., 2017, 196:377.
[74]
Neupane L N, Mehta P K, Oh S, Park S H, Lee K H. Analyst, 2018, 143:5285.
[75]
Lin Y C, Zheng Y F, Guo Y C, Yang Y L, Li H B, Fang Y, Wang C. Sensor Actuat. B: Chem., 2018, 273:1654.
[76]
Viswanathan K. Sensor Actuat. A: Phys., 2012, 175:15.
[77]
Yang C T, Han J, Gu M, Liu J, Li Y, Huang Z, Yu H Z, Hu S, Wang X L. Chem. Commun., 2015, 51:11769.
[78]
Sun W, Wang L, Li Y J, He X W. Analytical Chemistry, 2004, 32(4):541.
孙微, 王磊, 李一峻, 何锡文. 分析化学, 2004, 32(4):541.
[79]
Chow E, Hibbert D B, Gooding J J. Analyst, 2005, 130:831.
[80]
Wang F B, Fan M Y, Liu Y N, Wang J X, Zeng D M, Huang K L. J. Cent. South Univ. Technol., 2008, 15:44.
[81]
Ye W L, Peng Y, Li X Q, Xiang J, Liu X F, Liu Y N. Chinese Journal of Inorganic Chemistry, 2010, 26(10):1820.
叶武龙, 彭勇, 李学强, 向进, 刘晓芳, 刘又年. 无机化学学报, 2010,26(10):1820.
[82]
Chow E, Ebrahimi D, Gooding J J, Hibbert D B. Analyst, 2006, 131:1051.
[83]
Lin M, Cho M, Choe W S, Lee Y. Electroanalysis, 2016, 28:998.
[84]
Clara P R, Núria S, JosÉ M D C, Cristina A, Miquel E. Talanta, 2016, 155:8.
[85]
Liu T, Yin J, Wang Y H, Miao P. J. Electroanal. Chem., 2016, 783:304.
[86]
Roozbahani G M, Chen X H, Zhang Y W, Juarez O, Li D E, Guan X Y. Anal. Chem., 2018, 90:5938.
[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[4] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[5] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[6] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[7] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[10] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[11] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[12] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[13] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[14] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[15] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
阅读次数
全文


摘要

多肽基金属离子传感器