English
新闻公告
More
化学进展 2021, Vol. 33 Issue (5): 740-751 DOI: 10.7536/PC200625 前一篇   后一篇

• 研究论文 •

二维材料V2C MXene的制备与应用

江松1,2, 王家佩1,2, 朱辉2, 张琴2, 丛野1,2,*(), 李轩科1,*()   

  1. 1 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
    2 武汉科技大学煤炭转化与新型碳材料重点实验室 武汉 430081
  • 收稿日期:2020-06-08 修回日期:2020-07-01 出版日期:2021-05-20 发布日期:2020-11-30
  • 通讯作者: 丛野, 李轩科
  • 作者简介:
    * Corresponding author e-mail: (Ye Cong);
  • 基金资助:
    国家自然科学基金项目(51472186); 国家自然科学基金项目(51902232)

Synthesis and Applications of Two-Dimensional V2C MXene

Song Jiang1,2, Jiapei Wang1,2, Hui Zhu2, Qin Zhang2, Ye Cong1,2,*(), Xuanke Li1,*()   

  1. 1 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology,Wuhan 430081, China
    2 Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology,Wuhan 430081, China
  • Received:2020-06-08 Revised:2020-07-01 Online:2021-05-20 Published:2020-11-30
  • Contact: Ye Cong, Xuanke Li
  • Supported by:
    National Natural Science Foundation of China(51472186); National Natural Science Foundation of China(51902232)

MXenes是二维过渡金属碳化物、氮化物和碳氮化物的总称,因其独特的物理和化学性质被广泛应用于储能、催化、电磁等领域。作为MXenes中重要的一员,V2C MXene具有高导电性和低离子传输势垒的特性,并且多氧化态的钒元素使其也具有赝电容特性。因此,V2C MXene在许多方面尤其是电化学储能上表现出优异的性能,但是V2C MXene较高的形成能所导致的制备难度大和结构的不稳定性制约了其发展。本文综述了V2C MXene在制备、结构、性能和应用方面的研究进展,重点关注制备方法和在电化学储能以及电催化析氢上的应用。同时对V2C MXene存在的主要问题、未来的研究方向和应用前景进行了展望。

MXenes are general term for two-dimensional transition metal carbides, nitrides and carbonitrides, which have been widely used in energy storage, catalysis, electromagnetics and other fields due to their unique physical and chemical properties. As an important member of MXenes, V2C MXene has high conductivity, low transport barrier and pseudocapacitve performance ascribed to the multiple oxidation states of vanadium. Consequently, it has highlighted performances in many aspects, especially in electrochemical energy storage. However, the difficulty of synthesis caused by its high formation energy and the structural instability of V2C MXene have restricted its development. This article reviews the progress of V2C MXene in synthesis, structure, properties and applications, focusing on synthesis methods and applications in electrochemical energy storage and electrocatalytic hydrogen evolution reaction. Meanwhile, the challenges and future perspective in the application of V2C MXene are outlined.

Contents

1 Introduction

2 Synthesis

2.1 Synthesis of V2AlC

2.2 Synthesis of V2C MXene

2.3 Delamination of V2C MXene

3 Structure and properties

3.1 Structure

3.2 Stability

3.3 Other properties

4 Applications

4.1 Supercapacitors

4.2 Secondary batteries

4.3 Electrocatalytic hydrogen evolution

4.4 Other applications

5 Conclusion and perspective

()
表1 不同合成路线制备V2AlC的实验参数
Table 1 Experimental parameters for preparing V2AlC by different synthesis routes
图1 V2CTx制备示意图
Fig. 1 Schematic diagram of V2CTx preparation
表2 利用HF刻蚀制备V2C MXene的实验参数
Table 2 Experimental parameters for preparing V2C MXene by HF etching
表3 其他方法制备V2C MXene的实验参数
Table 3 Experimental parameters for preparing V2C MXene by other methods
图2 V2C的原子结构和V2CT2的两种结构模型
Fig. 2 Atomic structure of pristine V2C and two structural models for terminated V2CT2
表4 V2C MXene作为超级电容器电极的性能表现
Table 4 The performance of V2C MXene as electrode for supercapacitor
表5 V2C MXene及其衍生材料作为二次电池电极的性能
Table 5 The performance of V2C MXene and its derived materials as secondary battery electrodes
图3 交换电流与氢吸附平均吉布斯自由能的火山图[80]
Fig. 3 Volcano plot of the exchange current(i0) as a function of the average Gibbs free energy of hydrogen adsorption[80]
[1]
Nan J X, Guo X, Xiao J, Li X, Chen W H, Wu W J, Liu H, Wang Y, Wu M H, Wang G X. Small, 2021, 17(9):1902085.

doi: 10.1002/smll.v17.9     URL    
[2]
Yan K, Guan Y F, Cong Y, Xu T X, Zhu H, Li X K. Chin. J Inorg. Chem., 2019, 35:1203.
( 严康, 关云锋, 丛野, 徐畑祥, 朱辉, 李轩科. 无机化学学报, 2019, 35:1203.).
[3]
Anasori B, Gogotsi Y. 2D Metal Carbides and Nitrides(MXenes):Structure,Properties and Applications. Switzerland: Springer, 2019.3.
[4]
Gogotsi Y, Anasori B. ACS Nano, 2019, 13(8):8491.

doi: 10.1021/acsnano.9b06394     pmid: 31454866
[5]
Zhao W J, Qin J Z, Yin Z F, Hu X, Liu B J. Prog. Chem., 2019, 31:1729.
( 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 化学进展, 2019, 31:1729.).

doi: 10.7536/PC190321    
[6]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37):4248.

doi: 10.1002/adma.201102306     URL    
[7]
Xu T X, Wang J P, Cong Y, Jiang S, Zhang Q, Zhu H, Li Y J, Li X K. Chin. Chem. Lett., 2020, 31(4):1022.

doi: 10.1016/j.cclet.2019.11.038     URL    
[8]
VahidMohammadi A, Mojtabavi M, Caffrey N M, Wanunu M, Beidaghi M. Adv. Mater., 2019, 31(8):1806931.

doi: 10.1002/adma.v31.8     URL    
[9]
Ying G B, Kota S, Dillon A D, Fafarman A T, Barsoum M W. FlatChem, 2018, 8:25.

doi: 10.1016/j.flatc.2018.03.001     URL    
[10]
He H T, Xia Q X, Wang B X, Wang L B, Hu Q K, Zhou A G. Chin. Chem. Lett., 2020, 31(4):984.

doi: 10.1016/j.cclet.2019.08.025     URL    
[11]
Hu J P, Xu B, Ouyang C, Yang S A, Yao Y G. J. Phys. Chem. C, 2014, 118(42):24274.

doi: 10.1021/jp507336x     URL    
[12]
Zhang Y J, Zhou Z J, Lan J H, Ge C C, Chai Z F, Zhang P H, Shi W Q. Appl. Surf. Sci., 2017, 426:572.

doi: 10.1016/j.apsusc.2017.07.227     URL    
[13]
Wang C D, Chen S M, Xie H, Wei S Q, Wu C Q, Song L. Adv. Energy Mater., 2019, 9(4):1970013.

doi: 10.1002/aenm.v9.4     URL    
[14]
Wei S Q, Wang C D, Chen S M, Zhang P J, Zhu K F, Wu C Q, Song P, Wen W, Song L. Adv. Energy Mater., 2020, 10(12):1903712.

doi: 10.1002/aenm.v10.12     URL    
[15]
Wang Z G, Yu K, Feng Y, Qi R J, Ren J, Zhu Z Q. ACS Appl. Mater. Interfaces, 2019, 11(47):44282.

doi: 10.1021/acsami.9b15586     URL    
[16]
Li X L, Li M, Yang Q, Li H F, Xu H L, Chai Z F, Chen K, Liu Z X, Tang Z J, Ma L T, Huang Z D, Dong B B, Yin X W, Huang Q, Zhi C Y. ACS Nano, 2020, 14(1):541.

doi: 10.1021/acsnano.9b06866     URL    
[17]
Sun D D, Hu Q K, Chen J F, Zhou A G. Key Eng. Mater., 2014,602-603: 527.
[18]
Guan Y F, Jiang S, Cong Y, Wang J P, Dong Z J, Zhang Q, Yuan G M, Li Y J, Li X K. 2D Mater., 2020, 7(2):025010.
[19]
Naguib M, Halim J, Lu J, Cook K M, Hultman L, Gogotsi Y, Barsoum M W. J. Am. Chem. Soc., 2013, 135(43):15966.

doi: 10.1021/ja405735d     URL    
[20]
Guo Y T, Zhou A G, Hu Q K, Wang L B. J. Synth. Cryst., 2019, 48:2158.
( 郭奕彤, 周爱国, 胡前库, 王李波. 人工晶体学报, 2019, 48:2158.).
[21]
Zheng W, Sun Z M, Zhang P G, Tian W B, Wang Y, Zhang Y M. Mater. R., 2017, 31:1.
( 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31:1.).
[22]
Anasori B, Lukatskaya M R, Gogotsi Y. Nat. Rev. Mater., 2017, 2(2):16098.

doi: 10.1038/natrevmats.2016.98     URL    
[23]
Hu C F, He L F, Liu M Y, Wang X H, Wang J Y, Li M S, Bao Y W, Zhou Y C. J. Am. Ceram. Soc., 2008, 91(12):4029.

doi: 10.1111/jace.2008.91.issue-12     URL    
[24]
Hossein-Zadeh M, Mirzaee O, Mohammadian-Semnani H, Razavi M. Ceram. Int., 2019, 45(18):23902.

doi: 10.1016/j.ceramint.2019.07.236    
[25]
Hossein-Zadeh M, Ghasali E, Mirzaee O, Mohammadian-Semnani H, Alizadeh M, Orooji Y, Ebadzadeh T. J. Alloy. Compd., 2019, 795:291.

doi: 10.1016/j.jallcom.2019.05.029    
[26]
Hamm C M, Dürrschnabel M, Molina-Luna L, Salikhov R, Spoddig D, Farle M, Wiedwald U, Birkel C S. Mater. Chem. Front., 2018, 2(3):483.

doi: 10.1039/C7QM00488E     URL    
[27]
Roy C, Banerjee P, Bhattacharyya S. J. Eur. Ceram. Soc., 2020, 40(3):923.

doi: 10.1016/j.jeurceramsoc.2019.10.020     URL    
[28]
Wang B X, Zhou A G, Hu Q K, Wang L B. Int. J. Appl. Ceram. Technol., 2017, 14(5):873.

doi: 10.1111/ijac.2017.14.issue-5     URL    
[29]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11):4730.

doi: 10.1021/jacs.9b00574     URL    
[30]
VahidMohammadi A, Hadjikhani A, Shahbazmohamadi S, Beidaghi M. ACS Nano, 2017, 11(11):11135.

doi: 10.1021/acsnano.7b05350     pmid: 29039915
[31]
Wang L B, Liu D R, Lian W W, Hu Q K, Liu X Q, Zhou A G. J. Mater. Res. Technol., 2020, 9(1):984.

doi: 10.1016/j.jmrt.2019.11.038     URL    
[32]
Liu F F, Zhou J, Wang S W, Wang B X, Shen C, Wang L B, Hu Q K, Huang Q, Zhou A G. J. Electrochem. Soc., 2017, 164(4):A709.

doi: 10.1149/2.0641704jes     URL    
[33]
Wu M, Wang B X, Hu Q K, Wang L B, Zhou A G. Materials, 2018, 11(11):2112.

doi: 10.3390/ma11112112     URL    
[34]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7):2374.

doi: 10.1021/cm500641a     URL    
[35]
Zhou J, Gao S H, Guo Z L, Sun Z M. Ceram. Int., 2017, 43(14):11450.

doi: 10.1016/j.ceramint.2017.06.016     URL    
[36]
Wang Y, Zheng W, Zhang P G, Tian W B, Chen J, Sun Z M. J. Mater. Sci., 2019, 54(18):11991.

doi: 10.1007/s10853-019-03756-6     URL    
[37]
Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H. J. Am. Chem. Soc., 2019, 141(24):9610.

doi: 10.1021/jacs.9b02578     URL    
[38]
Zada S, Dai W H, Kai Z, Lu H T, Meng X D, Zhang Y Y, Cheng Y R, Yan F, Fu P C, Zhang X J, Dong H F. Angew. Chem. Int. Ed., 2020, 59(16):6601.

doi: 10.1002/anie.v59.16     URL    
[39]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19(8):894.

doi: 10.1038/s41563-020-0657-0     URL    
[40]
Cai X K, Luo Y T, Liu B L, Cheng H M. Chem. Soc. Rev., 2018, 47(16):6224.

doi: 10.1039/C8CS00254A     URL    
[41]
Naguib M, Unocic R R, Armstrong B L, Nanda J. Dalton Trans., 2015, 44(20):9353.

doi: 10.1039/C5DT01247C     URL    
[42]
Chen Z, Yang X B, Qiao X, Zhang N, Zhang C F, Ma Z L, Wang H Q. J. Phys. Chem. Lett., 2020, 11(3):885.

doi: 10.1021/acs.jpclett.9b03827     URL    
[43]
Ming F W, Liang H F, Zhang W L, Ming J, Lei Y J, Emwas A H, Alshareef H N. Nano Energy, 2019, 62:853.

doi: 10.1016/j.nanoen.2019.06.013     URL    
[44]
Shan Q M, Mu X P, Alhabeb M, Shuck C E, Pang D, Zhao X, Chu X F, Wei Y J, Du F, Chen G, Gogotsi Y, Gao Y, Dall’Agnese Y. Electrochem. Commun., 2018, 96:103.

doi: 10.1016/j.elecom.2018.10.012     URL    
[45]
Wang C D, Wei S Q, Chen S M, Cao D F, Song L. Small Methods, 2019, 3(12):1900495.

doi: 10.1002/smtd.v3.12     URL    
[46]
Cao Y, Wu T, Zhang K, Meng X, Dai W, Wang D, Dong H, Zhang X. ACS Nano, 2019, 13:1499.

doi: 10.1021/acsnano.8b07224     pmid: 30677286
[47]
Yuan Y Y, Li H S, Wang L G, Zhang L, Shi D E, Hong Y X, Sun J L. ACS Sustainable Chem. Eng., 2019, 7(4):4266.

doi: 10.1021/acssuschemeng.8b06045     URL    
[48]
Wang C D, Xie H, Chen S M, Ge B H, Liu D B, Wu C Q, Xu W J, Chu W S, Babu G, Ajayan P M, Song L. Adv. Mater., 2018, 30(32):1802525.

doi: 10.1002/adma.v30.32     URL    
[49]
Wei S, Wang C, Zhang P, Zhu K, Chen S, Song L. J. Inorg. Mater., 2020, 35:139.
[50]
Li M, Huang Q. J. Inorg. Mater., 2020, 35:1.
( 李勉, 黄庆. 无机材料学报, 2020, 35:1.).
[51]
Champagne A, Shi L, Ouisse T, Hackens B, Charlier J C. Phys. Rev. B, 2018, 97(11):115439.

doi: 10.1103/PhysRevB.97.115439     URL    
[52]
Pang J B, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z F, Rummeli M H. Chem. Soc. Rev., 2019, 48(1):72.

doi: 10.1039/C8CS00324F     URL    
[53]
Khazaei M, Arai M, Sasaki T, Chung C Y, Venkataramanan N S, Estili M, Sakka Y, Kawazoe Y. Adv. Funct. Mater., 2013, 23(17):2185.

doi: 10.1002/adfm.v23.17     URL    
[54]
Ashton M, Mathew K, Hennig R G, Sinnott S B. J. Phys. Chem. C, 2016, 120(6):3550.

doi: 10.1021/acs.jpcc.5b11887     URL    
[55]
Li Z, Wu Y. Small, 2019, 15(29):1804736.

doi: 10.1002/smll.v15.29     URL    
[56]
Thakur R, VahidMohammadi A, Moncada J, Adams W R, Chi M Y, Tatarchuk B, Beidaghi M, Carrero C A. Nanoscale, 2019, 11(22):10716.

doi: 10.1039/c9nr03020d     pmid: 31120085
[57]
Zhang C J, Pinilla S, McEvoy N, Cullen C P, Anasori B, Long E, Park S H, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu X H, Duesberg G S, Gogotsi Y, Nicolosi V. Chem. Mater., 2017, 29(11):4848.

doi: 10.1021/acs.chemmater.7b00745     URL    
[58]
Hu M M, Hu T, Li Z J, Yang Y, Cheng R F, Yang J X, Cui C, Wang X H. ACS Nano, 2018, 12(4):3578.

doi: 10.1021/acsnano.8b00676     URL    
[59]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X Q, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C. J. Am. Chem. Soc., 2014, 136(17):6385.

doi: 10.1021/ja501520b     URL    
[60]
Natu V, Hart J L, Sokol M, Chiang H, Taheri M L, Barsoum M W. Angew. Chem. Int. Ed., 2019, 58(36):12655.

doi: 10.1002/anie.v58.36     URL    
[61]
Zhao X F, Vashisth A, Prehn E, Sun W M, Shah S A, Habib T, Chen Y X, Tan Z Y, Lutkenhaus J L, Radovic M, Green M J. Matter, 2019, 1(2):513.

doi: 10.1016/j.matt.2019.05.020     URL    
[62]
Kurtoglu M, Naguib M, Gogotsi Y, Barsoum M W. MRS Commun., 2012, 2(4):133.

doi: 10.1557/mrc.2012.25     URL    
[63]
Urbankowski P, Anasori B, Hantanasirisakul K, Yang L, Zhang L H, Haines B, May S J, Billinge S J L, Gogotsi Y. Nanoscale, 2017, 9(45):17722.

doi: 10.1039/c7nr06721f     pmid: 29134998
[64]
Gao G Y, Ding G Q, Li J, Yao K L, Wu M H, Qian M C. Nanoscale, 2016, 8(16):8986.

doi: 10.1039/C6NR01333C     URL    
[65]
Frey N C, Bandyopadhyay A, Kumar H, Anasori B, Gogotsi Y, Shenoy V B. ACS Nano, 2019, 13(3):2831.

doi: 10.1021/acsnano.8b09201     URL    
[66]
Shao Y L, El-Kady M F, Sun J Y, Li Y G, Zhang Q H, Zhu M F, Wang H Z, Dunn B, Kaner R B. Chem. Rev., 2018, 118(18):9233.

doi: 10.1021/acs.chemrev.8b00252     URL    
[67]
Yao S S, Li N, Ye H Q, Han K. Prog. Chem., 2018, 30(7):932.
( 姚送送, 李诺, 叶红齐, 韩凯. 化学进展, 2018, 30(7):932.)

doi: 10.7536/PC171114    
[68]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529):78.

doi: 10.1038/nature13970    
[69]
Luo J M, Zhang W K, Yuan H D, Jin C B, Zhang L Y, Huang H, Liang C, Xia Y, Zhang J, Gan Y P, Tao X Y. ACS Nano, 2017, 11(3):2459.

doi: 10.1021/acsnano.6b07668     URL    
[70]
Dall’Agnese Y, Taberna P L, Gogotsi Y, Simon P. J. Phys. Chem. Lett., 2015, 6(12):2305.

doi: 10.1021/acs.jpclett.5b00868     URL    
[71]
Sun D D, Hu Q K, Chen J F, Zhang X Y, Wang L B, Wu Q H, Zhou A G. ACS Appl. Mater. Interfaces, 2016, 8(1):74.

doi: 10.1021/acsami.5b03863     URL    
[72]
Zheng W, Yang L, Zhang P G, Chen J, Tian W B, Zhang Y M, Sun Z M. Mater. R., 2018, 32:2513.
( 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 材料导报, 2018, 32:2513.).
[73]
Liu F F, Liu Y C, Zhao X D, Liu K Y, Yin H Q, Fan L Z. Small, 2020, 16(8):1906076.

doi: 10.1002/smll.v16.8     URL    
[74]
Li Y, Guo Y, Jiao Z. Curr. Appl. Phys., 2020, 20:310.

doi: 10.1016/j.cap.2019.11.025     URL    
[75]
Zhu J J, Schwingenschlögl U. 2D Mater., 2017, 4(2):025073.
[76]
Bak S M, Qiao R M, Yang W L, Lee S, Yu X Q, Anasori B, Lee H, Gogotsi Y, Yang X Q. Adv. Energy Mater., 2017, 7(20):1700959.

doi: 10.1002/aenm.v7.20     URL    
[77]
Wang Y T, Shen J L, Xu L C, Yang Z, Li R, Liu R P, Li X Y. Phys. Chem. Chem. Phys., 2019, 21(34):18559.

doi: 10.1039/C9CP03419F     URL    
[78]
Liang P, Zhang L, Wang D, Man X L, Shu H B, Wang L, Wan H Z, Du X Q, Wang H. Appl. Surf. Sci., 2019, 489:677.

doi: 10.1016/j.apsusc.2019.06.033    
[79]
Tian Y, An Y L, Wei H, Wei C L, Tao Y, Li Y, Xi B J, Xiong S L, Feng J K, Qian Y T. Chem. Mater., 2020, 32(9):4054.

doi: 10.1021/acs.chemmater.0c00787     URL    
[80]
Gao G P, O’Mullane A P, Du A J. ACS Catal., 2017, 7(1):494.

doi: 10.1021/acscatal.6b02754     URL    
[81]
Ling C Y, Shi L, Ouyang Y X, Chen Q, Wang J L. Adv. Sci., 2016, 3(11):1600180.

doi: 10.1002/advs.v3.11     URL    
[82]
Yoon Y, Tiwari A P, Choi M, Novak T G, Song W, Chang H, Zyung T, Lee S S, Jeon S, An K S. Adv. Funct. Mater., 2019, 29(30):1903443.

doi: 10.1002/adfm.v29.30     URL    
[83]
Wang Z G, Xu W Q, Yu K, Feng Y, Zhu Z Q. Nanoscale, 2020, 12(10):6176.

doi: 10.1039/D0NR00207K     URL    
[84]
Kuang P Y, He M, Zhu B C, Yu J G, Fan K, Jaroniec M. J. Catal., 2019, 375:8.

doi: 10.1016/j.jcat.2019.05.019     URL    
[85]
Zhou S, Yang X W, Pei W, Liu N S, Zhao J J. Nanoscale, 2018, 10(23):10876.

doi: 10.1039/c8nr01090k     pmid: 29616270
[86]
Huang D P, Xie Y, Lu D Z, Wang Z Y, Wang J Y, Yu H H, Zhang H J. Adv. Mater., 2019:1901117.
[87]
Morales-García Á, Fernández-Fernández A, Viñes F, Illas F. J. Mater. Chem. A, 2018, 6(8):3381.

doi: 10.1039/C7TA11379J     URL    
[88]
Thakur R, VahidMohammadi A, Smith J, Hoffman M, Moncada J, Beidaghi M, Carrero C A. ACS Catal., 2020, 10(9):5124.

doi: 10.1021/acscatal.0c00797     URL    
[89]
Chen J, Chen K, Tong D Y, Huang Y J, Zhang J W, Xue J M, Huang Q, Chen T. Chem. Commun., 2015, 51(2):314.

doi: 10.1039/C4CC07220K     URL    
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[9] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[12] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[13] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[14] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
阅读次数
全文


摘要

二维材料V2C MXene的制备与应用