English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 555-567 DOI: 10.7536/PC200615 前一篇   后一篇

• 综述 •

微流控阻抗流式细胞仪在单细胞检测中的应用

冯迪1, 王广华1, 唐文来1,2,3,*(), 杨继全1   

  1. 1 南京师范大学电气与自动化工程学院 江苏省三维打印设备与制造重点实验室 南京 210023
    2 东南大学江苏省微纳生物医疗器械设计与制造重点实验室 南京 211189
    3 南京大学医学院附属鼓楼医院 南京 210008
  • 收稿日期:2020-06-05 修回日期:2020-06-28 出版日期:2021-04-20 发布日期:2020-11-30
  • 通讯作者: 唐文来
  • 基金资助:
    国家自然科学基金项目(51805272); 江苏省重点研发计划(BE2018010); 中国博士后科学基金资助项目(2020M671450); 江苏省博士后科研资助计划(2020Z042); 东南大学江苏省微纳生物医疗器械设计与制造重点实验室开放研究基金资助课题(KF202008); 江苏省高等学校自然科学研究项目(20KJA460004)

Application of Microfluidic Impedance Cytometer in Single-Cell Detection

Di Feng1, Guanghua Wang1, Wenlai Tang1,2,3(), Jiquan Yang1   

  1. 1 School of Electrical and Automation Engineering, Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing, Nanjing Normal University, Nanjing 210023, China
    2 Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
    3 Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School,Nanjing 210008, China
  • Received:2020-06-05 Revised:2020-06-28 Online:2021-04-20 Published:2020-11-30
  • Contact: Wenlai Tang
  • Supported by:
    the National Natural Science Foundation of China(51805272); the Key Technology R&D Program of Jiangsu Province(BE2018010); the China Postdoctoral Science Foundation(2020M671450); the Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z042); the Open Research Fund of Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University(KF202008); the Natural Science Fund for Colleges and Universities in Jiangsu Province(20KJA460004)

单细胞水平的检测能够在细胞群中分辨出稀有的异常细胞,在生物医学领域如疾病的早期诊断和治疗评估等方面有着至关重要的作用。通过整合微流控技术、电阻抗技术与流式细胞术,微流控阻抗细胞仪能够在微流体精确操控条件下,实现流动态单细胞的连续、无损阻抗检测。与传统的单细胞检测方法相比,微流控阻抗细胞仪具有非标记、多参数、低污染和检测速度快等显著优势,为细胞的种类鉴别与状态监测提供了强有力的工具,因此近年来研究学者已成功开发出各式具有不同结构和功能的微流控阻抗细胞仪。本文首先介绍直流阻抗细胞仪、交流阻抗细胞仪以及形变阻抗细胞仪的工作原理和开发进展,随后讨论微流控阻抗细胞仪在血细胞、癌细胞和微生物等生物样品检测中的最新应用情况,并从集成化和微型化两方面阐述微流控阻抗细胞仪在临床即时检测中的应用前景,最后总结了现有微流控阻抗细胞仪存在的不足并探讨了该领域的未来发展趋势。

Single-cell level detection can distinguish rare abnormal cells from large cell populations, which plays a vital role in biomedical fields such as early diagnosis and treatment evaluation of diseases. By integrating microfluidics, electrical impedance spectroscopy and flow cytometry, the microfluidic impedance cytometer has attracted extensive attention, as it can realize non-destructive impedance detection of single cells in a continuous way with precise flow control. Compared with traditional single-cell detection methods, microfluidic impedance cytometer has significant advantages such as label-free, multi-parameters, low pollution and high throughput, providing a powerful tool for cell population identification and status monitoring. Therefore, various microfluidic impedance cytometers with different structures and functions have been successfully developed in recent years. In this review, we first summarize the working principles and recent developments of DC impedance cytometer, AC impedance cytometer and deformability impedance cytometer, and then focus on the latest applications of microfluidic impedance cytometer in the detection of biological samples such as blood cells, cancer cells and microorganisms. Later, the application prospect of microfluidic impedance cytometer in clinical real-time detection from the aspects of integration and miniaturization are also presented. Finally, the shortcomings of the existing microfluidic impedance cytometers and the future development trend in this field are discussed.

Contents

1 Introduction

2 Microfluidic impedance cytometer

2.1 DC impedance cytometer

2.2 AC impedance cytometer

2.3 Deformability impedance cytometer

3 Applications in single-cell detection

3.1 Blood cells

3.2 Cancer cells

3.3 Bacteria

4 Applications in point-of-care testing

4.1 Chip integration

4.2 Chip miniaturization

5 Conclusion and outlook

()
图1 具有不同特征的直流阻抗细胞仪:(a)具有双传感通道的库尔特计数器[49];(b)基于深度卷积神经网络的编码多路库尔特计数器工作流程图[51];(c)集成亲和捕获功能的微型库尔特计数器[54]
Fig.1 DC impedance cytometers with different characteristics.(a) Coulter counter including double sensing microchannels[49];(b) process workflow for code-multiplexed Coulter signals via deep convolutional neural networks[51];(c) micro-Coulter counter integrated with the affinity-based enrichment[54]
图2 具有不同特征的交流阻抗细胞仪:(a)细胞电阻抗检测的等效电路模型[56];(b)具有共面“接触”场金属电极的阻抗细胞仪[57];(c)用于细胞横向位置检测的微流控阻抗芯片[60];(d)用于神经网络多参数检测的微流控阻抗芯片及传感电路[62]
Fig.2 AC impedance cytometers with different characteristics.(a) equivalent circuit model of cell electrical impedance detection[56];(b) microfluidic impedance cytometer with coplanar ‘in-contact’ Field’s metal electrode [57];(c) microfluidic impedance cytometer for cross-sectional position detection of flowing particles/cells[60];(d) microfluidic impedance chip and the relevant wiring scheme for real-time multiparametric analysis via neural network approach[62]
图3 具有不同特种的形变阻抗细胞仪:(a)具有四个收缩传感通道的阻抗细胞仪[66];(b)具有自对准电极(金色)和收缩区域(透明)的阻抗细胞仪[67];(c)具有侧流道吸吮的微流控阻抗细胞仪[69]
Fig.3 Deformability impedance cytometers with different characteristics.(a) impedance cytometer containing four parallel sensing channels[66];(b) impedance cytometer with self-aligned electrodes(golden color) and contracted area(transparent color)[67];(c) microfluidic impedance platform with lateral aspiration[69]
图4 阻抗细胞仪在单细胞检测中的应用:(a)不同白细胞群的鉴别[78];(b)白细胞与红细胞的鉴别[82];(c)不同状态癌细胞的鉴别[65]
Fig.4 Applications of impedance cytometer in single-cell detection.(a) differentiation of different leukocyte populations[78];(b) differentiation of leucocytes and erythrocytes[82];(c) differentiation of breast cancer cells with different statuses[65]
图5 集成惯性分选与电阻抗检测的微流控分析系统[77]
Fig.5 Microfluidic analysis system integrated with inertial separation and impedance detection[77]
图6 阻抗检测系统的微型化:(a)基于柔性PCB的可穿戴式细胞检测系统[101];(b)手持式微电极阵列电阻抗检测系统[102];(c)便携式血细胞计数系统的移动数据接口[100]
Fig.6 Miniaturization of the impedance detection system(a) wearable cell detection system based on a flexible PCB[101];(b) portable impedance detection system based on a microelectrode array[102];(c) mobile data interface for portable blood cell counting system[104]
[1]
Sims C E, Allbritton N L. Lab a Chip, 2007, 7(4): 423.

doi: 10.1039/b615235j     URL    
[2]
Altschuler S J, Wu L F. Cell, 2010, 141(4): 559.

doi: 10.1016/j.cell.2010.04.033     URL     pmid: 20478246
[3]
Sun T, Morgan H. Microfluid. Nanofluidics, 2010, 8(4): 423.

doi: 10.1007/s10404-010-0580-9     URL    
[4]
Holmes D, Morgan H. Anal. Chem., 2010, 82: 1455.

doi: 10.1021/ac902568p     URL     pmid: 20104894
[5]
Zhang B Y, Korolj A, Lai B F L, Radisic M. Nat. Rev. Mater., 2018, 3(8): 257.

doi: 10.1038/s41578-018-0034-7     URL    
[6]
Li S B. Handbook of Single Cell Technologies. Singapore: Springer, 2020.1.
[7]
Villanueva L G, de Pastina A, Faivre M. Engineering of Micro/Nano Biosystems. Singapore: Springer, 2019.139.
[8]
Shaw K J, Hughes E M, Dyer C E, Greenman J, Haswell S J. Lab. Investig., 2013, 93(8): 961.

doi: 10.1038/labinvest.2013.76     URL     pmid: 23711823
[9]
Ulep T H, Yoon J Y. Nano Convergence, 2018, 5: 2.

doi: 10.1186/s40580-018-0135-4     URL     pmid: 29399434
[10]
Weng X, Gaur G, Neethirajan S. Biosens. Bioelectron., 2016, 6: 24.
[11]
Jiang Y, Kang X Y, Gao D Q, He A Q, Guo R, Fan X K, Zhai Y J, Xia J M, Xu Y Z, Noda I, Wu J G. RSC Adv., 2015, 5(28): 21544.

doi: 10.1039/C4RA13537G     URL    
[12]
Zhu Q Y, Qiu L, Xu Y N, Li G, Mu Y. Biomicrofluidics, 2017, 11(1): 014109.

URL     pmid: 28191267
[13]
Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. Anal. Chem., 2010, 82(8): 3183.

doi: 10.1021/ac902683t     URL     pmid: 20192178
[14]
Phiphattanaphiphop C, Leksakul K, Phatthanakun R, Suthummapiwat A. Micromachines, 2019, 10(10): 647.

doi: 10.3390/mi10100647     URL    
[15]
Solsona M, Westerbeek E Y, Bomer J G, Olthuis W, van den Berg A. Lab a Chip, 2019, 19(6): 1054.

doi: 10.1039/C8LC01333K     URL    
[16]
Aguirre G R, Efremov V, Kitsara M, DucrÉe J. Microfluid. Nanofluidics, 2015, 18(3): 513.

doi: 10.1007/s10404-014-1450-7     URL    
[17]
Carlo D D, Wu L Y, Lee L P. Lab a Chip, 2006, 6(11): 1445.

doi: 10.1039/b605937f     URL    
[18]
Wlodkowic D, Faley S, Zagnoni M, Wikswo J P, Cooper J M. Anal. Chem., 2009, 81(13): 5517.

doi: 10.1021/ac9008463     URL     pmid: 19514700
[19]
Li Z J, Li P Y, Xu J, Shao W W, Yang C, Cui Y Y. Biomed. Microdevices, 2020, 22(2): 27.

doi: 10.1007/s10544-020-00481-9     URL     pmid: 32222836
[20]
Chiou P Y, Ohta A T, Wu M C. Nature, 2005, 436(7049): 370.

doi: 10.1038/nature03831     URL     pmid: 16034413
[21]
Ossowski P, Raiter-Smiljanic A, Szkulmowska A, Bukowska D, Wiese M, Derzsi L, Eljaszewicz A, Garstecki P, Wojtkowski M. Opt. Express, 2015, 23(21): 27724.

doi: 10.1364/OE.23.027724     URL     pmid: 26480435
[22]
Fazelkhah A, Afshar S, Durham N, Butler M, Salimi E, Bridges G, Thomson D. Electrophoresis, 2020, 41(9): 720.

doi: 10.1002/elps.201900393     URL     pmid: 32043614
[23]
Petkovic K, Metcalfe G, Chen H, Gao Y, Best M, Lester D, Zhu Y. Lab a Chip, 2017, 17(1): 169.

doi: 10.1039/C6LC01263A     URL    
[24]
Solsona M, Nieuwelink A E, Meirer F, Abelmann L, Odijk M, Olthuis W, Weckhuysen B M, van den Berg A. Angew. Chem. Int. Ed., 2018, 57(33): 10589.

doi: 10.1002/anie.v57.33     URL    
[25]
Soares R, Martins V C, Macedo R, Cardoso F A, Martins S A M, Caetano D M, Fonseca P H, SilvÉrio V, Cardoso S, Freitas P P. Anal. Bioanal. Chem., 2019, 411(9): 1839.

doi: 10.1007/s00216-019-01593-9     URL     pmid: 30783712
[26]
Wu C H, Chen R F, Liu Y, Yu Z M, Jiang Y W, Cheng X. Lab a Chip, 2017, 17(23): 4008.

doi: 10.1039/C7LC01082F     URL    
[27]
Jang L S, Wang M H. Biomed. Microdevices, 2007, 9(5): 737.

URL     pmid: 17508285
[28]
Huang C T, Weng C H, Jen C P. Biomicrofluidics, 2011, 5(4): 044101.

doi: 10.1063/1.3646757     URL    
[29]
Liu G J, He F, Li X B, Zhao H, Zhang Y Y, Li Z Q, Yang Z G. Microfluid. Nanofluidics, 2019, 23(2): 23.

doi: 10.1007/s10404-019-2189-y     URL    
[30]
Chen H M, Zhang Z C, Liu H L, Zhang Z F, Lin C M, Wang B. AIP Adv., 2019, 9(2): 025023.

doi: 10.1063/1.5081849     URL    
[31]
Xie Y L, Bachman H, Huang T J. TrAC Trends Anal. Chem., 2019, 117: 280.

doi: 10.1016/j.trac.2019.06.034     URL    
[32]
Hung S T, Mukherjee S, Jimenez R. Lab a Chip, 2020, 20(4): 834.

doi: 10.1039/C9LC00790C     URL    
[33]
Luo T, Fan L, Zhu R, Sun D. Micromachines, 2019, 10(2): 104.

doi: 10.3390/mi10020104     URL    
[34]
Specht E A, Braselmann E, Palmer A E. Annu. Rev. Physiol., 2017, 79(1): 93.

doi: 10.1146/annurev-physiol-022516-034055     URL    
[35]
Blasi T, Hennig H, Summers H D, Theis F J, Cerveira J, Patterson J O, Davies D, Filby A, Carpenter A E, Rees P. Nat. Commun., 2016, 7: 10256.

URL     pmid: 26739115
[36]
Luo J, Nelson E L, Li G P, Bachman M. Biomicrofluidics, 2014, 8(3): 034105.

doi: 10.1063/1.4880244     URL     pmid: 24926390
[37]
Mohamed Hassan Y, Massa L, Caviglia C, Sylvest Keller S. Electroanalysis, 2019, 31(2): 256.

doi: 10.1002/elan.v31.2     URL    
[38]
Luongo K, Holton A, Kaushik A, Spence P, Ng B, Deschenes R, Sundaram S, Bhansali S. Biomicrofluidics, 2013, 7(3): 034108.

doi: 10.1063/1.4809590     URL    
[39]
He J L, Chen A T, Lee J H, Fan S K. Int. J. Mol. Sci., 2015, 16(9): 22319.

doi: 10.3390/ijms160922319     URL     pmid: 26389890
[40]
de Ninno A, Reale R, Giovinazzo A, Bertani F R, Businaro L, Bisegna P, Matteucci C, Caselli F. Biosens. Bioelectron., 2020, 150: 111887.

URL     pmid: 31780405
[41]
Tang W L, Xiang N, Huang D, Zhang J J, Gu X Z, Ni Z H. Progress in Chemistry, 2014, 26(6): 1050. 957f7109-5fac-428e-8cce-7ee97a4c4ccc

doi: 10.7536/PC131115     URL    
唐文来, 项楠, 黄笛, 张鑫杰, 顾兴中, 倪中华. 化学进展, 2014, 26(6): 1050. 957f7109-5fac-428e-8cce-7ee97a4c4ccc

doi: 10.7536/PC131115     URL    
[42]
Yang R J, Fu L M, Hou H H. Sensor Actuat. B: Chem., 2018, 266: 26.

doi: 10.1016/j.snb.2018.03.091     URL    
[43]
Gong Y L, Fan N, Yang X, Peng B, Jiang H. Electrophoresis, 2019, 40(8): 1212.

doi: 10.1002/elps.v40.8     URL    
[44]
Petchakup C, Li K, Hou H. Micromachines, 2017, 8(3): 87.

doi: 10.3390/mi8030087     URL    
[45]
Coulter W H. Proc. Natl. Electron. Conf., 1956, 12: 1034.
[46]
Larsen U D, Blankenstein G, Branebjerg J. In 1997 international Conference on Solid-state Sensors and Actuators Chicago, IEEE, 1997. 2.
[47]
Choi H, Kim K B, Jeon C S, Hwang I, Lee S, Kim H K, Kim H C, Chung T D. Lab a Chip, 2013, 13(5): 970.

doi: 10.1039/c2lc41376k     URL    
[48]
Zhe J, Jagtiani A, Dutta P, Hu J, Carletta J. J. Micromech. Microeng., 2007, 17(2): 304.

doi: 10.1088/0960-1317/17/2/017     URL    
[49]
Khodaparastasgarabad N, Mohebbi A, Falamaki C. Microsyst. Technol., 2019, 25(10): 3643.

doi: 10.1007/s00542-018-4278-3     URL    
[50]
Liu R X, Wang N Q, Kamili F, Sarioglu A F. Lab a Chip, 2016, 16(8): 1350.

doi: 10.1039/C6LC00209A     URL    
[51]
Wang N Q, Liu R X, Asmare N, Chu C H, Sarioglu A F. Lab a Chip, 2019, 19(19): 3292.

doi: 10.1039/C9LC00597H     URL    
[52]
Tang W L, Tang D Z, Ni Z H, Xiang N, Yi H. Anal. Chem., 2017, 89(5): 3154.

URL     pmid: 28264567
[53]
Tang W L, Fan N, Yang J Q, Li Z, Zhu L Y, Jiang D, Shi J P, Xiang N. Microfluid. Nanofluidics, 2019, 23(3): 42.

doi: 10.1007/s10404-019-2205-2     URL    
[54]
Kong C, Hu M J, Weerakoon-Ratnayake K M, Witek M A, Dathathreya K, Hupert M L, Soper S A. Anal., 2020, 145(5): 1677.

doi: 10.1039/C9AN01802F     URL    
[55]
Han K H, Han A, Frazier A B. Biosens. Bioelectron., 2006, 21(10): 1907.

doi: 10.1016/j.bios.2006.01.024     URL     pmid: 16529922
[56]
Iqbal S M A, Butt N Z. SN Appl. Sci., 2019, 1(10): 1290.

doi: 10.1007/s42452-019-1327-1     URL    
[57]
Panwar J, Roy R. Microelectron. Eng., 2019, 215: 111010.

doi: 10.1016/j.mee.2019.111010     URL    
[58]
Brazey B, Cottet J, Bolopion A, van Lintel H, Renaud P, Gauthier M. Lab a Chip, 2018, 18(5): 818.

doi: 10.1039/C7LC01344B     URL    
[59]
Reale R, de Ninno A, Businaro L, Bisegna P, Caselli F. Microfluid. Nanofluidics, 2018, 22(4): 41.

doi: 10.1007/s10404-018-2055-3     URL    
[60]
Reale R, de Ninno A, Businaro L, Bisegna P, Caselli F. Lab a Chip, 2019, 19(10): 1818.

doi: 10.1039/C9LC00071B     URL    
[61]
Yang D H, Ai Y. Lab a Chip, 2019, 19(21): 3609.

doi: 10.1039/C9LC00819E     URL    
[62]
Honrado C, McGrath J S, Reale R, Bisegna P, Swami N S, Caselli F. Anal. Bioanal. Chem., 2020, 412(16): 3835.

doi: 10.1007/s00216-020-02497-9     URL     pmid: 32189012
[63]
Zhang Y, Zhao Y, Chen D Y, Wang K, Wei Y C, Xu Y, Huang C J, Wang J B, Chen J. Anal., 2019, 144(3): 1008.

doi: 10.1039/C8AN02100G     URL    
[64]
Yang X N, Chen Z F, Miao J, Cui L W, Guan W H. Biosens. Bioelectron., 2017, 98: 408.

URL     pmid: 28711027
[65]
Zhou Y, Yang D H, Zhou Y N, Khoo B L, Han J, Ai Y. Anal. Chem., 2018, 90(1): 912.

doi: 10.1021/acs.analchem.7b03859     URL     pmid: 29172457
[66]
Ren X, Ghassemi P, Strobl J S, Agah M. Biomicrofluidics, 2019, 13(4): 044103.

URL     pmid: 31341524
[67]
Yang D H, Zhou Y, Zhou Y N, Han J, Ai Y. Biosens. Bioelectron., 2019, 133: 16.

doi: 10.1016/j.bios.2019.03.002     URL     pmid: 30903937
[68]
Zhao Y, Chen D Y, Li H, Luo Y N, Deng B, Huang S B, Chiu T K, Wu M H, Long R, Hu H, Wang J B, Chen J. Biosens. Bioelectron., 2013, 43: 304.

doi: 10.1016/j.bios.2012.12.035     URL     pmid: 23337259
[69]
Liu Y, Wang K, Sun X H, Chen D Y, Wang J B, Chen J. Microfluid. Nanofluidics, 2020, 24(6): 45.

doi: 10.1007/s10404-020-02350-6     URL    
[70]
Barabino G A, Platt M O, Kaul D K. Annu. Rev. Biomed. Eng., 2010, 12(1): 345.

doi: 10.1146/annurev-bioeng-070909-105339     URL    
[71]
Piagnerelli M, Boudjeltia K Z, Vanhaeverbeek M, Vincent J L. Applied Physiology in Intensive Care Medicine. Berlin, Heidelberg: Springer, 2009.229.
[72]
Fedosov D A, Dao M, Karniadakis G E, Suresh S. Ann. Biomed. Eng., 2014, 42(2): 368.

doi: 10.1007/s10439-013-0922-3     URL     pmid: 24419829
[73]
Tomaiuolo G. Biomicrofluidics, 2014, 8(5): 051501.

URL     pmid: 25332724
[74]
Lee G Y H, Lim C T. Trends Biotechnol., 2007, 25(3): 111.

doi: 10.1016/j.tibtech.2007.01.005     URL     pmid: 17257698
[75]
Mahesh K, Varma M M, Sen P. J. Micromech. Microeng., 2019, 29(11): 115001.

doi: 10.1088/1361-6439/ab38fc     URL    
[76]
Luo J K, Chen C M, Li Q. Electrophoresis, 2020, 41(16/17): 1450.

doi: 10.1002/elps.v41.16-17     URL    
[77]
Petchakup C, Tay H M, Li K H H, Hou H W. Lab a Chip, 2019, 19(10): 1736.

doi: 10.1039/C9LC00250B     URL    
[78]
Subramaniam S, Ahmed U, Benerjee S, Jain P, Chowdhury P. 11th International Conference on Communication Systems & Networks. Bengaluru, India. IEEE, 2019.829.
[79]
Zhang Y, Wang S Y, Chen J, Yang F, Li G Y. BioChip J., 2020, 14(2): 185.

doi: 10.1007/s13206-020-4207-2     URL    
[80]
Gawad S, Henschkel M, Leung-Ki Y, Iuzzolino R, Schild L, Lerch P, Renaud P. 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings. Lyon, France. IEEE, 2000.297.
[81]
Cheung K, Gawad S, Renaud P. Cytom. Part A, 2005, 65A(2): 124.

doi: 10.1002/(ISSN)1552-4930     URL    
[82]
Bilican I, Guler M T, Serhatlioglu M, Kirindi T, Elbuken C. Sensor Actuat. B: Chem., 2020, 307: 127531.

doi: 10.1016/j.snb.2019.127531     URL    
[83]
Kim B J, Lee Y S, Zhbanov A, Yang S. Anal., 2019, 144(9): 3144.

doi: 10.1039/C8AN02135J     URL    
[84]
Honrado C, Ciuffreda L, Spencer D, Ranford-Cartwright L, Morgan H. J. R. Soc. Interface., 2018, 15(147): 20180416.

doi: 10.1098/rsif.2018.0416     URL     pmid: 30333248
[85]
Tang L J, Liu J Q, Hong W, Wang T, Wang X L, Chen X, Yang B, Yang C S. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems( MEMS). Las Vegas, NV, USA. IEEE, 2017.1300.
[86]
Cooper J, Ding Y, Song J Z, Zhao K J. Nat. Protoc., 2017, 12(11): 2342.

doi: 10.1038/nprot.2017.099     URL     pmid: 29022941
[87]
Raillon C, Che J, Thill S, Duchamp M, Desbiolles B X E, Millet A, Sollier E, Renaud P. Cytom. Part A, 2019, 95(10): 1085.

doi: 10.1002/cyto.a.v95.10     URL    
[88]
Ruzycka M, Cimpan M R, Rios-Mondragon I, Grudzinski I P. J. Nanobiotechnology, 2019, 17: 71.

doi: 10.1186/s12951-019-0492-0     URL     pmid: 31133019
[89]
Parker M S, Barnes M. J. Appl. Bacteriol., 1967, 30(2): 299.

doi: 10.1111/j.1365-2672.1967.tb00300.x     URL     pmid: 4864319
[90]
Haandbæk N, With O, Bürgel S C, Heer F, Hierlemann A. Lab a Chip, 2014, 14(17): 3313.

doi: 10.1039/C4LC00576G     URL    
[91]
Haandbæk N, Bürgel S C, Heer F, Hierlemann A. Lab Chip, 2014, 14(2): 369.

doi: 10.1039/c3lc50866h     URL     pmid: 24264643
[92]
Claudel J, Alves de Araujo A L, Nadi M, Kourtiche D. Sensors, 2019, 19(15): 3366.

doi: 10.3390/s19153366     URL    
[93]
Mernier G, Hasenkamp W, Piacentini N, Renaud P. Sensor Actuat. B: Chem., 2012, 170: 2.

doi: 10.1016/j.snb.2010.10.050     URL    
[94]
Zhao W H, Tian S L, Huang L, Liu K, Dong L J. Electrophoresis, 2020, 41(16/17): 1433.

doi: 10.1002/elps.v41.16-17     URL    
[95]
Xu X Y, Akay A, Wei H L, Wang S Q, Pingguan-Murphy B, Erlandsson B E, Li X J, Lee W, Hu J, Wang L, Xu F. Proc. IEEE, 2015, 103(2): 236.

doi: 10.1109/JPROC.2014.2378776     URL    
[96]
Minero G A S, Wagler P F, Oughli A A, McCaskill J S. RSC Adv., 2015, 5(65): 52321.

doi: 10.1039/C5RA90057C     URL    
[97]
Guo D, Hildebrandt I J, Prins R M, Soto H, Mazzotta M M, Dang J, Czernin J, Shyy J Y J, Watson A D, Phelps M, Radu C G, Cloughesy T F, Mischel P S. PNAS, 2009, 106(31): 12932.

doi: 10.1073/pnas.0906606106     URL     pmid: 19625624
[98]
Hedayatipour A, Aslanzadeh S, McFarlane N. Biosens. Bioelectron., 2019, 143: 111600.

doi: 10.1016/j.bios.2019.111600     URL     pmid: 31479988
[99]
Wang R J, Xu Y, Liu H T, Peng J L, Irudayaraj J, Cui F Y. Biomed. Microdevices, 2017, 19(2): 34.

doi: 10.1007/s10544-017-0167-2     URL     pmid: 28432530
[100]
Nguyen N V, Jen C P. Biosens. Bioelectron., 2018, 121: 10.

URL     pmid: 30189335
[101]
Furniturewalla A, Chan M, Sui J Y, Ahuja K, Javanmard M. Microsystems Nanoeng., 2018, 4: 20.

doi: 10.1038/s41378-018-0019-0     URL    
[102]
Nguyen N V, Yeh J H, Jen C P. BioChip J., 2018, 12(3): 208.

doi: 10.1007/s13206-018-2302-4     URL    
[103]
Abbasi U, Chowdhury P, Subramaniam S, Jain P, Muthe N, Sheikh F, Banerjee S, Kumaran V. Sci. Rep., 2019, 9: 18583.

URL     pmid: 31819075
[104]
Talukder N, Furniturewalla A, Le T, Chan M, Hirday S, Cao X N, Xie P F, Lin Z T, Gholizadeh A, Orbine S, Javanmard M. Biomed. Microdevices, 2017, 19(2): 36.

doi: 10.1007/s10544-017-0161-8     URL     pmid: 28432532
[1] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[2] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[5] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[6] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[7] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[8] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[9] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[10] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[11] 赵旭, 王克青, 李博, 李长青, 林雨青*. 微电极制备、表面修饰及活体/单细胞电分析应用[J]. 化学进展, 2017, 29(10): 1173-1183.
[12] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[13] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[14] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[15] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.