English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 906-916 DOI: 10.7536/PC191223 前一篇   后一篇

• 综述 •

木基炭微纳功能骨架

卢芸1,**(), 李景鹏3, 张燕2, 仲国瑞2, 刘波1, 王慧庆2,**()   

  1. 1. 中国林业科学研究院木材工业研究所 北京 100091
    2. 合肥工业大学化学与化工学院高分子系 合肥 230009
    3. 国家林业和草原局竹子研究开发中心 杭州 310012
  • 收稿日期:2019-12-26 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 卢芸, 王慧庆
  • 基金资助:
    国家自然科学基金项目(31870535); 国家自然科学基金项目(51603059)

Wood-Derived Carbon Functional Materials

Yun Lu1,**(), Jingpeng Li3, Yan Zhang2, Guorui Zhong2, Bo Liu1, Huiqing Wang2,**()   

  1. 1. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
    2. Department of Polymer, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
    3. China National Bamboo Research Center, Hangzhou 310012, China
  • Received:2019-12-26 Online:2020-07-24 Published:2020-07-10
  • Contact: Yun Lu, Huiqing Wang
  • About author:
    ** e-mail: (Yun Lu);
  • Supported by:
    National Natural Science Foundation of China(31870535); National Natural Science Foundation of China(51603059)

木基炭骨架能精准遗传木材经过长期进化所形成的层次分明、构造有序的天然多级结构,这种炭骨架由于特殊的层级结构特征,在生物模板、传感器、吸油材料和纳米材料制备基材等方面有巨大应用潜力。同时还可作为一类新型的骨架进行微纳功能修饰和结构二次调控,在海水淡化、污水清理、能源存储与转化等诸多领域具有极为广阔的应用空间。本文首先介绍了木材的基本结构,综述了木材热解过程中结构的变化,介绍了近年来木材炭化骨架作为新型功能材料的前沿应用,对应用过程中亟待解决的问题进行了剖析,并对木基炭骨架材料未来的研究方向进行了展望。本综述旨在重新对木材层级结构进行功能化开发,从而推动木材在功能材料领域的蓬勃发展。

The wood-based carbon skeleton is derived from natural wood after pyrolysis. The wood-derived carbon inherits the hierarchical structural of the pore morphology and connectivity formed by the long-term evolution of wood. Due to its special structure, the carbon skeleton has huge application potential in the aspects of biological templates, sensors, oil absorbent, nanomaterial preparation, etc. The hierarchical wood-derived carbon skeleton could be further treated as a new type of scaffold, after the micro-/nano- scale modification and secondary regulation of the pores, it has extremely broad application in many innovative fields such as seawater desalination, environmental remediation, energy storage materials and electrochemical catalysis. This article first introduces the hierarchical structure of wood, describes several important stages of structural changes in the process of the wood pyrolysis, and then summarizes the application of wood-derived carbon skeleton as advanced materials in recent years. We also discuss the pros and cons of the functional carbon in the application, and prospect the future research works of wood-based carbon materials. The purposes of this review are to re-examine and functionally develop the wood hierarchical structure and to promote the development of wood as advanced materials.

Contents

1 Introduction

2 The pyrolysis process of wood

3 Porous wood carbon skeleton as bio-template

4 Functional utilization of micro- and nano- hierarchical channels in wood carbon skeleton

4.1 Highly compressible carbon sponge

4.2 The wood matrix derived microreactor

4.3 Water transpiration and desalination of marine

5 Wood-derived carbon skeleton in energy materials

6 Conclusion and outlook

()
图1 (a)裸子植物和被子植物木材的三切面示意图[23];(b)木材多层级结构示意图[5]
Fig.1 (a) Schematic of wood structure and definition of the three main planes used to describe both gymnosperm and angiosperm specimens[23];(b) illustration of the hierarchical structure of wood showing different levels[5]
图2 木材热解过程中的结构演变,左列:X射线散射图,显示木材中的纤维素纤维和木材热解得到的非结晶碳、乱层碳和高结晶石墨的散射图。右列:透射电子显微照片(上三图像)和拉曼光谱(下两个图,表明热解过程中纤维结构转变为均匀的非晶态材料,高温下碳微晶逐渐生长);中间列:纳米结构变化示意图(方块尺寸约20 nm),表明纤维结构的损失、石墨乱层微片的形成及石墨晶体生长[1]
Fig.2 Structure evolution during pyrolysis of wood. Left column: X-ray scattering patterns showing in succession the scattering from crystalline cellulose fibrils in wood, and from amorphous structureless carbon, turbostratic carbon, and highly crystalline graphite, respectively, obtained from the pyrolysis of wood. The scattering angle range is from 0.2°~27° at a wavelength λ = 0.154 nm, covering the small-angle (SAXS) and part of the wide-angle (WAXS) region. Right column: Transmission electron micrographs (upper three images) and Raman spectra (lower two graphs, x-axis is the Raman shift in cm-1), demonstrating the transformation of a fibrillar structure into a homogeneous, amorphous material during pyrolysis and the growing carbon crystallites at high temperatures. Middle column: Sketch of the proposed nanostructure (size of the box is about 20 nm) illustrating the loss of fibrillar structure, the formation of tur-bostratic graphite platelets and their crystal growth[1]
图3 (a)通过渗透木基多孔炭前驱体制备具有木材组织形态的SiC材料及复合材料的合成路线[23];(b)由Si蒸气渗透松木炭制备的多孔bioSiC的微观结构[24]
Fig.3 (a) Different routes to biomorphic SiC materials and composites by infiltration of a porous carbon precursor[23];(b) microstructure of porous bioSiC obtained from Si vapour infiltrated-pine char[24]
图4 木基各向异性炭海绵制备示意图[28]
Fig.4 Graphical illustration of the design and fabrication process of the fragile wood carbon and the highly compressible wood carbon sponge[28]
图5 低温炭化的高弹木基骨架。(a)~(c)木基炭骨架压缩前后的图像;(d)最大应变分别为20%、40%和60%的木基炭骨架的应力-应变曲线。(e)循环压缩下最大应力为40%的木基炭骨架的应力-应变曲线。(f)50次压缩循环后木基炭骨架的高度稳定性,最大应变为40%。插图为对木基炭骨架的反复压缩
Fig.5 Mechanical compressibility and elasticity of wood-based scaffolds. (a)~(c) Photographs of the wood-based scaffold before compression (a), under compression (b), and after release (c). (d) Stress-strain curves of wood-based scaffolds with different maximum strains of 20%, 40% and 60%, respectively. (e) Stress-strain curve of wood-based scaffolds under cyclic com-pression with a maximum strain of 40%. (f) Height retention of the wood-based scaffold during fifty cycles with a maximum strain of 40%. The inset illustrates the repeated compression of the wood-based scaffold.
图6 (a)木基炭骨架微波加热装置的示意图;(b)加热过程以及从材料发出的光的图像;(c)在≈1400 K下进行4 s的3D热处理,在C-木材基体内制备金属氧化物纳米颗粒的示意图[29]
Fig.6 (a) Schematic of the microwave heating setup. (b) Image of the heating process taking place and the resulting light emitted from the material. (c) Schematic of metal oxide nanoparticles fabricated within the C-wood substrate by the 3D heating treatment at ≈1400 K for 4 s[29]
图7 木基炭微反应器内的废水净化示意图。(a),(b)木基炭微反应器处理有机污染废水的性能研究[30]
Fig.7 Model of the catalytic degradation process in Mn3O4/TiO2/wood matrix as a microreactor; (a) Initial flux and rejection rate of wood matrix with different treatment for filtering MB solution; (b) Flux ratio of Mn3O4/TiO2/wood matrix filtration for 180 min without H2O2 and treated by five times intermittent H2O2 rinse[30]
图8 用CNT涂覆的柔性木膜制成的太阳能蒸气发生器的示意图[33]
Fig.8 Graphical illustration of the flexible solar steam generator made from CNT-coated flexible wood membrane[33]
图9 (a)树木中孔道结构示意图。(b)沿着树木生长方向的切割,可制出超大尺寸的木块。(c)通过对纵向木块表面炭化,将木块作为高性能太阳能蒸汽产生装置。(d)可以漂浮在海水上的大型炭化木块的图片[39]。通过界面蒸发实现的海水淡化原理图:(e)(左)自动再生式太阳能蒸发器,以及(右)蒸发器中多向传质的示意图[38]
Fig.9 (a) Graphical illustration of the natural tree. (b) Longitudinal wood blocks can be prepared in extremely large scale from natural wood by cutting along the tree growth direction. (c) Reverse-tree design of artificial tree as a high-performance solar steam generation device by surface carbonizing the longitudinal wood block. (d) Photo images of a large, longitudinal surface carbonized wood block that can float on seawater, suggesting its potential application in solar steam generation and water purification in a low-cost and scalable manner[39]. (e) Schematic showing (left) our self-regenerating solar evaporator design, and (right) multidirectional mass transfer in the evaporator[38]
图10 木基储能装置的技术路线:(a)木材和木材衍生碳可分别作隔膜和电极材料;(b)木材衍生的炭可作为3D集电器;(c)木材可作为构建3D厚电极的牺牲模板[40]
Fig.10 (a) Graphical illustration of the design concept and construction process of the all-wood-structured supercapacitor. (b) Graphical illustration of the design concept of ultrathick 3D electrode using a 3D conductive carbon framework as current collector. (c) The illustration of fabrication procedure of ultrathick LCO cathode by wood templating[40]
图11 3D木基超厚电极的优点[40]
Fig.11 The advantages of wood-based 3D thick electrode[40]
图12 MgO@WC/Li复合材料的制备(a)木材/Li复合材料的后续合成示意图;(b)Li金属在木材中沉积的示意图[45]
Fig.12 Fabrication process of the MgO@WC/Li composite. (a) A schematic of the material design and the subsequent synthesis from natural wood, to WC, MgO@WC, and, finally, to MgO@WC/Li composite within 20 mAh·cm-2 Li. (b)The cor-responding SEM images of wood, WC, MgO@WC and MgO@WC/Li composite, which indicates Li deposited into the WC channels completely[45]
图13 (a~c)作为3D集电体的木炭:(a)通过将LFP浆料渗透到木炭的通道中而得到的3D电极;(b)与传统的厚电极相比3D电极的低变形性;(c)循环性能。(d~f)全木制超级电容器:(d)活性炭阳极和MnO2@WC阴极的形态;(e)阳极、隔板、阴极和全木制超级电容器的数字图像;(f)阳极、阴极和全木制超级电容器的电化学性能[40]
Fig.13 A 3D conductive carbon frameworks as Current Collectors: (a) Morphology and microstructure; (b) Structure stability; (c) Cycling performance of the ultrathick LFP-CF electrode and the conventional thick LFP electrode at 2 mA·cm-2. (d) SEM images for the wood carbon/MnO2 (MnO2@WC) composite. (e) Pictures of the AWC anode, wood separator, MnO2@WC cathode and the all-wood structured all-solid state asymmetric supercapacitor. (f) Electrochemical performances of the anode, cathode and the all-wood structured all-solid state asymmetric supercapacitor[40]
图14 Li-O2电池的炭化及活化后的木材/钌阴极示意图。 此阴极材料整齐排列的开孔结构在炭化和活化处理后保存完好。炭化和活化处理后的木炭骨架作为3D集电器可快速传输电子,并且作为高表面积的基质用于锚定Ru纳米颗粒。多层级的开孔微通道具有低曲折度,有助于锂离子传输和氧气扩散[47]
Fig.14 Schematic diagram of the Li-O2 batteries with the CA-wood/Ru cathode. The CA-wood/Ru cathode has open and aligned microchannels which are well preserved after carbonization and activation. The porous framework of carbonized and activated wood acts as a 3D current collector for fast electron transport and a high-surface-area substrate for Ru nanoparticles anchoring. The hierarchically porous, open, and low-tortuosity microchannels allow unimpeded Li-ion transport and oxygen gas diffusion[47]
[1]
Paris O , Fritz-Popovski G , Van Opdenbosch D , Zollfrank C . Adv. Funct. Mater., 2013,23(36):4408. doi: 10.1002/adfm.v23.36 http://doi.wiley.com/10.1002/adfm.v23.36
[2]
Antal M J , Grønli M . Ind. Eng. Chem. Res., 2003,42(8):1619. doi: 10.1021/ie0207919 https://pubs.acs.org/doi/10.1021/ie0207919
[3]
Kercher A K , Nagle D C . Carbon, 2003,41(1):3. doi: 10.1016/S0008-6223(02)00262-2 ae922af7-7e86-4fd8-bb63-45d081d4a3ee http://www.sciencedirect.com/science/article/pii/S0008622302002622
[4]
Evert R F . Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development. John Wiley & Sons, 2006.
[5]
Berglund L A , Burgert I . Advanced Materials, 2018,30(19):1704285. doi: 10.1002/adma.v30.19 http://doi.wiley.com/10.1002/adma.v30.19
[6]
Brandt B , Zollfrank C , Franke O , Fromm J , Göken M , Durst K . Acta Biomater., 2010,6(11):4345. doi: 10.1016/j.actbio.2010.05.026 https://www.ncbi.nlm.nih.gov/pubmed/20621631

URL     pmid: 20621631
[7]
Paris O , Zollfrank C , Zickler G A . Carbon, 2005,43(1):53. doi: 10.1016/j.carbon.2004.08.034 46a548ea-4a59-4244-b09b-a3557e105c46 http://www.sciencedirect.com/science/article/pii/S0008622304005214
[8]
Zollfrank C , Fromm J . Holzforschung, 2009,63(2):248.
[9]
Mochida I , Ku C H , Korai Y . Carbon, 2001,39(3):399. doi: 10.1016/S0008-6223(00)00137-8 592fb5be-df0c-4315-aea8-4c2bd626265c http://www.sciencedirect.com/science/article/pii/S0008622300001378
[10]
Bacon R , Tang M M . Carbon, 1964,2(3):221. doi: 10.1016/0008-6223(64)90036-3 https://linkinghub.elsevier.com/retrieve/pii/0008622364900363
[11]
Peng S J , Shao H L , Hu X C . J. Appl. Polym. Sci., 2003,90(7):1941. doi: 10.1002/(ISSN)1097-4628 http://doi.wiley.com/10.1002/%28ISSN%291097-4628
[12]
Kim D Y , Nishiyama Y , Wada M , Kuga S , Okanoet T . Holzforschung, 2001,55(5):521. doi: 10.1515/HF.2001.084 http://www.degruyter.com/view/j/hfsg.2001.55.issue-5/hf.2001.084/hf.2001.084.xml
[13]
Greil P , Lifka T , Kaindl A . J. Eur. Ceram. Soc., 1998,18(14):1961. doi: 10.1016/S0955-2219(98)00156-3 https://linkinghub.elsevier.com/retrieve/pii/S0955221998001563
[14]
Ishimaru K , Hata T , Bronsveld P , Imamura Y . J. Mater. Sci., 2007,42(8):2662. doi: 10.1007/s10853-006-1361-4 http://link.springer.com/10.1007/s10853-006-1361-4
[15]
Tang M M , Bacon R . Carbon, 1964,2(3):211. doi: 10.1016/0008-6223(64)90035-1 https://linkinghub.elsevier.com/retrieve/pii/0008622364900351
[16]
Byrne C E , Nagle D C . Carbon, 1997,35(2):259. doi: 10.1016/S0008-6223(96)00136-4 https://linkinghub.elsevier.com/retrieve/pii/S0008622396001364
[17]
Byrne C E , Nagle D C . Carbon, 1997,35(2):267. doi: 10.1016/S0008-6223(96)00135-2 https://linkinghub.elsevier.com/retrieve/pii/S0008622396001352
[18]
Windeisen E , Strobel C , Wegener G . Wood Sci. Technol., 2007,41(6):523. doi: 10.1007/s00226-007-0146-5 beb44bf9-ded3-43b7-aa6f-d4f41fd9376c http://www.springerlink.com/content/xt4w6l218m2713k2/
[19]
Gosselink R J A , Krosse A M A , Van der Putten J C , Van der KolkJ C , Klerk-Engels B , Van Dam J E G . Ind. Crop. Prod., 2004,19(1):3. doi: 10.1016/S0926-6690(03)00037-2 https://linkinghub.elsevier.com/retrieve/pii/S0926669003000372
[20]
Nishimiya K , Hata T , Imamura Y , Ishihara S . J. Wood Sci., 1998,44(1):56. doi: 10.1007/BF00521875 https://jwoodscience.springeropen.com/articles/10.1007/BF00521875
[21]
Cheng H M , Endo H , Okabe T , Saito K , Zheng G B . J. Porous Mat., 1999,6(3):233. doi: 10.1023/A:1009684014651 http://link.springer.com/10.1023/A:1009684014651
[22]
Zickler G A , Schöberl T , Paris O . Philos. Mag., 2006,86(10):1373. doi: 10.1080/14786430500431390 http://www.tandfonline.com/doi/abs/10.1080/14786430500431390
[23]
Ramírez-Rico J , Martínez-Fernandez J , Singh M . Int. Mater. Rev., 2017,62(8):465. doi: 10.1080/09506608.2017.1354429 https://www.tandfonline.com/doi/full/10.1080/09506608.2017.1354429
[24]
Vogli E , Sieber H , Greil P . J. Eur. Ceram. Soc., 2002,22(14/15):2663. doi: 10.1016/S0955-2219(02)00131-0 https://linkinghub.elsevier.com/retrieve/pii/S0955221902001310
[25]
周明(Zhou M), 王成毓(Wang C Y . 科技导报 (Science & Technology Review), 2016,34(19):111. doi: 10.3981/j.issn.1000-7857.2016.19.019 57115ee3-a6ef-44f2-97fa-cf646dc337da http://www.kjdb.org/CN/abstract/abstract13922.shtml
[26]
张荻(Zhang D), 张书倩(Zhang S Q), 张旺(Zhang W), 顾佳俊(Gu J J), 刘庆雷(Liu Q L), 苏慧兰(Su H L) . 中国材料进展 (Materials China), 2018,37(10):765.
[27]
Lu L L , Lu Y Y , Xiao Z J , Zhang T W , Zhou F , Ma T , Ni Y , Yao H B , Yu S H , Cui Y . Adv.Mater., 2018,30(20):1706745.
[28]
Chen C J , Song J W , Zhu S Z , Li Y J , Kuang Y D , Wan J Y , Kirsch D , Xu L S , Wang Y B , Gao T T , Wang Y L , Huang H , Gan W T , Gong A , Li T , Xie J , Hu L B . Chem, 2018,4(3):544. doi: 10.1016/j.chempr.2017.12.028 https://linkinghub.elsevier.com/retrieve/pii/S2451929417305302
[29]
Zhong G , Xu S M , Chen C J , Jacob Kline D J , Giroux M , Pei Y , Jiao M L , Liu D P , Mi R Y , Xie H , Yang B , Wang C , Zachariah M R , Hu L B . Adv. Funct. Mater., 2019,29(48):1904282.
[30]
Liu G G , Chen D Y , Liu R K , Yu Z , Jiang J L , Liu Y , Hu J B , Chang S S . ACS Sustain. Chem. Eng., 2019,7(7):6782.
[31]
Sinha R K . Modern Plant Physiology. CRC Press, 2004.
[32]
Xue G B , Liu K , Chen Q , Yang P H , Li J , Ding T P , Duan J J , Qi B , Zhou J . ACS Appl. Mater Inter., 2017,9(17):15052.
[33]
Chen C J , Li Y J , Song J W , Yang Z , Kuang Y D , Hitz E , Jia C , Gong A , Jiang F , Zhu J Y , Yang B , Xie J , Hu L B . Adv. Mater., 2017,29(30):1701756.
[34]
Liu K K , Jiang Q S , Tadepalli S , Raliya R , Biswas P , Naik R R , Singamaneni S . ACS Appl. Mater. Inter., 2017,9(8):7675. doi: 10.1021/acsami.7b01307 https://pubs.acs.org/doi/10.1021/acsami.7b01307
[35]
Wang Z , Yan Y T , Shen X P , Jin C D , Sun Q F , Li H Q . J. Mater. Chem. A, 2019,7(36):20706.
[36]
Kartal S N , Green Iii F , Clausen C A . Int. Biodeter. Biodegr., 2009,63(4):490. doi: 10.1016/j.ibiod.2009.01.007 https://linkinghub.elsevier.com/retrieve/pii/S0964830509000213
[37]
Yang X , Cranston E D . Chem. Mater., 2014,26(20):6016. doi: 10.1021/cm502873c https://pubs.acs.org/doi/10.1021/cm502873c
[38]
Kuang Y D , Chen C J , He S M , Hitz E M , Wang Y L , Gan W T , Mi R Y , Hu L B . Adv. Mater., 2019,31(23):1900498. doi: 10.1002/adma.v31.23 https://onlinelibrary.wiley.com/toc/15214095/31/23
[39]
Liu H , Chen C J , Chen G , Kuang Y D , Zhao X P , Song J W , Jia C , Xu X , Hitz E , Xie H , Wang S , Jiang F , Li T , Li Y J , Gong A , Yang R G , Das S , Hu L B . Adv. Energy Mater., 2018,8(8):1701616. doi: 10.1002/aenm.v8.8 http://doi.wiley.com/10.1002/aenm.v8.8
[40]
Chen C J , Hu L B . Acc. Chem. Res., 2018,51(12):3154. doi: 10.1021/acs.accounts.8b00391 https://www.ncbi.nlm.nih.gov/pubmed/30299086

URL     pmid: 30299086
[41]
Li Y J , Fu K K , Chen C J , Luo W , Gao T T , Xu S M , Dai J Q , Pastel G , Wang Y B , Liu B Y , Song J W , Chen Y N , Yang C P , Hu L B . ACS Nano, 2017,11(5):4801. https://www.ncbi.nlm.nih.gov/pubmed/28485923

URL     pmid: 28485923
[42]
Zhang Y , Luo W , Wang C W , Li Y J , Chen C J , Song J W , Dai J Q , Hitz E M , Xu S M , Yang C P , Wang Y B , Hu L B . Proc. Natl. Acad. Sci. U. S. A., 2017,114(14):3584. doi: 10.1073/pnas.1618871114 https://www.ncbi.nlm.nih.gov/pubmed/28320936

URL     pmid: 28320936
[43]
Chen C J , Zhang Y , Li Y J , Dai J Q , Song J W , Yao Y G , Gong Y H , Kierzewski L , Xie J , Hu L B . Energy Environ. Sci., 2017,10(2):538.
[44]
Chen C J , Zhang Y , Li Y J , Kuang Y D , Song J W , Luo W , Wang Y B , Yao Y G , Pastel G , Xie J , Hu L B . Adv. Energy Mater., 2017,7(17):1700595.
[45]
Jin C B , Sheng O W , Lu Y , Luo J M , Yuan H D , Zhang W K , Huang H , Gan Y P , Xia Y , Liang C , Zhang J , Tao X Y . Nano Energy, 2018,45:203.
[46]
Wang Y M , Lin X J , Liu T , Chen H , Chen S , Jiang Z J , Jiang L , Huang J L , Liu M L . Advanced Functional Materials, 2018,28(52):1806207.
[47]
Song H Y , Xu S M , Li Y J , Dai J Q , Gong A , Zhu M W , Zhu C L , Chen C J , Chen Y N , Yao Y G , Liu B Y , Song J W , Pastel G , Hu L B . Adv. Energy Mater., 2018,8(4):1701203.
[48]
Huang J L , Zhao B T , Liu T , Mou J R , Jiang Z J , Jiang L , Li H X , Liu M L . Advanced Functional Materials, 2019,29(31):1902255.
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[3] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[4] 熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 微纳结构柔性压力传感器的制备及应用[J]. 化学进展, 2019, 31(6): 800-810.
[5] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[6] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[7] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[8] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[9] 金亨到, 王立, 俞豪杰, 童荣柏, 周卫东. 主链或侧链含二茂铁的聚合物的合成和应用[J]. 化学进展, 2016, 28(1): 51-57.
[10] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[11] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.
[12] 张晓敏, 张力, 贺雪英, 吴俊涛. 冷冻干燥法制备聚合物基新型材料及其应用[J]. 化学进展, 2014, 26(11): 1832-1839.
[13] 曹锦珠, 王志祥, 陈润锋, 李欢欢, 郑超, 黄维. 1,8-位修饰杂芴类有机光电功能材料的合成与应用[J]. 化学进展, 2013, 25(08): 1350-1361.
[14] 李昂, 张春玲*, 孙国恩, 牟建新*. POMSS配位化合物[J]. 化学进展, 2012, 24(07): 1309-1323.
[15] 马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红. 无机质子导体的研究进展[J]. 化学进展, 2011, 23(0203): 441-448.
阅读次数
全文


摘要

木基炭微纳功能骨架