English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 917-926 DOI: 10.7536/PC191209 前一篇   后一篇

• 综述 •

用于光催化分解硫化氢制氢的金属硫化物

淡猛1,2, 蔡晴2, 向将来1,2, 李筠连1,2, 于姗1,2, 周莹1,2,**()   

  1. 1. 西南石油大学油气藏地质及开发工程国家重点实验室 成都 610500
    2. 西南石油大学新能源与材料学院 成都 610500
  • 收稿日期:2019-12-13 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 周莹
  • 基金资助:
    国家自然科学基金项目(U1862111); 中国科学院“西部之光”计划、四川省国际科技合作与交流项目(2017HH0030); 西南石油大学研究生科研创新基金项目(2019cxzd009)

Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide

Meng Dan1,2, Qing Cai2, Jianglai Xiang1,2, Junlian Li1,2, Shan Yu1,2, Ying Zhou1,2,**()   

  1. 1. China State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
    2. School of New Energy and Material, Southwest Petroleum University, Chengdu 610500, China
  • Received:2019-12-13 Online:2020-07-24 Published:2020-07-10
  • Contact: Ying Zhou
  • About author:
  • Supported by:
    National Natural Science Foundation of China(U1862111); Chinese Academic of Science “Light of West China” Program, the Sichuan Provincial International Cooperation Project(2017HH0030); Graduate Student Scientific Research Innovative Project of SWPU(2019cxzd009)

硫化氢(H2S)作为一种剧毒、恶臭的强腐蚀性气体,广泛来源于人类活动和自然界,对动植物生存和环境都具有较大的危害。光催化分解H2S制氢是一种理想的H2S处理技术,可以同时实现H2S的转移和清洁能源氢气的产生。近年来,金属硫化物由于其优异的可见光响应、恰当的能带结构和对H2S有高的稳定性,因此被广泛地应用于光催化分解H2S制氢。本文对近年来国内外金属硫化物驱动H2S资源化利用制氢领域取得的重要进展进行了概述和总结,探讨了不同反应媒介下光催化分解H2S制氢机制;特别关注了一些为实现高效稳定光催化H2S资源化利用制氢的优异调控策略;最后,对H2S资源化利用的挑战和前景进行了展望。

Hydrogen sulfide(H2S), owing to the extremely toxic, malodorous and corrosive nature, is a detrimental and undesirable environmental pollutant widely generated in the petrochemical industry. How to handle H2S effectively and convert it into highly-valued products is vital. Photocatalysis is one of the most ideal routes to realize the resource utilization of H2S. Recently, metal sulphides are widely used as desirable photocatalysts for H2 production from waste H2S due to their remarkable visible-light response, proper band structure and strong resistance against H2S poisoning. Here, we summarize the current status, and challenges of this field. The photocatalytic H2S splitting mechanism are overviewed in different reaction medium. Particularly, promising strategies for highly efficient photocatalytic conversion of H2S are systematically discussed, which is aimed to inspire researchers interested in this field. Finally, some challenges in the H2S splitting process and their future research directions are outlined.

Contents

1 Introduction

2 Photocatalytic H2 production from waste H2S over metal sulfides

2.1 Binary metal sulfides

2.2 Ternary and solid-solution metal sulfides

2.3 Metal sulfide composites

3 Conclusion and outlook

()
图1 (a) 半导体光催化材料分解H2S基本原理;(b) 含硫氧化物在S-H2O体系中电位-pH变化图[33]
Fig.1 (a) Principle of photocatalytic H2S decomposition over a photocatalyst; (b) Potential-pH diagram for a S-H2O system[33]. Copyright 2019, Elsevier.
图2 常见半导体光催化剂能带结构与H2S分解氧化还原电位对比图
Fig.2 Relationship between band structure of semiconductor and redox potentials of H2S decomposition
表1 金属硫化物光催化分解H2S制氢性能对比
Table 1 Comparison of hydrogen evolution over reported metal sulfide photocatalysts
图3 Pt/CdS在不同醇胺溶液中可见光光催化H2S分解性能图,反应条件:反应介质:100 mL醇胺溶液;H2S浓度: 0.30 M;催化剂用量: 0.025 g;光源:300 W Xe灯(带λ > 420 nm滤光片)[50]
Fig.3 Photocatalytic H2 production over Pt/CdS(0.20 wt% Pt) in different alkanolamine solutions. Reaction conditions: volume, 100 mL; concentration of H2S, 0.30 M; catalyst, 0.025 g; light source, 300-W Xe lamp with a cutoff filter(λ > 420 nm)[50]. Copyright 2008, Elsevier
图4 (a) Bi2S3 的SEM图;(b)光催化H2S分解产氢性能图[51]
Fig.4 (a) SEM images of the Bi2S3 samples; (b) Hydrogen evolution using Bi2S3 samples for H2S decomposition[51]. Copyright 2014, Royal Society of Chemistry
图5 (a) MnS样品在Na2S-Na2SO3 (0.1 M-0.6 M)溶液中的EIS电化学阻抗谱;(b) MnS 光解 H2S 制氢机理示意图[54]
Fig.5 (a) EIS of MnS sample in the 0.1 M Na2S and 0.6 M Na2SO3; (b) Schematic representation of the mechanism for photo-splitting H2S by MnS[54]. Copyright 2017, Journal of Inorganic Materials
图6 ZnIn2S4可能的生成机制图[43]
Fig.6 Schematic illustration of the possible growth mechanism of ZnIn2 S 4 [ 43 ] . Copyright 2011, Royal Society of Chemistry
图7 (a) Fe-Zn-S[52];(b) Fe-Co-Zn-S[53]固溶体光解H2S制氢性能图,数据为在大气压下298K每10 min测定的,反应容器中包含0.2 g溶解于50 mL pH=11的碱性H2S溶液中的光催化
Fig.7 The volume of hydrogen gas photocatalytically produced as a function of irradiation time over (a) Fe-Zn-S[52]. Copyright 2018, Elsevier; (b) Fe-Co-Zn-S solid solutions (data were recorded every 10 min under atmospheric pressure at 298 K; the reaction chamber contained 0.2 g photocatalyst powder dispersed in a 50 mL H2S alkaline solution at pH=11)[53]. Copyright 2019, Elsevier
图8 Cd x In1- x S能带结构与光催化机理图[48]
Fig.8 The energy band structure and photocatalytic process of splitting H2S over Cd x In1- x S solid solutions[48]. Copyright 2019, John Wiley and Sons
图9 MnS/In2S3复合金属硫化物光解H2S制氢性能[32]
Fig.9 Comparison of the photocatalytic activity of MnS/In2S3 samples[32]. Reaction conditions: reaction solution, Na2SO3-Na2S(0.6 mol/L-0.1 mol/L) aqueous solution(50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter(λ> 420 nm). Copyright 2017, Elsevier
图10 (a) MnS/In2S3_0.7[32];(b) In2S3/CuS长时间光催化H2S循环性能,反应条件:反应介质:50 mL Na2S-Na2SO3 (0.1 M/0.6 M) 水溶液;H2S浓度:3 M;催化剂用量:2.5 mg; 光源:300 W Xe灯(带λ > 420 nm滤光片)[55]
Fig.10 (a) Long-term cycling experiments over MnS/In2S3_0.7[32]. Copyright 2017, Elsevier. (b) In2S3/CuS composite[55]. Copyright 2018, Elsevier. Reaction conditions: reaction solution, Na2S-Na2SO3 (0.1 M/0.6 M) aqueous solution (50 mL); concentration of H2S, 3 M; catalyst,2.5 mg; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
图11 (a) MnS/In2S3复合物在Na2S/Na2SO3反应媒介中光催化H2S分解机制[32]; (b) MnS/In2S3/PdS光催化H2S分解性能图;(c) 长期光催化H2S制氢测试,反应条件:Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) 水溶液(50 mL),H2S浓度 3 M,光源: 带λ > 420 nm滤光片的300 W Xe灯[56]
Fig.11 (a) Photocatalytic process of splitting H2S over MnS/In2S3 composites in Na2S/Na2SO3 reaction solution[32]. Copyright 2017, Elsevier. (b) Photocatalytic H2 production, (c)Long-team stability of over MnS/In2S3/PdS samples[56]. Copyright 2019, Elsevier. Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
图12 (a) MnS/In2S3/PdS复合物紫外-可见漫反射光谱图[56];(b) MnS/(In x Cu1- x )2S3光催化H2S分解性能;(c) MnS/(In x Cu1- x )2S3光催化H2S循环测试;(d) MnS/(In x Cu1- x )2S3复合物紫外-可见漫反射光谱图[47]
Fig.12 (a) UV-vis DRS of MnS/In2S3/PdS samples[56]; (b) Photocatalytic H2 production performance; (c)Cycling test; (d) UV-vis DRS of MnS/(In x Cu1- x )2S3 samples[47]. Copyright 2019, Elsevier. Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
图13 (a) MnS/In2S3/MoS2光催化H2S分解性能;(b) MnS/In2S3/MoS2复合物形成机制[57]
Fig.13 (a)Photocatalytic H2 production; (b) Formation mechanism of MnS/In2S3/MoS2 composites[57]. Copyright 2019, Elsevier Reaction conditions: reaction solution, Na2SO3-Na2S (0.6 mol/L-0.1 mol/L) aqueous solution (50 mL); concentration of H2S, 3 M; light source, 300 W Xe lamp with a cut off filter (λ> 420 nm)
图14 金属硫化光催化H2S制氢性能对比图(插图为高效金属硫化物的构建)
Fig.14 Photocatalytic H2 production from H2S splitting over metal sulfides(insert is the corresponding construction of metal sulfides for highly efficient photocatalytic H2 production from H2S)
[1]
Kimura H . Mol. Neurobiol., 2002,26(1):13. doi: 10.1385/MN:26:1:013 b5cb2979-b341-4e12-9c94-fa4dd1451e96 http://www.springerlink.com/content/m7147830766q2420/
[2]
Kabil O , Banerjee R J . Biol. Chem., 2010,285(29):21903. doi: 10.1074/jbc.R110.128363 http://www.jbc.org/lookup/doi/10.1074/jbc.R110.128363
[3]
Khan A A , Schuler M M , Prio M G , Yong S , Coppock R W , Florence L Z , Lillie L E . Toxicol. Appl. Pharm., 1990,103(3):482. doi: 10.1016/0041-008X(90)90321-K https://linkinghub.elsevier.com/retrieve/pii/0041008X9090321K
[4]
Zhang X , Tang Y , Qu S , Da J , Hao Z . ACS Catal., 2015,5(2):1053. doi: 10.1021/cs501476p https://pubs.acs.org/doi/10.1021/cs501476p
[5]
魏国齐(Wei G Q), 谢增业(Xie Z Y), 宋家荣(Song J R), 杨威(Yang W), 王志宏(Wang Z H), 李剑(Li J), 王东良(Wang D L), 李志生(Li Z S), 谢武仁(Xie W R) . 石油勘探与开发 (Petrol. Explor. Dev.), 2015,42(6):2.
[6]
于燕秋(Yu Y Q), 毛红艳(Mao H Y), 裴爱霞(Pei A X) . 天然气工业 (Nat. Gas Ind.), 2011,31(3):22. doi: 10.3787/j.issn.1000-0976.2011.03.006 3d2c8fe6-cdf7-4fbe-9d71-85738af851e6 http://www.trqgy.cn/CN/abstract/abstract11928.shtml
[7]
Ma W G , Wang H , Yu W , Wang X M , Xu Z Q , Zong X , Li C . Angew. Chem. Int. Ed., 2018,57(13):3473. doi: 10.1002/anie.201713029 http://doi.wiley.com/10.1002/anie.201713029
[8]
Reverberi A P , Klemeš J J , Varbanov P S , Fabiano B . J. Clean. Prod., 2016,136:72. doi: 10.1016/j.jclepro.2016.04.139 https://linkinghub.elsevier.com/retrieve/pii/S0959652616304280
[9]
Baykara S Z , Figen E H , Kale A , Veziroglu T N . Int. J. Hydrogen Energy, 2007,32(9):1246. doi: 10.1016/j.ijhydene.2006.07.021 https://linkinghub.elsevier.com/retrieve/pii/S0360319906003673
[10]
Lagas J A , Borsboom J , Berben P H . 1988,86(41):68.
[11]
Monnery W D , Svrcek W Y , Behie L A . Can. J. Chem. Eng., 1993,71(5):711.
[12]
Zhang M , Guan J , Tu Y C , Chen S M , Wang Y , Wang S H , Yu L , Ma C , Deng D H , Bao X H . Energy Environ. Sci., 2020,doi: 10.1039/C9EE03231B. doi: 10.1039/C2EE22486K https://www.ncbi.nlm.nih.gov/pubmed/25035710

URL     pmid: 25035710
[13]
Bhirud A P , Sathaye S D , Waichal R P , Ambekar J D , Park C J , Kale B B . Nanoscale, 2015,7(11):5023. doi: 10.1039/c4nr06435f https://www.ncbi.nlm.nih.gov/pubmed/25697910

URL     pmid: 25697910
[14]
Subramanian E , Baeg J O , Lee S M , Moon S J , Kong K J . Int. J. Hydrogen Energy, 2008,33(22):6586. doi: 10.1016/j.ijhydene.2008.07.016 https://linkinghub.elsevier.com/retrieve/pii/S0360319908008392
[15]
Gurunathan K , Baeg J O , Lee S M , Subramanian E , Moon S J , Kong K J . Int. J. Hydrogen Energy, 2008,33(11):2646. doi: 10.1016/j.ijhydene.2008.03.018 https://linkinghub.elsevier.com/retrieve/pii/S0360319908002942
[16]
Qureshi N M , Shinde M D , Baeg J O , Kale B B . New J. Chem., 2017,41(10):4000. doi: 10.1039/C6NJ04012H http://xlink.rsc.org/?DOI=C6NJ04012H
[17]
Kale B B , Baeg J O , Apte S K , Sonawane R S , Naik S D , Patil K R . J. Mater. Chem., 2007,17(40):4297.
[18]
Patil S S , Patil D R , Apte S K , Kulkarni M V , Ambekar J D , Park C J , Gosavi S W , Kolekar S S , Kale B B . Appl. Catal. B: Environ., 2016,190:75. doi: 10.1016/j.apcatb.2016.02.068 https://linkinghub.elsevier.com/retrieve/pii/S0926337316301655
[19]
Zong X , Han J , Seger B , Chen H , Lu G , Li C , Wang L . Angew. Chem. Int. Ed., 2014: 53(17):4399. doi: 10.1002/anie.201400571 http://doi.wiley.com/10.1002/anie.201400571
[20]
Zong X , Chen H , Seger B , Pedersen T , Dargusch M S , McFarland E W , Li C , Wang L . Energy Environ. Sci., 2014,7(10):3347. doi: 10.1039/C4EE01503G http://xlink.rsc.org/?DOI=C4EE01503G
[21]
Luo T , Bai J , L Ji , Zeng Q , Ji Y, Qiao L, Li X, Zhou. B . Environ. Sci. Technol., 2017,51(21):12965. doi: 10.1021/acs.est.7b03116 https://www.ncbi.nlm.nih.gov/pubmed/28971667

URL     pmid: 28971667
[22]
Qiao L , Bai J , Luo T , Li J , Zhang Y , Xia L , Zhou T , Xu Q , Zhou B . Appl. Catal. B: Environ., 2018,238:491. doi: 10.1016/j.apcatb.2018.07.051 https://linkinghub.elsevier.com/retrieve/pii/S0926337318306593
[23]
Ma W G , Han J F , Yu W , Yang D , Wang H , Zong X , Li C . ACS Catal., 2016,6(9):6198.
[24]
Low J , Yu J , Jaroniec M , Wageh S , Al-Ghamdi A A . Adv. Mater., 2017,29(20):1601694. doi: 10.1002/adma.v29.20 http://doi.wiley.com/10.1002/adma.v29.20
[25]
Li X , Yu J , Jaroniec M . Chem. Soc. Rev., 2016,45(9):2603. doi: 10.1039/c5cs00838g https://www.ncbi.nlm.nih.gov/pubmed/26963902

URL     pmid: 26963902
[26]
Wan W , Zhang R , Ma M , Zhou Y . J. Mater. Chem. A, 2018,6(3):754. doi: 10.1039/C7TA09227J http://xlink.rsc.org/?DOI=C7TA09227J
[27]
Hoffmann M R , Martin S T , Choi W , Bahnemann D W . Chem. Rev., 1995,95(1):69. doi: 10.1021/cr00033a004 https://pubs.acs.org/doi/abs/10.1021/cr00033a004
[28]
Asahi R , Morikawa T , Ohwaki T , Aoki K , Taga Y . Science, 2001,293(5528):269. doi: 10.1126/science.1061051 https://www.ncbi.nlm.nih.gov/pubmed/11452117

URL     pmid: 11452117
[29]
Schneider J , Matsuoka M , Takeuchi M , Zhang J , Horiuchi Y , Anpo M , Bahnemann D W . Chem. Rev., 2014,114(19):9919. doi: 10.1021/cr5001892 https://www.ncbi.nlm.nih.gov/pubmed/25234429

URL     pmid: 25234429
[30]
Kudo A , Miseki Y . Chem. Soc. Rev., 2009,38(1):253. doi: 10.1039/b800489g https://www.ncbi.nlm.nih.gov/pubmed/19088977

URL     pmid: 19088977
[31]
Jang J S , Kim H G , Borse P H , Lee J S . Int. J. Hydrogen Energy, 2007,32(18):4786. doi: 10.1016/j.ijhydene.2007.06.026 https://linkinghub.elsevier.com/retrieve/pii/S0360319907003709
[32]
Dan M , Zhang Q , Yu S , Prakash A , Lin Y , Zhou Y . Appl. Catal. B: Environ., 2017,217:530. doi: 10.1016/j.apcatb.2017.06.019 https://linkinghub.elsevier.com/retrieve/pii/S0926337317305623
[33]
Bedoya-Lora F E , Hankin A , Kelsall G H . Electrochim. Acta, 2019,314:40. doi: 10.1016/j.electacta.2019.04.119 https://linkinghub.elsevier.com/retrieve/pii/S0013468619308072
[34]
Steudel R . Top Curr. Chem., 2003,231:99.
[35]
Steudel R . Top Curr. Chem., 2003,231:127.
[36]
Pandit V U , Arbuj S S , Mulik U P , Kale B B . Environ. Sci. Technol., 2014,48(7):4178. doi: 10.1021/es405150p https://www.ncbi.nlm.nih.gov/pubmed/24597841

URL     pmid: 24597841
[37]
Chaudhari N S , Warule S S , Dhanmane S A , Kulkarni M V , Valant M , Kale B B . Nanoscale, 2013,5(19):9383. doi: 10.1039/c3nr02975a e5255d89-b329-4606-a7ab-aaf19a3fb115 http://dx.doi.org/10.1039/c3nr02975a
[38]
Kale B B , Baeg J O , Yoo J S , Lee S M , Lee C W , Moon S J , Chang H . Can. J. Chem., 2005,83(6/7):527. doi: 10.1139/v05-036 http://www.nrcresearchpress.com/doi/10.1139/v05-036
[39]
Kanade K G , Baeg J O , Kong K J , Kale B B , Lee S M , Moon S J , Lee C W , Yoon S . Int. J. Hydrogen Energy, 2008,33(23):6904. doi: 10.1016/j.ijhydene.2008.08.062 https://linkinghub.elsevier.com/retrieve/pii/S0360319908011257
[40]
Kale B B , Baeg J O , Kong K J , Moon S J , Lee S M , So W W . Int. J. Energy Res., 2010,34(5):404. doi: 10.1002/er.1645 http://doi.wiley.com/10.1002/er.1645
[41]
Naman S A , Grätzel M . J. Photochem. Photobiol. A: Chem., 1994,77(2):249. doi: 10.1016/1010-6030(94)80050-2 https://linkinghub.elsevier.com/retrieve/pii/1010603094800502
[42]
Kale B B , Baeg J O , Lee S M , Chang H , Moon S J , Lee C W . Adv. Funct. Mater., 2006,16(10):1349. doi: 10.1002/(ISSN)1616-3028 http://doi.wiley.com/10.1002/%28ISSN%291616-3028
[43]
Chaudhari N S , Bhirud A P , Sonawane R S , Nikam L K , Warule S S , Rane V H , Kale B B . Green Chem., 2011,13(9):2500. doi: 10.1039/c1gc15515f 0876b96b-c1cc-4d44-bc47-519b756f7e8b http://dx.doi.org/10.1039/c1gc15515f
[44]
Bhirud A , Chaudhari N , Nikam L , Sonawane R , Patil K , Baeg J O , Kale B B . Int. J. Hydrogen Energy, 2011,36(18):11628. doi: 10.1016/j.ijhydene.2011.06.061 https://linkinghub.elsevier.com/retrieve/pii/S0360319911015333
[45]
Kale B B , Baeg J O , Kong K J , Moon S J , Nikam L K , Patil K R . J. Mater. Chem., 2011,21(8):2624.
[46]
Liu X , Liang X , Wang P , Huang B , Qin X , Zhang X , Dai Y . Appl. Catal. B: Environ., 2017,203:282. doi: 10.1016/j.apcatb.2016.10.040 https://linkinghub.elsevier.com/retrieve/pii/S0926337316308037
[47]
Dan M , Wei S , Doronkin D E , Li Y , Zhao Z , Yu S , Grunwaldt J D , Lin Y , Zhou Y . Appl. Catal. B: Environ., 2019,243:790. doi: 10.1016/j.apcatb.2018.11.016 https://linkinghub.elsevier.com/retrieve/pii/S092633731831066X
[48]
Dan M , Prakash A , Cai Q , Xiang J , Ye Y , Li Y , Yu S , Lin, Y , Zhou Y . Sol. RRL, 2019,3(1):1800237. doi: 10.1002/solr.v3.1 http://doi.wiley.com/10.1002/solr.v3.1
[49]
Borgarello E , Kalyanasundaram K , Grätzel M , Pelizzetti E . Helv. Chim. Acta, 1982,65(1):243. doi: 10.1002/hlca.19820650123 http://doi.wiley.com/10.1002/hlca.19820650123
[50]
Ma G , Yan H , Shi J , Zong X , Lei Z , Li C . J. Catal, 2008,260(1):134. doi: 10.1016/j.jcat.2008.09.017 https://linkinghub.elsevier.com/retrieve/pii/S0021951708003503
[51]
Kawade U V , Panmand R P , Sethi Y A , Kulkarni, M V , Apte S K , Naik S D , Kale B B . RSC Adv., 2014,4(90):49295. doi: 10.1039/C4RA07143C http://xlink.rsc.org/?DOI=C4RA07143C
[52]
Lashgari M , Ghanimati M . J. Hazard. Mater., 2018,345:10. doi: 10.1016/j.jhazmat.2017.10.062 https://www.ncbi.nlm.nih.gov/pubmed/29128722

URL     pmid: 29128722
[53]
Lashgari M , Ghanimati M . Chem. Eng. J., 2019,358:153. doi: 10.1016/j.cej.2018.10.011 https://linkinghub.elsevier.com/retrieve/pii/S1385894718319521
[54]
淡猛(Dan M), 张骞(Zhang Q), 钟云倩(Zhong Y Q), 周莹(Zhou Y) . 无机材料学报 (J. Inorg. Mater.), 2017,32(12):1308. doi: 10.15541/jim20170104 9edf2dc2-bacf-49e9-b5b5-5768e0fb084d http://www.jim.org.cn/CN/abstract/abstract13721.shtml
[55]
Prakash A , Dan M , Yu S , Wei S , Li Y , Wang F , Zhou Y . Sol. Energy Mater. Sol. C., 2018,180:205. doi: 10.1016/j.solmat.2018.03.011 https://linkinghub.elsevier.com/retrieve/pii/S0927024818301144
[56]
Li Y , Yu S , Doronkin D E , Wei S , Dan M , Wu F , Ye L , Grunwaldt J D , Zhou Y . J. Catal., 2019,373:48. doi: 10.1016/j.jcat.2019.03.021 https://linkinghub.elsevier.com/retrieve/pii/S0021951719301290
[57]
Dan M , Xiang J , Wu F , Yu S , Cai Q , Ye L , Ye Y , Zhou Y . Appl. Catal. B: Environ., 2019,256:117870. doi: 10.1016/j.apcatb.2019.117870 https://linkinghub.elsevier.com/retrieve/pii/S0926337319306162
[58]
Li Z , Zhang Q , Dan M , Guo Z , Zhou Y . Mater. Lett., 2017,201:118. doi: 10.1016/j.matlet.2017.05.002 https://linkinghub.elsevier.com/retrieve/pii/S0167577X1730719X
[59]
Wang F , Wei S , Zhang Z , Patzke G R , Zhou Y . Phys. Chem. Chem. Phys., 2016,18(9):6706. doi: 10.1039/c5cp06835e https://www.ncbi.nlm.nih.gov/pubmed/26875868

URL     pmid: 26875868
[60]
Wei S , Wang F , Dan M , Zeng K , Zhou Y . Appl. Surf. Sci., 2017,422:990.
[61]
Wang F , Li P , Wei S , Guo J , Dan M , Zhou Y . Appl. Surf. Sci., 2018,445:568. doi: 10.1016/j.apsusc.2018.03.198 https://linkinghub.elsevier.com/retrieve/pii/S0169433218308857
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[4] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[5] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[6] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[7] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[8] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[15] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.