English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 882-894 DOI: 10.7536/PC191019 前一篇   后一篇

• 综述 •

刺激响应性聚合物微球的制备、性能及应用

穆蒙1,2, 宁学文1, 罗新杰1, 冯玉军1,**()   

  1. 1. 四川大学高分子研究所 高分子材料工程国家重点实验室 成都 610065
    2. 中国科学院成都有机化学研究所 成都 610041
  • 收稿日期:2019-10-29 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 冯玉军
  • 基金资助:
    国家自然科学基金项目(21273223); 国家自然科学基金项目(U1762218)

Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres

Meng Mu1,2, Xuewen Ning1, Xinjie Luo1, Yujun Feng1,**()   

  1. 1. State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
    2. Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
  • Received:2019-10-29 Online:2020-07-24 Published:2020-07-10
  • Contact: Yujun Feng
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21273223); National Natural Science Foundation of China(U1762218)

作为典型的软物质材料,聚合物微球因其独特的微尺度、扩散性、渗透性及可修饰性而广泛应用于催化、药物传输、生物传感、微反应器、化学分离以及涂层材料等领域。为满足苛刻应用环境对微球的性能要求,相继出现了各类环境响应性聚合物微球。针对近年来刺激响应性微球的研究进展,本文综述了聚合物响应性微球的制备策略及形貌,以及对温度、pH、磁场、离子强度、光和CO2敏感的响应性聚合物微球体系;并讨论了不同类型刺激响应微球的响应机理及应用,分析了其存在的不足,展望了其应用前景和发展方向。

Polymer microspheres are considered to be the typical soft materials which are widely used in catalysis, drug delivery, biosensing, microreactors, chemical separation and coating fields because of their unique properties, such as the micro-scale, diffusion, penetration and ease of modification. In order to meet the requirement for use in hostile environments, stimuli-responsive microspheres whose properties significantly change in response to the minor variation of environmental conditions have been developed. This paper reviews the diverse fabrication strategies and morphologies of the responsive polymer microspheres which are sensitive to temperature, pH, magnetic field, ionic strength, light and CO2 stimulus, respectively. The relevant stimuli-response mechanisms, applications and the demerits of the responsive microspheres are summarized and discussed, then the potential applications and future prospects of the sensitive microspheres are also analyzed.

Contents

1 Introduction

2 Stimuli-responsive Polymer Microspheres

2.1 Fabrication of polymer microspheres

2.2 Temperature-responsive polymer microspheres

2.3 pH-responsive polymer microspheres

2.4 Magnetic field-responsive polymer microspheres

2.5 Ionic strength-responsive polymer microspheres

2.6 Light-responsive polymer microspheres

2.7 CO2-responsive polymer microspheres

3 Conclusion and outlook

()
图1 不同形貌的聚合物微球
Fig.1 Schematic representation of polymer microspheres with diverse morphologies
表1 聚合物微球的不同制备方式
Table 1 The fabrication strategies for polymer microspheres
图2 温度调控微球的催化性能转变;(a)和(b)为Au@PNIPAM Yolk微球的制备及其作为温度响应型催化剂的应用示意图;(c)不同温度的还原反应过程中,反应体系紫外吸收峰的变化[60]
Fig.2 The temperature-responsive change in the catalytic performance of microspheres. (a) and (b) represent the scheme for the fabrication of microspheres, and the catalytic performance of microspheres at different temperature, re-spectively; (c) The change in UV spectra of the reaction products during the reduction reaction, at different temper-atures[60]
图3 温度诱导荧光染料2,6-NDS的释放。(a)温度诱导(P2VPH+/S O 3 2 ? )-PNIPAM微球释放染料的示意图;(b)温度诱导微球分散性的变化;(c)不同温度下微球释放2,6-NDS的荧光光谱[62]
Fig.3 The temperature-induced release of the fluorescent dye loaded in particles. (a) Scheme for the temperature-induced release of 2,6-NDS loaded in (P2VPH+/S O 3 2 ? )-PNIPAM particles; (b) The change in dispersity of particles system in response to temperature; (c) The fluorescence spectra of 2,6-NDS released from particles at different temperatures[62]
图4 pH敏感微球用于调控Pickering乳液。(a)PTBAEMA微球的制备及pH响应示意图;(b)pH诱导的微球尺寸变化;(c)和(d)为pH调控Pickering乳液的形成及瓦解[68]
Fig.4 Fig.4 pH-sensitive microspheres used for regulating Pickering emulsion. (a) Scheme for the preparation and the pH response of PTBAEMA microspheres; (b) pH induced change in particle size; (c) and (d) represent pH regulated formation/breakup transition of Pickering emulsion[68]
图5 (a)微流控法制备磁响应微球示意图;(b)和(c)为外界磁场诱导空心球分散性的转变;(d)空心微球的磁化曲线[77]
Fig.5 (a)Schematic preparation of magnetic responsive microspheres via microfluidic protocol;(b) and(c) represent the magnetic responsive transition of microspheres dispersions;(d) the magnetization curves of hollow microspheres[77]
图6 CO2调控聚合物的乳化(a)响应性PS乳液的制备及CO2响应示意图;(b)CO2调控PS乳液的分散/团聚转变[100]
Fig.6 CO2-regulated emulsification of polymer materials. (a) Scheme for the fabrication and CO2-responsiveness of PS latex; (b) Snapshot of CO2-induced dispersion/precipitation transition of PS latex[100]
图7 CO2调控的选择性染料吸附及释放。(a)P(AM-DEAEMA)微球的制备。(b)CO2响应的染料吸附及释放[104]
Fig.7 The selective adsorption and release of dye, regulated by CO2. (a) Scheme for the fabrication of P(AM-DEAEMA) microspheres. (b) Scheme for the selective adsorption and release of dye in response to C O 2 [ 104 ]
[1]
Seaton A , Donaldson K . Lancet, 2005,365:923. doi: 10.1016/S0140-6736(05)71061-8 https://www.ncbi.nlm.nih.gov/pubmed/15766981

URL     pmid: 15766981
[2]
Whitesides G M . Small, 2005,1:172. doi: 10.1002/smll.200400130 https://www.ncbi.nlm.nih.gov/pubmed/17193427

URL     pmid: 17193427
[3]
Li K , Liu B . Chem. Soc. Rev., 2014,43:6570. doi: 10.1039/c4cs00014e https://www.ncbi.nlm.nih.gov/pubmed/24792930

URL     pmid: 24792930
[4]
Landfester K , Montenegro R , Scherf U , Güntner R , Asawapirom U , Patil S , Neher D , Kietzke T . Adv. Mater., 2002,14:651. doi: 10.1002/(ISSN)1521-4095 http://doi.wiley.com/10.1002/%28ISSN%291521-4095
[5]
Rozenberg B A , Tenne R . Prog. Polym. Sci., 2008,33:40. doi: 10.1016/j.progpolymsci.2007.07.004 https://linkinghub.elsevier.com/retrieve/pii/S0079670007001001
[6]
Ujjwal R R , Sharma T , Sangwai J S , Ojha U . J. Appl. Polym. Sci., 2017,134:44648.
[7]
Kadir M A , Kim S J , Ha E J , Cho H Y , Kim B S , Choi D , Lee S G , Kim B G , Kim S W , Paik H J . Adv. Funct. Mater., 2012,22:4032. doi: 10.1002/adfm.v22.19 http://doi.wiley.com/10.1002/adfm.v22.19
[8]
Jiang X E , Musyanovych A , Röcker C , Landfester K , Mailänder V , Nienhaus G U . Nanoscale, 2011,3:2028. doi: 10.1039/c0nr00944j https://www.ncbi.nlm.nih.gov/pubmed/21409242

URL     pmid: 21409242
[9]
Sun Y G , Xia Y N . Science, 2002,298:2176. doi: 10.1126/science.1077229 https://www.ncbi.nlm.nih.gov/pubmed/12481134

URL     pmid: 12481134
[10]
Bing X , Kozlovskaya V , Kharlampieva E . J. Mater. Chem. B, 2017,5:9. doi: 10.1039/c6tb02746f https://www.ncbi.nlm.nih.gov/pubmed/32263432

URL     pmid: 32263432
[11]
Valencia P M , Farokhzad O C , Karnik R , Langer R . Nature Nanotech., 2012,7:623. doi: 10.1038/nnano.2012.168 https://doi.org/10.1038/nnano.2012.168
[12]
Morton S W , Herlihy K P , Shopsowitz K E , Deng Z J , Chu K S , Bowerman C J , Desimone J M , Hammond P T . Adv. Mater., 2013,25:4707. doi: 10.1002/adma.201302025 https://www.ncbi.nlm.nih.gov/pubmed/23813892

URL     pmid: 23813892
[13]
Asua J M . Prog. Polym. Sci., 2002,27:1283. doi: 10.1016/S0079-6700(02)00010-2 https://linkinghub.elsevier.com/retrieve/pii/S0079670002000102
[14]
Tovmachenko O G , Graf C , van den Heuvel D J , van Blaaderen A, Gerritsen H C . Adv. Mater., 2006,18:91. doi: 10.1002/(ISSN)1521-4095 http://doi.wiley.com/10.1002/%28ISSN%291521-4095
[15]
Wang D Y , Rogach A L , Caruso F . Nano Lett., 2002,2:857. doi: 10.1021/nl025624c https://pubs.acs.org/doi/10.1021/nl025624c
[16]
Peng M , Wang H , Chen Y . Mater. Lett., 2008,62:1535. doi: 10.1016/j.matlet.2007.09.017 https://linkinghub.elsevier.com/retrieve/pii/S0167577X07009305
[17]
Zhang K , Chen H , Chen X , Chen Z , Cui Z , Yang B . Macromol. Mater. Eng., 2003,288:380. doi: 10.1002/mame.200390031 http://doi.wiley.com/10.1002/mame.200390031
[18]
Takekoh R , Li W H , Burke N A , Stöver H D . J. Am. Chem. Soc., 2006,128:240. doi: 10.1021/ja055901s https://www.ncbi.nlm.nih.gov/pubmed/16390152

URL     pmid: 16390152
[19]
Li X , Du P , Liu P . RSC Adv., 2014,4:56323. doi: 10.1039/C4RA05066E http://xlink.rsc.org/?DOI=C4RA05066E
[20]
Joncheray T J , Audebert P , Schwartz E , Jovanovic A V , Ishaq O , Chávez J L , Pansu R , Duran R S . Langmuir, 2006,22:8684. https://www.ncbi.nlm.nih.gov/pubmed/17014105

URL     pmid: 17014105
[21]
Xie B Q , Shi H F , Liu G M , Zhou Y , Wang Y , Zhao Y , Wang D J . Chem. Mater., 2008,20:3099. doi: 10.1021/cm7034618 https://pubs.acs.org/doi/10.1021/cm7034618
[22]
Liu W J , Chen G H , He G H , He Z C , Qian Z . J. Mater. Sci., 2011,46:6758. doi: 10.1007/s10853-011-5632-3 http://link.springer.com/10.1007/s10853-011-5632-3
[23]
Li G L , Yang X Y , Wang B , Wang J Y , Yang X L . Polymer, 2008,49:3436. doi: 10.1016/j.polymer.2008.06.004 9e57536b-87f7-4478-9507-8559e66f925d http://www.sciencedirect.com/science/article/pii/S0032386108004941
[24]
Xing Z M , Wang C L , Yan J , Zhang L , Li L , Zha L S . Soft Matter, 2011,7:7992. doi: 10.1039/c1sm05925d 4ac93635-7da3-460e-88d4-ebb75013fca5 http://dx.doi.org/10.1039/c1sm05925d
[25]
Zhang B , Sun S , Wu P . Soft Matter, 2013,9:1678. doi: 10.1039/C2SM27355A http://xlink.rsc.org/?DOI=C2SM27355A
[26]
Zhang B , Tang H , Wu P . Polym. Chem., 2014,5:5967. doi: 10.1039/C4PY00653D http://xlink.rsc.org/?DOI=C4PY00653D
[27]
Li G L , Tai C A , Neoh K G , Kang E T , Yang X . Polym. Chem., 2011,2:1368. doi: 10.1039/c1py00054c http://xlink.rsc.org/?DOI=c1py00054c
[28]
Chen L B , Zhang F , Wang C C . Small, 2009,5:621. doi: 10.1002/smll.200801154 https://www.ncbi.nlm.nih.gov/pubmed/19189322

URL     pmid: 19189322
[29]
Tu F , Lee D . J. Am. Chem. Soc., 2014,136:9999. doi: 10.1021/ja503189r c35ce08e-d0d4-4caa-8b93-61a8a955125f http://dx.doi.org/10.1021/ja503189r
[30]
Bing L , Wei W , Xiaozhong Q , Zhenzhong Y . Angew. Chem. Int. Ed., 2008,47:3973.
[31]
Roh K H , Martin D C , Lahann J . Nat. Mater., 2005,4:759. doi: 10.1038/nmat1486 https://www.ncbi.nlm.nih.gov/pubmed/16184172

URL     pmid: 16184172
[32]
Minhaz-Ul Haque M , Herrera N , Geng S Y , Oksman K . J. Appl. Polym. Sci., 2018,135:45961.
[33]
Pour Z S , Ghaemy M . Polym. Adv. Technol., 2016,27:1557.
[34]
Agrawal G , Agrawal R . Small, 2018,14:e1801724. doi: 10.1002/smll.201801724 https://www.ncbi.nlm.nih.gov/pubmed/30035853

URL     pmid: 30035853
[35]
Zhang J , Zhang M , Tang K , Verpoort F , Sun T . Small, 2014,10:32. doi: 10.1002/smll.201300287 https://www.ncbi.nlm.nih.gov/pubmed/23852653

URL     pmid: 23852653
[36]
Li Y X , Gao Y , Yang C . Chem. Commun., 2015,51:7721.
[37]
Boulares P A , Prager D A , Elsner C , Buchmeiser M R . J. Appl. Polym. Sci., 2009,112:2701.
[38]
Kikuchi A , Okano T . Prog. Polym. Sci., 2002,27:1165.
[39]
Jeong B , Gutowska A . Trends Biotechnol., 2002,20:305. doi: 10.1016/s0167-7799(02)01962-5 https://www.ncbi.nlm.nih.gov/pubmed/12062976

URL     pmid: 12062976
[40]
Nasir A , Kausar A , Younus A . Polym.-Plast. Technol. Eng., 2015,54:325. doi: 10.1080/03602559.2014.958780 http://www.tandfonline.com/doi/abs/10.1080/03602559.2014.958780
[41]
Mundargi R C , Babu V R , Rangaswamy V , Patel P , Aminabhavi T M . J. Controlled Release, 2008,125:193. doi: 10.1016/j.jconrel.2007.09.013 https://linkinghub.elsevier.com/retrieve/pii/S016836590700541X
[42]
Guterres S S , Beak R C R , Pohlmann A R . Braz. J. Phys., 2009,39:205. doi: 10.1590/S0103-97332009000200013 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-97332009000200013&lng=en&nrm=iso&tlng=en
[43]
Vu M T , Jeong Y L , Choi C , Nam J P , Son D H , Park J K , Kim W S , Kim M Y , Jang M K , Nah J W , Kim K J . Macromol. Res., 2010,18:1115. doi: 10.1007/s13233-010-1114-8 456de264-c11d-4f71-8c15-3c5b1e9bc0f1 http://www.springerlink.com/content/a701627215112617/
[44]
Sasaki Y , Konishi N , Kasuya M , Kohri M , Taniguchi T , Kishikawa K . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2015,482:68. doi: 10.1016/j.colsurfa.2015.04.019 https://linkinghub.elsevier.com/retrieve/pii/S0927775715003428
[45]
Nagao D , Yamada Y , Inukai S , Ishii H , Konno M , Gu S . Polymer, 2015,68:176. doi: 10.1016/j.polymer.2015.05.020 https://linkinghub.elsevier.com/retrieve/pii/S003238611500453X
[46]
Rao J P , Geckeler K E . Prog. Poly. Sci., 2011,36:887. doi: 10.1016/j.progpolymsci.2011.01.001 https://linkinghub.elsevier.com/retrieve/pii/S0079670011000232
[47]
Udagama R , Degrandi C E , Creton C , Graillat C , McKenna T L , Bourgeat L E . Macromolecules, 2011,44:2632. doi: 10.1021/ma200073d https://pubs.acs.org/doi/10.1021/ma200073d
[48]
Zhang Q , Han Y , Wang W , Song T , Chang J . J. Colloid Interface Sci., 2010,342:62. doi: 10.1016/j.jcis.2009.10.001 https://www.ncbi.nlm.nih.gov/pubmed/19889424

URL     pmid: 19889424
[49]
Narumi A , Kimura Y , Kawaguchi S . Colloid Polym. Sci., 2012,290:379. doi: 10.1007/s00396-011-2571-0 http://link.springer.com/10.1007/s00396-011-2571-0
[50]
Gao H , Tao J , Han B , Yong W , Du J , Liu Z , Zhang J . Polymer, 2004,45:3017. doi: 10.1016/j.polymer.2004.03.002 1d9d0d6a-83a7-4b36-97b5-b39f9d1725c5 http://www.sciencedirect.com/science/article/pii/S0032386104002071
[51]
Lemoine D , Préat V . J. Controlled Release, 1998,54:15. doi: 10.1016/S0168-3659(97)00241-1 https://linkinghub.elsevier.com/retrieve/pii/S0168365997002411
[52]
Akagi T , Kaneko T , Kida T , Akashi M . J. Controlled Release, 2005,108:226. doi: 10.1016/j.jconrel.2005.08.003 https://linkinghub.elsevier.com/retrieve/pii/S0168365905003573
[53]
Venckatesh R , Balachandaran K , Sivaraj R . Int. Nano Lett., 2012,2:15. doi: 10.1186/2228-5326-2-15 http://link.springer.com/10.1186/2228-5326-2-15
[54]
Schild H G . Prog. Polym. Sci., 1992,17:163. doi: 10.1016/0079-6700(92)90023-R https://linkinghub.elsevier.com/retrieve/pii/007967009290023R
[55]
Daisuke S , Chiaki K . Langmuir, 2014,30:7085. doi: 10.1021/la5017752 https://www.ncbi.nlm.nih.gov/pubmed/24881767

URL     pmid: 24881767
[56]
Sundararaman A , Stephan T , Grubbs R B . J. Am. Chem. Soc., 2008,130:12264. https://www.ncbi.nlm.nih.gov/pubmed/18722446

URL     pmid: 18722446
[57]
Heskins M , Guillet J E . J. Macromol. Sci. Chem., 1968,2:1441. doi: 10.1080/10601326808051910 http://www.tandfonline.com/doi/abs/10.1080/10601326808051910
[58]
Stober W , Fink A , Bohn E . J. Colloid Interface Sci., 1968,26:62. doi: 10.1016/0021-9797(68)90272-5 https://linkinghub.elsevier.com/retrieve/pii/0021979768902725
[59]
Zha L S , Zhang Y , Yang W L , Fu S K . Adv. Mater., 2002,14:1090. doi: 10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6 https://onlinelibrary.wiley.com/doi/10.1002/1521-4095(20020805)14:15<1090::AID-ADMA1090>3.0.CO;2-6
[60]
Wu S , Dzubiella J , Kaiser J , Drechsler M , Guo X , Ballauff M , Lu Y . Angew. Chem. Int. Ed., 2012,51:2229. doi: 10.1002/anie.201106515 http://doi.wiley.com/10.1002/anie.201106515
[61]
Owens D E , Jian Y , Fang J E , Slaughter B V , Chen Y H , Peppas N A . Macromolecules, 2007,40:7306. doi: 10.1021/ma071089x https://pubs.acs.org/doi/10.1021/ma071089x
[62]
Yin J , Hu J , Zhang G , Liu S . Langmuir, 2014,30:2551. https://www.ncbi.nlm.nih.gov/pubmed/24555801

URL     pmid: 24555801
[63]
Parasuraman D , Serpe M J . ACS Appl. Mater. Interfaces, 2011,3:2732. https://www.ncbi.nlm.nih.gov/pubmed/21682294

URL     pmid: 21682294
[64]
Katchalsky A . Experientia, 1949,5:319. doi: 10.1007/BF02172636 https://www.ncbi.nlm.nih.gov/pubmed/18138361

URL     pmid: 18138361
[65]
Dupin D , Fujii S , Armes S P , Reeve P , Baxter S M . Langmuir, 2006,22:3381. https://www.ncbi.nlm.nih.gov/pubmed/16548605

URL     pmid: 16548605
[66]
Gupta P , Vermani K , Garg S . Drug Discovery Today, 2002,7:569. https://www.ncbi.nlm.nih.gov/pubmed/12047857

URL     pmid: 12047857
[67]
Schmaljohann D . Adv. Drug Delivery Rev., 2006,58:1655. doi: 10.1016/j.addr.2006.09.020 bf8b5e40-664d-4f5a-a832-89f1b5916e41 https://linkinghub.elsevier.com/retrieve/pii/S0169409X06001839
[68]
Morse A J , Dupin D , Thompson K L , Armes S P , Ouzineb K , Mills P , Swart R . Langmuir, 2012,28:11733. https://www.ncbi.nlm.nih.gov/pubmed/22794126

URL     pmid: 22794126
[69]
Fujii S , Read E S , Binks B P , Armes S P . Adv. Mater., 2005,17:1014. doi: 10.1002/(ISSN)1521-4095 http://doi.wiley.com/10.1002/%28ISSN%291521-4095
[70]
Yang X , Chen L , Huang B , Bai F , Yang X . Polymer, 2009,50:3556. doi: 10.1016/j.polymer.2009.06.027 https://linkinghub.elsevier.com/retrieve/pii/S0032386109005254
[71]
Zheng P , Zhang W . J. Catal., 2007,250:324. doi: 10.1016/j.jcat.2007.06.030 https://linkinghub.elsevier.com/retrieve/pii/S002195170700262X
[72]
Li G , Liu G , Kang E T , Neoh K G , Yang X . Langmuir, 2008,24:9050. doi: 10.1021/la8010579 https://www.ncbi.nlm.nih.gov/pubmed/18605745

URL     pmid: 18605745
[73]
Ohno K , Mori C , Akashi T , Yoshida S , Tago Y , Tsujii Y , Tabata Y . Biomacromolecules, 2013,14:3453. doi: 10.1021/bm400770n https://www.ncbi.nlm.nih.gov/pubmed/23957585

URL     pmid: 23957585
[74]
Ahmad H , Nurunnabi M , Rahman M M , Kumar K , Tauer K , Minami H , Gafur M A . Colloids and Surfaces A: Physicochem. Eng. Aspects, 2014,459:39. doi: 10.1016/j.colsurfa.2014.06.038 https://linkinghub.elsevier.com/retrieve/pii/S0927775714005846
[75]
Molday R S , Yen S P , Rembaum A . Nature, 1977,268:437. doi: 10.1038/268437a0 https://www.ncbi.nlm.nih.gov/pubmed/302417

URL     pmid: 302417
[76]
Schutt W , Gruttner C , Teller J , Westphal F , Paulke B , Goetz P , Finck W . Artif. Organs, 2015,23:98. doi: 10.1046/j.1525-1594.1999.06278.x https://www.ncbi.nlm.nih.gov/pubmed/9950186

URL     pmid: 9950186
[77]
Wei J , Ju X J , Zou X Y , Xie R , Wang W , Liu Y M , Chu L Y . Adv. Funct. Mater., 2014,24:3312. doi: 10.1002/adfm.201303844 http://doi.wiley.com/10.1002/adfm.201303844
[78]
Wang Z , Zhang J , Li R , Chen J . J. Appl. Polym. Sci., 2014,131:40260.
[79]
Okahata Y , Lim H J . J. Am. Chem. Soc., 1984,106:4696.
[80]
Jiang M Y , Ju X J , Fang L , Liu Z , Yu H R , Jiang L , Wang W , Xie R , Chen Q , Chu L Y . ACS Appl. Mater. Interfaces, 2014,6:19405. https://www.ncbi.nlm.nih.gov/pubmed/25325533

URL     pmid: 25325533
[81]
Chu L Y , Yamaguchi T , Nakao S . Adv. Mater., 2002,14:386.
[82]
Ju X J , Liu L , Xie R , Niu C H , Chu L Y . Polymer, 2009,50:922.
[83]
Jiang M Y , Ju X J , Deng K , Fan X X , He X H , Wu F , He F , Liu Z , Wang W , Xie R , Chu L Y . J. Mater. Chem. B, 2016,4:3925. doi: 10.1039/c6tb00333h https://www.ncbi.nlm.nih.gov/pubmed/32263092

URL     pmid: 32263092
[84]
Lin S , Wang W , Ju X J , Xie R , Chu L Y . Proc. Natl. Acad. Sci. U.S. A., 2016,113:2023.
[85]
Liu Y M , Ju X J , Xin Y , Zheng W C , Wang W , Wei J , Xie R , Liu Z , Chu L Y . ACS Appl. Mater. Interfaces, 2014,6:9530. https://www.ncbi.nlm.nih.gov/pubmed/24897191

URL     pmid: 24897191
[86]
Russew M M , Hecht S . Adv. Mater., 2010,22:3348. https://www.ncbi.nlm.nih.gov/pubmed/20422653

URL     pmid: 20422653
[87]
Jin H , Zheng Y , Liu Y , Cheng H , Zhou Y , Yan D . Angew. Chem. Int. Ed., 2011,50:10352.
[88]
Wang G , Tong X , Zhao Y . Macromolecules, 2004,37:8911. doi: 10.1021/ma048416a https://pubs.acs.org/doi/10.1021/ma048416a
[89]
Such G K , Evans R A , Davis T P . Macromolecules, 2004,37:9664. doi: 10.1021/ma048627f https://pubs.acs.org/doi/10.1021/ma048627f
[90]
Yamaguchi H , Kobayashi Y , Kobayashi R , Takashima Y , Hashidzume A , Harada A . Nat. Commun., 2012,3:603. https://www.ncbi.nlm.nih.gov/pubmed/22215078

URL     pmid: 22215078
[91]
Jiang Y , Wan P , Xu H , Wang Z , Zhang X , Smet M . Langmuir, 2009,25:10134. https://www.ncbi.nlm.nih.gov/pubmed/19705900

URL     pmid: 19705900
[92]
Yan F , Chen L , Tang Q , Wang R . Bioconjugate Chem., 2004,15:1030. doi: 10.1021/bc049901d https://pubs.acs.org/doi/10.1021/bc049901d
[93]
Medintz I L , Trammell S A , Mattoussi H , Mauro J M . J. Am. Chem. Soc., 2004,126:30. doi: 10.1021/ja037970h https://www.ncbi.nlm.nih.gov/pubmed/14709044

URL     pmid: 14709044
[94]
Zhu M Q , Zhu L , Han J J , Wu W , Hurst J K , Li A D . J. Am. Chem. Soc., 2006,128:4303. https://www.ncbi.nlm.nih.gov/pubmed/16569006

URL     pmid: 16569006
[95]
Azagarsamy M A , Alge D L , Radhakrishnan S J , Tibbitt M W , Anseth K S . Biomacromolecules, 2012,13:2219. doi: 10.1021/bm300646q https://www.ncbi.nlm.nih.gov/pubmed/22746981

URL     pmid: 22746981
[96]
Szewczyk M , Sobczak G , Sashuk V . ACS Catal., 2018,8:2810. doi: 10.1021/acscatal.8b00328 https://pubs.acs.org/doi/10.1021/acscatal.8b00328
[97]
Li Y , Zhang Y , Wang W . Nano Res., 2018,11:5424. doi: 10.1007/s12274-018-2132-7 https://doi.org/10.1007/s12274-018-2132-7
[98]
Yan Q , Zhao Y . J. Am. Chem. Soc., 2013,135:16300. doi: 10.1021/ja408655n https://www.ncbi.nlm.nih.gov/pubmed/24156541

URL     pmid: 24156541
[99]
Yan Q , Zhao Y . Angew. Chem. Int. Ed., 2013,52:9948. doi: 10.1002/anie.201303984 http://doi.wiley.com/10.1002/anie.201303984
[100]
Zhang Q , Wang W J , Lu Y , Li B G , Zhu S . Macromolecules, 2011,44:6539. doi: 10.1021/ma201056g https://pubs.acs.org/doi/10.1021/ma201056g
[101]
Fowler C I , Jessop P G , Cunningham M F . Macromolecules, 2012,45:2955. doi: 10.1021/ma2027484 https://pubs.acs.org/doi/10.1021/ma2027484
[102]
Mihara M , Jessop P , Cunningham M F . Macromolecules, 2011,44:3688. doi: 10.1021/ma200249q https://pubs.acs.org/doi/10.1021/ma200249q
[103]
Morse A J , Armes S P , Thompson K L , Dupin D , Fielding L A , Mills P , Swart R . Langmuir, 2013,29:5466. doi: 10.1021/la400786a https://www.ncbi.nlm.nih.gov/pubmed/23570375

URL     pmid: 23570375
[104]
Guo Z , Chen Q , Gu H , He Z , Xu W , Zhang J , Liu Y , Xiong L , Zheng L , Feng Y J . ACS Appl. Mater, 2018,10:38073. doi: 10.1021/acsami.8b13448 https://pubs.acs.org/doi/10.1021/acsami.8b13448
[105]
Mu M , Yin H Y , Feng Y J . J. Colloid Interface Sci., 2017,497:249. doi: 10.1016/j.jcis.2017.03.012 https://www.ncbi.nlm.nih.gov/pubmed/28285053

URL     pmid: 28285053
[106]
Mu M , Luo X J , Wang W , Yin H Y , Feng Y J . J. Colloid Interface Sci., 2018,552:10.
[107]
Guo J , Wang N , Wu J , Ye Q , Zhang C , Xing X H , Yuan J . J. Mater. Chem. B, 2014,2:437. https://www.ncbi.nlm.nih.gov/pubmed/32261388

URL     pmid: 32261388
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[5] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[6] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[7] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[8] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[11] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[12] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.