English
新闻公告
More
化学进展 2020, Vol. 32 Issue (8): 1158-1171 DOI: 10.7536/PC200433 前一篇   后一篇

• 综述 •

无溶剂或少溶剂的固态化学反应

雷立旭1,*(), 周益明2   

  1. 1.东南大学化学化工学院 南京 211189
    2.南京师范大学化学与材料科学学院 南京 210023
  • 收稿日期:2020-02-28 修回日期:2020-03-22 出版日期:2020-08-24 发布日期:2020-04-23
  • 通讯作者: 雷立旭

Solvent-Free or Less-Solvent Solid State Reactions

Lixu Lei1,*(), Yiming Zhou2   

  1. 1. School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
    2. School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
  • Received:2020-02-28 Revised:2020-03-22 Online:2020-08-24 Published:2020-04-23
  • Contact: Lixu Lei
  • About author:

根据热力学,固态化学反应一般具有一旦发生就必完全的特征;但在固体之间存在组成可连续变化的溶液(固熔体)时,固态化学反应体系有可能出现化学平衡。固态化学反应还可能导致立体选择性产物、产物颗粒不易长大、最低反应温度等特征。本文特别指出,为了促进固态化学反应快速、有效、安全地发生,可使用少量溶剂而不用担心固态化学反应无平衡特征的丧失,同时获得良好流动性的反应物浆料,并因此能使用适当的搅拌技术来促进反应;其次,任何复杂的固态化学反应都可以分解成若干双组分反应,可以按一定步骤实现复杂化合物的合成或装配。因此,研究固态化学反应可能会产生更加绿色的化学过程,具有非常现实的理论和应用价值。本文以固态配位化学反应为例来说明如上理论推演结果。这里,固态配位化学反应是固体无机金属化合物与固体有机或无机配体之间的化学反应,它们与固态有机化学反应一样,可以在室温~300 ℃的温度下、不存在任何溶剂的情况下发生。

According to thermodynamics, solid state reactions will generally proceed to their 100% completion once they start; however, they may stop at the equilibrium state in case that there is a solid solution with continuously changing concentration. Solid state reactions also have the following characteristics:(1) they could produce stereoselective products;(2) the particle size of the products could be very small(nano-sized);(3) there is the lowest temperature for the reaction to be initiated. Here, it is particularly pointed out that a little solvent can be employed to accelerate solid state reactions with consequent safety and effectivity, but not the equilibrium; also, the solvent can make the solid mixture more fluidized, thus the mass transportation can be speeded up by a proper blender. In addition, solid state reactions can be used to assemble materials step by step, since any complex reactions can be decomposed to a series of reactions of two reactants. Consequently, studies on solid state reactions can lead to greener chemical processes. All those are demonstrated in this paper with solid state coordination reactions, which are the reactions of solid inorganic metal compounds and solid organic or inorganic ligands. The solid state coordination reactions are well known that they take place at near room temperature up to 300 ℃ without the help of solvents, just like the solid state organic reactions.

Contents

1 Introduction: how to develop a greener chemical process

1.1 Definition of greener chemical process

1.2 Greener chemical processes based on solid-state reactions

1.3 Brief history of solid-state coordination reactions

2 Physical chemistry of solid-state reactions

2.1 Thermodynamics of solid-state reactions

2.2 Thermodynamics of less solvent reactions

2.3 Kinetics of solid-state reactions

3 Syntheses based on solid-state coordination reactions

3.1 Syntheses based on non-solvation

3.2 Syntheses of nanoparticles based on diffusion difficulty in solids

4 Less solvent reactions and their applications in industrialization of solid-state reactions at near room temperatures

4.1 Examples of a few less solvent reactions

4.2 Problems in industrialization of solid-state reactions at near room temperatures

5 Conclusion and outlook

()
图1 化学反应的Gibbs自由能与溶剂用量关系的示意图。处于底部的蓝色曲线是溶液反应的,必定存在平衡;绿色勺型曲线是少溶剂反应,在反应即将结束时可能会出现平衡。此时减少溶剂的量会使体系的自由能沿着虚线前进;红色直线是无溶剂的固态化学反应的情况,其中没有化学平衡
Fig.1 The relationship of Gibbs free energy of the system to the amount of solvent used. The blue curve at the bottom is for the solution reaction, in which there is an equilibrium point; the red straight line at the top is for solvent-free solid state reaction, where there will be no equilibrium; and the green spoon-like curve in the middle correspond to the less solvent reaction, which may follow the dashed line if the solvent is removed at the end of the reaction
图2 银的体扩散系数Db、晶界扩散系数Dg和表面扩散系数Ds与温度的关系[16]
Fig.2 The diffusion coefficients of silver for bulky dif-fusion Db, grain boundary diffusion Dg and surficial dif-fusion Ds[16]
图3 CuCl2·2H2O与2,2'-联吡啶的反应(重新组合的文献[43]原图)。A:(a)反应开始反应物团聚时的XRD,此时存在Cu(bipy)Cl2的衍射峰(数字标出的峰)、bipy和最终产物的峰;(b)反应结束后的XRD。B和C:反应物按1∶1和1∶2摩尔比混合时反应的DSC曲线。D:曲线b是Cu(bipy)Cl2与bipy按1∶1摩尔比混合时反应的DSC曲线
Fig.3 Data from the reaction of CuCl2·2H2O and 2,2'-bipyridyl (adapted from ref[43]). A: XRD pattern of (a) the reaction mixture of 1∶2 molar ratio when it aggregated, in which diffraction peaks of Cu(bipy)Cl2 can be found; (b) the final product; B: DSC curve of the 1∶1 reaction; C: DSC curve of the 1∶2 reaction; and D: DSC curves of the 1∶1 reaction (a) and Cu(bipy)Cl2 and bipy in 1:1 molar ratio
图4 FeSO4·7H2O与邻菲咯啉按1∶1摩尔比的固态化学反应[45]。A:几种物质的XRD谱(a)邻菲咯啉;(b)FeSO4·7H2O;(c)Fe(H2O)3(phen)SO4;(d)Fe(H2O)3(phen)SO4·5H2O;B:Fe(H2O)3(phen)SO4·5H2O和邻菲咯啉按1∶2摩尔比反应时的初始混合物(a)和反应产物(b)的XRD谱;C:FeSO4·7H2O与邻菲咯啉按1∶1摩尔比反应时的EDXRD随时间的变化;D:不同温度下中间产物和最终产物的XRD主峰强度变化
Fig.4 Data of the solid state reaction of FeSO4·7H2O and o-phenanthroline[45]. A: XRD patterns of (a) phen;(b)FeSO4·7H2O;(c)Fe(H2O)3(phen)SO4;(d)Fe(H2O)3(phen)SO4·5H2O;B:XRD patterns of the initial reaction mixture of Fe(H2O)3(phen)SO4·5H2O and phen in 1∶2 molar ratio (a) and the final (b);C:The EDXRD of the solid state reaction of FeSO4·7H2O and phen in 1∶1 molar ratio as a function of time;D:The intensity of main XRD peak as the function of time at different temperatures
图5 固态化学反应中反应物和产物的颗粒随时间变化的示意图
Fig.5 The changes of particles of reactants and products during a solid state reaction
图6 固体(NH4)2MoS4与固体CuX(X = Cl、Br、I、CN、SCN)反应得到的2核到7核原子簇骨架结构示意图[49, 52]
Fig.6 The framework of 2 ~ 7 nuclear clusters formed from the reaction of (NH4)2MoS4 and CuX(X = Cl, Br, I, CN, SCN)[49, 52]
图7 [Mg(H2O)6]Cl2和NH4[Mg(H2O)6]Cl3晶体中的Mg(H2O)62+(八面体结构)、Cl-(绿球)和NH4+(蓝球)。为简单故,图中略去了氢原子。(a)[Mg(H2O)6]Cl2;(b)NH4[Mg(H2O)6]Cl3
Fig.7 The octahedral Mg(H2O)62+, Cl-(green ball) and NH4+ (blue ball) in crystals of (a)[Mg(H2O)6]Cl2 and (b) NH4[Mg(H2O)6]Cl3
[1]
Galuszka A, Migaszewski Z, Namiesnik J. Trac-Trends Anal.Chem., 2013,50:78.
[2]
Anastas P, Eghbali N. Chem. Soc. Rev., 2010,39(1):301. https://www.ncbi.nlm.nih.gov/pubmed/20023854

doi: 10.1039/b918763b     URL     pmid: 20023854
[3]
Kaupp G. Top. Curr.Chem., 2005. 254:95.
[4]
Tanaka K, Toda F. Chem. Rev., 2000,100(3):1025. https://www.ncbi.nlm.nih.gov/pubmed/11749257

URL     pmid: 11749257
[5]
李道华(Li D H), 叶向荣(Ye X R), 忻新泉(Xin X Q). 化学研究与应用(Chemical Research and Application), 1999,11(4):415.
[6]
李道华(Li D H), 叶向荣(Ye X R), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1999,16(5):97.
[7]
Guillena G, del Carmen Hita M, Najera C, Viozquez S F. Org. Chem., 2008,73(15):5933. https://pubs.acs.org/doi/10.1021/jo800773q

doi: 10.1021/jo800773q     URL    
[8]
Walsh P J, Li H, Anaya de Parrodi C. Chem. Rev., 2007,107(6):2503. https://www.ncbi.nlm.nih.gov/pubmed/17530908

doi: 10.1021/cr0509556     URL     pmid: 17530908
[9]
余富朝(Yu F Z), 严胜骄(Yan S J), 林军(Lin J). 有机化学(Chin. J. Org. Chem.), 2010,30(10):1421.
[10]
Kalita P, Kumar R. Micro. Meso. Mater., 2012,149(1):1.
[11]
Singh M S, Chowdhury S. RSC Advances, 2012,2(11):4547.
[12]
杨翠凤(Yang C F), 刘文(Liu W), 林双政(Lin S Z), 徐泽刚(Xu Z G), 陈涛(Chen T), 卫天琪(Wei T Q), 李秉擘(Li B B). 合成化学(Chin. J. Syn. Chem.), 2016,24(5):464.
[13]
Sarkar A, Santra S, Kundu S K, Hajra A, Zyryanov G V, Chupakhin O N, Charushin V N, Majee A. Green Chem., 2016,18(16):4475.
[14]
忻新泉(Xin X Q), 郑丽敏(Zheng L M). 大学化学(University Chemistry), 1994,9(6):1.
[15]
龙德良(Long D L), 梁斌(Liang B), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1996,13(6):1.
[16]
雷立旭(Lei L X), 忻新泉(Xin X Q). 化学通报(Chemistry Bulletin), 1997,(2):1.
[17]
周益明(Zhou Y M), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 1999,15(3):273.
[18]
金春飞(Jin C F), 景苏(Jing S), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 2002,18(9):859.
[19]
Adell B.Z. Anorg. Allg. Chem., 1952,271:49.
[20]
Wendlandt W W, Stembridge C H. Inorg. Nucl. Chem., 1965,27(3):575.
[21]
Baker D J, Hauge S, Gerloch M, Lewis J. J. Chem. Soc. A, 1969,(8):1322.
[22]
Udupa M R, Aravamudan G. Curr. Sci., 1969,38(1):14.
[23]
Kutal C, Bailar J C. Phys. Chem., 1972,76(1):119.
[24]
Hennig H, Hempel K, Thomas P.Z. Chem., 1973,13(11):438.
[25]
Tsuchiya R, Murakami T, Kyuno E. Bull. Chem. Soc. Jap., 1973,46(10):3119. http://www.journal.csj.jp/doi/10.1246/bcsj.46.3119

doi: 10.1246/bcsj.46.3119     URL    
[26]
Tanaka K, Miyauchi Y, Tanaka T. Inorg. Chem., 1975,14(7):1545. https://pubs.acs.org/doi/abs/10.1021/ic50149a020

doi: 10.1021/ic50149a020     URL    
[27]
Tsuchiya R, Uehara A, Otsuka K, Kyuno E. Chem. Lett., 1974,(8):833.
[28]
D’Ascenzo G, Ceipidor U B, Marino A. Thermochim. Acta, 1976,16(1):69. https://linkinghub.elsevier.com/retrieve/pii/0040603176850447

doi: 10.1016/0040-6031(76)85044-7     URL    
[29]
Hennig H, Hempel K, Ackermann M, Thomas P.Z. Anorg. Allg. Chem., 1976,422(1):65.
[30]
忻新泉(Xin X Q), 汪信(Wang X), 张雪芹(Zhang X Q), 戴安邦(Dai A B). 化学学报(Acta Chimica Sinica), 1982,40(12):1111. f08de6e0-615e-46f1-8992-3ae3ef922b0bhttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract342167.shtml
[31]
袁进华(Yuan J H), 忻新泉(Xin X Q), 戴安邦(Dai A B), 张毓昌(Zhang Y C). 无机化学学报(Chinese Journal of Inorganic Chemistry), 1988,4(2):82. bf2558f6-2df9-4d58-9cfd-ae129c2f3c86http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=19880211&flag=1
[32]
Cohn G. Chem. Rev., 1948,42(3):527. https://www.ncbi.nlm.nih.gov/pubmed/18871233

URL     pmid: 18871233
[33]
景苏(Jing S), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 1995,53(1):26. 7f33dc21-a400-4661-9225-1c910b689edchttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract328650.shtml
[34]
李道华(Li D H), 忻新泉(Xin X Q). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2004,20(7):873. fb322518-6a15-4fbe-82c0-72b61653a276http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20040724&flag=1
[35]
Hedvall J A. Z. Anorg. Allg. Chem., 1916,96(1):64.
[36]
Tammann G, Mansurl Q A. Z. Anorg. Allg. Chem., 1923,126(1/2):119.
[37]
Tammann G.Z Anorg. Allg. Chem., 1925,149(1/3):21.
[38]
赖芝(Lai Z), 忻新泉(Xin X Q), 周衡南(Zhou H N). 无机化学学报(Chinese Journal of Inorganic Chemistry), 1997,13(3):330.
[39]
周益明(Zhou Y M), 叶向荣(Ye X R), 李道华(Li D H), 忻新泉(Xin X Q). 高等学校化学学报(Chemical Journal of Chinese Universities), 1999,20(3):361.
[40]
贾殿赠(Jia D Z), 李昌雄(Li C X), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1993,10(1):110.
[41]
Li C X, Lei L X, Xin X Q. 科学通报(Chin. Sci. Bull.), 1994. 39:349.
[42]
李昌雄(Li C X), 忻新泉(Xin X Q). 科学通报(Chin. Sci. Bull.), 1995,39(23):2204.
[43]
Lei L X, Xin X Q. Solid State Chem., 1995,119(2):299.
[44]
Lei L X, Xin X Q. Thermochim. Acta, 1996,273:61. https://linkinghub.elsevier.com/retrieve/pii/0040603195026835

doi: 10.1016/0040-6031(95)02683-5     URL    
[45]
Lei L X, Jing S, Walton R I, Xin X Q, O’Hare D. J. Chem. Soc., Dalton Trans., 2002,(18):3477.
[46]
朱慧珍(Zhu H Z), 丛蓉娟(Cong R J), 忻新泉(Xin X Q), 戴安邦(Dai A B), 段永恒(Duan Y H), 马礼敦(Ma L D). 无机化学学报(Chinese Journal of Inorganic Chemistry), 1988,4(3):1. 72be61e6-9467-47e5-bd91-790e9a9d630chttp://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=19880301&flag=1
[47]
刘世雄(Liu S X), 黄金陵(Huang J L), 高逢君(Gao F J), 朱慧珍(Zhu H Z), 忻新泉(Xin X Q). 高等学校化学学报(Chemical Journal of Chinese Universities), 1990,11(7):667. 2b2de9ac-d21f-4f7b-806b-748dcb87762dhttp://www.cjcu.jlu.edu.cn/CN/abstract/abstract21653.shtml
[48]
Muller A, Bogge H, Schimanski U. Inorganica Chimica Acta-Articles, 1983,69:5.
[49]
郎建平(Lang J P), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 1996,54(5):461. a39ab69c-35a0-4062-8000-e7c16637b2ddhttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract327834.shtml
[50]
Li J G, Xin X Q, Zhou Z Y, Yu K B. J. Chem. Soc., Chem. Commun, 1991,(4):249.
[51]
张有才(Zhang Y C), 梁凯(Liang K), 陈秋云(Chen Q Y), 郑和根(Zheng H G), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 2005,21(6):783. dbec7d8e-b634-4c7a-91cc-251896474b92http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20050601&flag=1
[52]
Hou H W, Xin X Q, Shi S. Coord. Chem. Rev., 1996,153:25. https://linkinghub.elsevier.com/retrieve/pii/0010854595012249

doi: 10.1016/0010-8545(95)01224-9     URL    
[53]
Yao X B, Zheng L M, Xin X Q. Solid State Chem., 1995,117(2):333. https://linkinghub.elsevier.com/retrieve/pii/S0022459685712819

doi: 10.1006/jssc.1995.1281     URL    
[54]
张蔚玲(Zhang W L), 郑丽敏(Zheng L M), 雷立旭(Lei L X), 忻新泉(Xin X Q). 高等学校化学学报(Chemical Journal of Chinese Universities), 1994,15(10):1443. d59dc3e0-ac7b-43b4-b8a1-a504b8a08d68http://www.cjcu.jlu.edu.cn/CN/abstract/abstract19800.shtml
[55]
Liang B, Dai Q, Xin X Q. Synth. React. Inorg. Met.-Org. Chem., 1998,28(2):165. http://www.tandfonline.com/doi/abs/10.1080/00945719809351896

doi: 10.1080/00945719809351896     URL    
[56]
陈金喜(Chen J X), 潘涛(Pan T), 刘明光(Liu M GZZ), 林少凡(Lin S F), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 2002,60(1):60. 2faa9510-7775-4ae4-b75e-9dbcdf98dcfehttp://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract335517.shtml
[57]
贾殿赠(Jia D Z), 忻新泉(Xin X Q). 化学学报(Acta Chimica Sinica), 1993,51(4):358. 60180af1-4ddd-42a0-932f-8a752bdd3c87http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract329681.shtml
[58]
成全(Cheng Q), 贾殿赠(Jia D Z), 缪强(Miao Q), 忻新泉(Xin X Q). 应用化学(Chinese Journal of Applied Chemistry), 1991,8(5):77.
[59]
Matsuda R. Bull. Chem. Soc. Jpn., 2013,86(10):1117. http://www.journal.csj.jp/doi/10.1246/bcsj.20130157

doi: 10.1246/bcsj.20130157     URL    
[60]
Kole G K, Vittal J J. Chem. Soc. Rev., 2013,42(4):1755. https://www.ncbi.nlm.nih.gov/pubmed/23034597

doi: 10.1039/c2cs35234f     URL     pmid: 23034597
[61]
Lang J P, Liu J, Chen M Q, Lu J M, Bian G Q, Xin X Q. J. Chem. Soc. ,Chem. Commun., 1994,(23):2665.
[62]
Chen J, Yin P, Zhang Q, Li C, Xin X. Spectrochim. Acta, Part A, 2001,57A(12):2485.
[63]
Chen J, Zhang R. Chem. Let., 2011,40(1):56. http://www.journal.csj.jp/doi/10.1246/cl.2011.56

doi: 10.1246/cl.2011.56     URL    
[64]
Chen J X(陈金喜), Zhang R B(张若冰). 东南大学学报,自然科学版(Journal of Southeast University (Natural Science Edition)), 2011,41(4):889.
[65]
Pichon A, James S L. Crystengcomm, 2008,10(12):1839. http://xlink.rsc.org/?DOI=b810857a

doi: 10.1039/b810857a     URL    
[66]
杨彧(Yang Y), 贾殿赠(Jia D Z), 葛炜炜(Ge W W), 金春飞(Jin C F), 忻新泉(Xin X Q). 无机化学学报(Chin. J. Inorg. Chem.), 2004,20(8):881. b719f42d-283e-4831-b06f-2bccea2817cbhttp://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20040801&flag=1
[67]
Ye X R, Jia D Z, Yu J Q, Xin X Q, Xue Z L. Adv. Mater., 1999,11(11):941. http://doi.wiley.com/10.1002/%28ISSN%291521-4095

doi: 10.1002/(ISSN)1521-4095     URL    
[68]
Xu J F, Ji W, Shen Z X, Tang S H, Ye X R, Jia D Z, Xin X Q. Solid State Chem., 1999,147(2):516. https://linkinghub.elsevier.com/retrieve/pii/S0022459699984098

doi: 10.1006/jssc.1999.8409     URL    
[69]
沈茹娟(Shen R J), 贾殿赠(Jia D Z), 梁凯(Liang K), 忻新泉(Xin X Q), 王疆瑛(Wang J Y). 无机化学学报(Chin. J. Inorg. Chem.), 2000,16(6):906. 18fec11f-4144-43a6-9986-65f53d077167http://www.wjhxxb.cn/wjhxxbcn/ch/reader/view_abstract.aspx?file_no=20000608&flag=1
[70]
Li F, Chen L Y, Chen Z Q, Xu J Q, Zhu J M, Xin X Q. Mater. Chem. Phys., 2002,73(2/3):335. https://linkinghub.elsevier.com/retrieve/pii/S0254058401003571

doi: 10.1016/S0254-0584(01)00357-1     URL    
[71]
雷立旭(Lei L X), 范珍珍(Fan Z Z), 李小恒(Li X H). CN201710601232 6, 2017.
[72]
雷立旭(Lei L X), 张东(Zhang D), 邰建(Tai J) 魏会敏(Wei H M), 范珍珍(Fan Z Z), 周言庆(Zhou Y Q). CN201810418574. 9, 2019.
[1] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[4] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[5] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[6] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[7] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[8] 谢超, 周波, 周灵, 吴雨洁, 王双印. 缺陷与催化[J]. 化学进展, 2020, 32(8): 1172-1183.
[9] 刘晓旸. 高压条件下的凝聚态化学[J]. 化学进展, 2020, 32(8): 1184-1202.
[10] 荆西平. 从固体化学到凝聚态化学[J]. 化学进展, 2020, 32(8): 1049-1059.
[11] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[12] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.
[13] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[14] 杨凯 汪朝阳 傅建花 谭越河. 物理技术辅助的Knoevenagel反应*[J]. 化学进展, 2010, 22(11): 2126-2133.
[15] 冯超 刘赛文 彭圣明 易兵 邓国军. 基于脱羧法的C-C键生成反应*[J]. 化学进展, 2010, 22(07): 1403-1413.
阅读次数
全文


摘要

无溶剂或少溶剂的固态化学反应