English
新闻公告
More
化学进展 2020, Vol. 32 Issue (6): 713-726 DOI: 10.7536/PC191016 前一篇   后一篇

• 综述与评论 •

超低密度气凝胶的制备及应用

李健1, 张恩爽1, 刘圆圆1, 黄红岩1, 苏岳锋2, 李文静1,**()   

  1. 1. 航天特种材料及工艺技术研究所 北京 100074
    2. 北京理工大学材料科学与工程学院 北京 100081
  • 收稿日期:2019-10-22 修回日期:2019-12-29 出版日期:2020-06-05 发布日期:2020-04-13
  • 通讯作者: 李文静
  • 作者简介:
    ** Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21875022)

Preparation of the Ultralow Density Aerogel and Its Application

Jian Li1, Enshuang Zhang1, Yuanyuan Liu1, Hongyan Huang1, Yuefeng Su2, Wenjing Li1,**()   

  1. 1. Aerospace Institute of Advanced Materials and Processing Technology, Beijing 100074, China
    2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2019-10-22 Revised:2019-12-29 Online:2020-06-05 Published:2020-04-13
  • Contact: Wenjing Li
  • Supported by:
    the National Natural Science Foundation of China(21875022)

超低密度气凝胶是一类具有超轻质特性的多孔固体材料,较常规气凝胶具有更高的孔隙率与更为多样化的表面特性,其独特的物理与化学性质使其作为新型纳米多孔材料在诸多新兴领域得到了重要应用。在制备过程中保留超低密度气凝胶高度发达的三维孔隙结构,以及在实际应用中发挥超低密度气凝胶独特的功能特性是气凝胶领域近年来的研究重点之一。本文按照超低密度气凝胶的主要类型综述了该材料制备技术的最新研究进展,探讨了其在空间探测、阻燃隔热、储能、吸附、催化以及传感领域的应用方式;通过分析目前研究中存在的主要问题,对未来的发展方向,如突破常压干燥制备技术、开展各类复合气凝胶或结构有序可控的超低密度气凝胶的制备、系统性地研究超轻质特性对气凝胶特定功能的影响规律等进行了展望。

Ultralow density aerogel is a kind of porous solid material with super lightweight property which has a higher porosity and more diversified surface properties than common aerogel. The unique physical and chemical characteristics make ultralow density aerogel a new nano-porous material to be applied in many new research fields. Recently, it is a research focus of the aerogel field to preserve the highly developed three dimensional pore structure in the fabrication process of the ultralow density aerogel, and make its unique characteristics to be functioned in practical applications. In this review, according to the main types of the ultralow density aerogel, the up to date research progress of its preparation technologies is introduced. Moreover, the application modes and functional characteristics of the ultralow density aerogel in the fields of space exploration, fire and heat resistantance, energy storage, adsorption, catalysis and sensing are discussed. By discussing the existing problems of the current research, perspectives of the ultralow density aerogel, such as breaking through the ambient drying method, carrying out the fabrication of composite aerogel or ultralow density aerogel with controlled structure, systematic studying the influence of the super lightweight property on specific functions are also presented.

Contents

1 Introduction
2 Ultralow density inorganic aerogel

2.1 Inorganic oxide aerogel

2.2 Inorganic and non-oxide aerogel

3 Ultralow density organic aerogel

3.1 Nanocellulose aerogel

3.2 Organic polymer aerogel

4 Ultralow density carbon aerogel

4.1 Carbon nanofiber aerogel

4.2 Carbon nanotube aerogel

4.3 Graphene aerogel

5 Applications of ultralow density aerogel

5.1 Capture of space particles

5.2 Fire and heat resistant material

5.3 Host for electrode material

5.4 Adsorbing material

5.5 Catalyst material

5.6 Sensing material

6 Conclusion and outlook
()
图1 CNFAs制备过程示意图[7]
Fig. 1 Schematic illustration of the fabrication of CNFAs[7]. Copyright 2018, American Association for the Advancement of Science
图2 (a)Au/Ag、(b)Pd/Ag、(c)Pt/Ag气凝胶的TEM图像以及(d)Au/Ag气凝胶的高倍TEM图像[32]
Fig. 2 TEM images of the (a) Au/Ag, (b) Pd/Ag, (c) Pt/Ag aerogels and (d) magnified TEM image of the Au/Ag aerogel[32]. Copyright 2013, American Chemical Society
图3 不同交联剂制备的PI气凝胶的结构/功能关系示意图[45]
Fig. 3 Structure-property relationships of PI aerogels with different cross-linkers[45]. Copyright 2017, Wiley
图4 (a)细胞状GA的制备过程示意图;(b)GA的全景SEM图;(c)、(d)紧密连接的具有多面体结构的孔隙;(e)褶皱的气凝胶薄壁[74]
Fig. 4 (a) The schematic illustration of the synthesis process of the cellular GA;(b) whole view SEM of the GA;(c) and(d)the closely linked pores with polyhedral morphology;(e) ultrathin and wrinkled aerogel wall[74]. Copyright 2016, Springer Nature
图5 (a)超低密度SiO2气凝胶隔热板;(b)超低密度透明PI薄板;(c)基于低密度PI气凝胶的防寒服
Fig. 5 (a) The ultralow density SiO2 aerogel heat shield;(b) The ultralow density and transparent PI aerogel panel;(c) The cold protective jacket based on the low density PI aerogel
图6 CoO x /NG气凝胶的TEM图像[93]
Fig. 6 TEM image of CoO x /NG aerogel[93]. Copyright 2017, American Chemical Society
[1]
Pierre A C , Pajonk G M. Chem. Rev., 2002, 102: 4243.https://www.ncbi.nlm.nih.gov/pubmed/12428989

doi: 10.1021/cr0101306     URL     pmid: 12428989
[2]
孔勇 ( Kong Y ), 沈晓冬(Shen X D), 崔升(Cui S) 中国材料进展(Materials China), 2016, 35(8): 569.
[3]
Hrubesh L W .J. Non-Cryst Solids, 1998, 225: 335.
[4]
Kistler S S . Nature, 1931, 127: 741.
[5]
Kistler S S .J. Phys. Chem., 1932, 36(1): 52.https://pubs.acs.org/doi/abs/10.1021/j150331a003

doi: 10.1021/j150331a003     URL    
[6]
Liu Z , Xu K , She P , Yin S , Zhu X , Sun H . Chem. Sci., 2016, 7: 1926.https://www.ncbi.nlm.nih.gov/pubmed/29899917

URL     pmid: 29899917
[7]
Si Y , Wang X , Dou L , Yu J , Ding B . Sci. Adv., 2018, 4: 8925.
[8]
Gordon M P , Zaia E W , Zhou P , Russ B , Coates N E , Sahu A , Urban J J . J. Appl. Polym. Sci., 2017, 134: 44070.
[9]
Si Y , Yu J , Tang X , Ge J , Ding B. . Nat. Commun., 2014, 5: 5802.https://www.ncbi.nlm.nih.gov/pubmed/25512095

URL     pmid: 25512095
[10]
Sun H , Xu Z , Gao C. . Adv. Mater.., 2013, 25: 2554.https://www.ncbi.nlm.nih.gov/pubmed/23418099

doi: 10.1002/adma.201204576     URL     pmid: 23418099
[11]
Kucheyev S O , Stadermann M , Shin S J , Satcher H , Gammon S A , Letts S A , Buuren T , Hamza A V. Adv. Mater., 2012, 24: 776.https://www.ncbi.nlm.nih.gov/pubmed/22228389

URL     pmid: 22228389
[12]
Schubert U , Hüsing N. Angew. Chem. Int. Ed., 1998, 37: 22.http://doi.wiley.com/10.1002/%28ISSN%291521-3773

doi: 10.1002/(ISSN)1521-3773     URL    
[13]
Ziegler C , Wolf A , Liu W , Herrmann A K , Gaponik N , Eychmüller A. Angew. Chem. Int. Ed., 2017, 56: 13200.
[14]
Kocon L , Despetis F , Phalippou J . J. Non-Cryst Solids, 1998, 225: 96.
[15]
Hrubesh L W , Tillotson T M .J. Non-Cryst. Solids, 1992, 145: 45.
[16]
Wang J , Li Q , Shen J , Zhou B , Chen L Y , Jiang W Y . Atomic Energy Science and Technology, 1996, 1: 41.
王珏, 黎青,沈军, 周斌, 陈玲燕, 蒋伟阳 . 原子能科学技术, 1996, 1: 41.
[17]
Xu C , Shen J , Zhou B .J. Non-Cryst. Solids, 2009, 335: 492.
[18]
Biener M M , Ye J , Baumann T F , Wang Y M , Shin S J , Biener J , Hamza A V. Adv. Mater., 2014, 26: 4808.https://www.ncbi.nlm.nih.gov/pubmed/24888421

URL     pmid: 24888421
[19]
Yue Q , Li Y , Kong M , Huang J , Zhao X , Liu J , Williford R E .J. Mater. Chem., 2011, 21: 12041.
[20]
Hong S K , Yoon M Y , Hwang H J .J. Am. Ceram. Soc., 2011, 94(10): 3198.
[21]
Rajanna S K , Kumar D , Vinjamur M , Mukhopadhyay M. Ind. Eng. Chem. Res., 2015, 54: 949.https://pubs.acs.org/doi/10.1021/ie503867p

doi: 10.1021/ie503867p     URL    
[22]
Mohanan J L , Brock S L .J. Non-Cryst. Solids, 2004, 350: 1.https://linkinghub.elsevier.com/retrieve/pii/S0022309304008592

doi: 10.1016/j.jnoncrysol.2004.05.020     URL    
[23]
Arachchige I , Mohanan J , Brock S L. Chem. Mater., 2005, 17: 6644.
[24]
Mohanan J , Arachchige I , Brock S L . Science, 2005, 307: 397.https://www.ncbi.nlm.nih.gov/pubmed/15662006

URL     pmid: 15662006
[25]
Gaponik N , Wolf A , Marx R , Lesnyak V , Schilling K , Eychmüller A. . Adv. Mater.., 2008, 20: 4257.
[26]
Worsley M A , Shin S J , Merrill M D , Lenhardt J , Nelson A J , Woo L Y , Gash A E , Baumann T F , Orme C A . ACS Nano, 2015, 9(5): 4698.https://www.ncbi.nlm.nih.gov/pubmed/25858296

URL     pmid: 25858296
[27]
Bag S , Arachchige I U , Kanatzidis M G .J. Mater. Chem., 2008, 18: 3628.
[28]
Bag S , Trikalitis P N , Chupas P J , Armatas G S , Kanatzidis M G . Science, 2007, 317: 490.https://www.ncbi.nlm.nih.gov/pubmed/17656718

doi: 10.1126/science.1142535     URL     pmid: 17656718
[29]
Zhang J , Li C M. Chem. Soc. Rev., 2012, 41: 7016.https://www.ncbi.nlm.nih.gov/pubmed/22975622

URL     pmid: 22975622
[30]
Yan P , Brown E , Su Q , Li J , Wang J , Xu C , Zhou C , Lin D . Small, 2017, 13: 1701756.
[31]
Tang Y , Gong S , Chen Y , Yap L W , Cheng W . ACS Nano, 2014, 8(6): 5707.https://www.ncbi.nlm.nih.gov/pubmed/24873318

URL     pmid: 24873318
[32]
Ranmohotti K G S , Gao X , Arachchige I U . Chem. Mater., 2013, 25: 3528.
[33]
Nahar L , Farghaly A A , EstevesR J A, Arachchige I U. Chem. Mater., 2017, 29: 7704.
[34]
Herrmann A K , Formanek P , Borchardt L , Klose M , Giebeler L , Eckert J , Kaskel, S, Gaponik N, Eychmüller A. Chem. Mater., 2014, 26: 1074.https://pubs.acs.org/doi/10.1021/cm4033258

doi: 10.1021/cm4033258     URL    
[35]
Pekala R W .J. Mater. Sci., 1989, 24: 3221.
[36]
陈颖( Chen Y ), 邵高峰(Shao G F), 吴晓栋(Wu X D), 沈晓冬(Shen X D), 崔升(Cui S) 材料导报(Materials Reports), 2016, 30: 55.
[37]
France K J D , Hoare T , Cranston E D . Chem. Mater., 2017, 29: 4609.
[38]
Cervin N T , Aulin C , Larsson P T , Wagberg L .Cellul., 2012, 19: 401.
[39]
Mulyadi A , Zhang Z , Deng Y. ACS Appl .Mater Interfaces, 2016, 8: 2732.
[40]
Liu J , Cheng F , Gr nman H , Spoljaric S , Seppala J , Eriksson J E , Willfr S , Xu C . Carbohydr.Polym., 2016, 148: 259.
[41]
Zhang F , Ren H , Tong G , Deng Y .Cellul., 2016, 23: 3665.
[42]
Feng J , Wang X , Jiang Y , Du D , Feng J. ACS Appl . Mater Interfaces, 2016, 8: 12992.https://pubs.acs.org/doi/10.1021/acsami.6b02183

doi: 10.1021/acsami.6b02183     URL    
[43]
Meador M A B , Alem n C R , Hanson K , Ramirez N , Vivod S L . ACS Appl. Mater. Interfaces, 2015, 7: 1240.https://www.ncbi.nlm.nih.gov/pubmed/25564878

doi: 10.1021/am507268c     URL     pmid: 25564878
[44]
Guo H , Meador M A B, McCorkle L, Quade D J, Guo J, Hamilton B, Cakmak M, Sprowl G. ACS Appl. Mater. Interfaces, 2011, 3: 546.https://www.ncbi.nlm.nih.gov/pubmed/21294517

URL     pmid: 21294517
[45]
Wu Y , Zhang W , Yang R. Macromol. Mater. Eng., 2018, 303: 1700403.
[46]
Qian Z , Wang Z , Chen Y , Tong S , Ge M , Zhao N , Xu J . J. Mater. Chem. A, 2018, 6: 828.
[47]
De Vos R , Biesmans, G. L .J. G. UP 5484818, 1994.
[48]
Biesmans, G, Randall, D, Francais, E, Perrut M. J. Non-Cryst. Solids, 1998, 225: 36.
[49]
Leventis N , Sotiriou-Leventis C , Chandrasekaran N , Mulik S , Larimore Z J , Lu H , Churu G , Mang J T. Chem. Mater., 2010, 22: 6692.
[50]
Du R , Zheng Z , Mao N , Zhang N , Hu W , Zhang J . Adv. Sci., 2015, 2: 1400006.
[51]
Ma C B , Du B , Wang E. Adv. Funct. Mater., 2017, 27: 1604423.
[52]
Song X , Yang S , He L , Yan S , Liao F . RSC Adv., 2014, 4: 49000.
[53]
Moreno-Castilla C , Maldonado-H dar F J. Carbon, 2005, 43: 455.
[54]
Meng Y , Young T M , Liu P , Contescu C I , Huang B , Wang S .Cellul., 2015, 22: 435.
[55]
Zhang J , Li B , Li L , Wang A . J. Mater. Chem. A, 2016, 4: 2069.
[56]
Huang S , Shi J. Ind. Eng. Chem. Res., 2014, 53: 4888.https://pubs.acs.org/doi/10.1021/ie5003558

doi: 10.1021/ie5003558     URL    
[57]
Bi H , Yin Z , Cao X , Xie X , Tan C , Huang X , Chen B , Chen F , Yang Q , Bu X , Lu X , Sun L , Zhang H. . Adv. Mater.., 2013, 25: 5916.http://doi.wiley.com/10.1002/adma.201302435

doi: 10.1002/adma.201302435     URL    
[58]
Liang H W , Guan Q F , Chen L F , Zhu Z , Zhang W J , Yu S H. Angew. Chem. Int. Ed., 2012, 51: 5101.http://doi.wiley.com/10.1002/anie.201200710

doi: 10.1002/anie.201200710     URL    
[59]
Iijima S . Nature, 1991, 354: 56.
[60]
Bryning M B , Milkie D E , Islam M F , Hough L A , Kikkawa J M , Yodh A G. Adv. Mater., 2007, 19: 661.
[61]
Hough L A , Islam M F , Hammouda B , Yodh A G , Heiney P A. Nano Lett., 2006, 6: 313.https://www.ncbi.nlm.nih.gov/pubmed/16464056

doi: 10.1021/nl051871f     URL     pmid: 16464056
[62]
Gui X , Wei J , Wang K , Cao A , Zhu H , Jia Y , Shu Q , Wu D. . Adv. Mater.., 2010, 22: 617.https://www.ncbi.nlm.nih.gov/pubmed/20217760

doi: 10.1002/adma.200902986     URL     pmid: 20217760
[63]
Andrews R , Jacques D , Rao A M , Derbyshire F , Qian D , Fan X , Dickey E C , Chen J. Chem. Phys. Lett., 1999, 303: 467.
[64]
Mecklenburg M , Schuchardt A , Mishra Y K , Kaps S , Adelung R , Lotnyk A , Kienle L , Schulte K. . Adv. Mater.., 2012, 24: 3486.https://www.ncbi.nlm.nih.gov/pubmed/22688858

doi: 10.1002/adma.201200491     URL     pmid: 22688858
[65]
Mikhalchan A , Fan Z , Tran T Q , Liu P , Tan V B C, Tay T E, Duong H MCarbon, 2016, 102: 409.
[66]
Khoshnevis H , Mint S M , Yedinak E , Tran T Q , Zadhoush A , Youssefi M , Pasquali M , Duong H M. Chem. Phys. Lett., 2018, 693: 146.https://linkinghub.elsevier.com/retrieve/pii/S0009261418300010

doi: 10.1016/j.cplett.2018.01.001     URL    
[67]
Luo S , Wang K , Wang J P , Jiang K L , Li Q Q , Fan S S. Adv Mater., 2012, 24: 2294.https://www.ncbi.nlm.nih.gov/pubmed/22450989

URL     pmid: 22450989
[68]
Luo S , Luo Y , Wu H , Li M , Yan L , Jiang K , Liu L , Li Q , Fan S , Wang J. . Adv. Mater.., 2017, 29: 1603549.
[69]
Chen Z , Ren W , Gao L , Liu B , Pei S , Cheng H M. Nat. Mater., 2011, 10: 424.https://doi.org/10.1038/nmat3001

doi: 10.1038/nmat3001     URL    
[70]
Worsley M , Pauzauskie P J , Olson T Y , Biener J , Satcher J H , Baumann T F .J. Am. Chem. Soc., 2010, 132: 14067.https://www.ncbi.nlm.nih.gov/pubmed/20860374

doi: 10.1021/ja1072299     URL     pmid: 20860374
[71]
Hu H , Zhao Z , Wan W , Gogotsi Y , Qiu J. . Adv. Mater.., 2013, 25: 2219.https://www.ncbi.nlm.nih.gov/pubmed/23418081

URL     pmid: 23418081
[72]
Song X , Lin L , Rong M , Wang Y , Xie Z , Chen X . Carbon, 2014, 80: 174.
[73]
Ye S , Liu Y , Feng J . ACS Appl. Mater. Interfaces, 2017, 9: 22456.https://www.ncbi.nlm.nih.gov/pubmed/28618215

doi: 10.1021/acsami.7b04536     URL     pmid: 28618215
[74]
Zhang B , Zhang J , Sang X , Liu C , Luo T , Peng L , Han B , Tan X , Ma X , Wang D , Zhao N . Sci. Rep., 2016, 6: 25830.https://www.ncbi.nlm.nih.gov/pubmed/27174450

doi: 10.1038/srep25830     URL     pmid: 27174450
[75]
Zhu C , Han Y J , Duoss E B , Golobic A M , Kuntz J D , Spadaccini C M , Worsley M A. Nat. Commun., 2015, 6: 6962.https://www.ncbi.nlm.nih.gov/pubmed/25902277

URL     pmid: 25902277
[76]
Yang M , Zhao N , Cui Y , Gao W , Zhao Q , Gao C , Bai H , Xie T . ACS Nano, 2017, 11: 6817.https://www.ncbi.nlm.nih.gov/pubmed/28636356

URL     pmid: 28636356
[77]
Burchell M J , Fairey S A J, Foster N J, Cole M J. Planet. Space Sci., 2009, 57: 58.
[78]
Tsou. J . Non-Cryst. Solids, 1995, 186: 415.
[79]
Martin A A , Lin T , Toth M , Westphal A J , Vicenzi E P , Beeman J , Silver E H. Meteorit. Planet. Sci., 2016, 51: 1223.
[80]
Tabata M , Kawai H , Yano H , Imai E , Hashimoto H , Yokobori S , Yamagishi A .J. Sol-Gel Sci. Technol., 2016, 77: 325.
[81]
Wu Z Y , Li C , Liang H W , Chen J F , Yu S H. Angew. Chem. Int. Ed., 2013, 52: 2925.
[82]
Berthon-Fabry S , Hildenbrand C , Ilbizian P. Eur. Polym. J., 2016, 78: 25.
[83]
张恩爽 ( Zhang E S ), 吕通(Lv T), 刘韬(Liu T),黄红岩(Huang H Y), 刘圆圆(Liu Y Y), 郭慧(Guo H),李文静(Li W J), 赵英民(Zhao Y M), 杨洁颖(Yang J Y)高等学校化学学报(Chemical Journal of Chinese Universities), 2019, 40: 567.
[84]
刘韬 ( Liu T ), 李文静(Li W J), 张恩爽(Zhang E S),钟锦洋(Zhong J Y), 张凡(Zhang F), 刘圆圆(Liu Y Y), 赵英民(Zhao Y M)高等学校化学学报(Chemical Journal of Chinese Universities), 2019, 40: 403.
[85]
张临超 ( Zhang L C ), 陈春华(Chen C H)化学进展(Progress in Chemistry), 2011, 23: 275.http://manu56.magtech.com.cn/progchem/CN/Y2011/V23/I0203/275
[86]
Zhang S , Liu J , Huang P , Wang H , Cao C , Song W . Sci. Bull., 2017, 62: 841.https://linkinghub.elsevier.com/retrieve/pii/S2095927317302645

doi: 10.1016/j.scib.2017.05.019     URL    
[87]
Xiao H , Pender J P , Meece-Rayle M A, Souza, J P D, Klavetter K C, Ha H, Lin J, Heller A, Ellison C J, Mullins C B. ACS Appl. Mater. Interfaces, 2017, 9: 22641.https://www.ncbi.nlm.nih.gov/pubmed/28633526

doi: 10.1021/acsami.7b07283     URL     pmid: 28633526
[88]
Chen W , Li S , Chen C , Yan L. . Adv. Mater.., 2011, 23: 5679.https://www.ncbi.nlm.nih.gov/pubmed/22052602

URL     pmid: 22052602
[89]
Li X , Pu X , Han S , Liu M , Du C , Jiang C , Huang X , Liu T , Hu W . Nano Energy, 2016, 30: 193.
[90]
Liu M , Yang Z , Sun H , Lai C , Zhao X , Peng H , Liu T . Nano Res., 2016, 9: 3735.
[91]
Shu D , Feng F , Han H , Ma Z. Chem. Eng. J., 2017, 324: 1.
[92]
Pan M , Shan C , Zhang, X, Zhang Y, Zhu C, Gao G, Pan B. Environ. Sci. Technol., 2018, 52: 739.https://www.ncbi.nlm.nih.gov/pubmed/29244489

URL     pmid: 29244489
[93]
Xia W , Qu C , Liang Z , Zhao B , Dai S , Qiu B , Jiao Y , Zhang Q , Huang X , Guo W , Dang D , Zou R , Xia D , Xu Q , Liu M . Nano Lett., 2017, 17: 2788.https://www.ncbi.nlm.nih.gov/pubmed/28394621

doi: 10.1021/acs.nanolett.6b05004     URL     pmid: 28394621
[94]
Li X , Yang S , Sun J , He P , Xu X , Ding G . Carbon, 2014, 78: 38.https://linkinghub.elsevier.com/retrieve/pii/S0008622314005806

doi: 10.1016/j.carbon.2014.06.034     URL    
[95]
Qiu L , Liu D , Wang Y , Cheng C , Zhou K , Ding J , Truong V T , Li D. . Adv. Mater.., 2014, 26: 3333.https://www.ncbi.nlm.nih.gov/pubmed/24634392

doi: 10.1002/adma.201305359     URL     pmid: 24634392
[96]
Xu X , Li H , Zhang Q , Hu H , Zhao Z , Li J , Li J , Qiao Y , Gogotsi Y . ACS Nano, 2015, 9(4): 3969.https://www.ncbi.nlm.nih.gov/pubmed/25792130

doi: 10.1021/nn507426u     URL     pmid: 25792130
[97]
Kuang J , Liu L , Gao Y , Zhou D , Chen Z , Han B , Zhang Z . Nanoscale, 2013, 5: 12171.https://www.ncbi.nlm.nih.gov/pubmed/24142261

doi: 10.1039/c3nr03379a     URL     pmid: 24142261
[98]
Wu S , Ladani R B , Zhang J , Ghorbani K , Zhang X , Mouritz A P , Kinloch A J , Wang C H. ACS Appl. Mater. Interfaces, 2016, 8: 24853.
[99]
Zhao, S, Zhang G, Gao Y, Deng L, Li J, Sun R, Wong C P. ACS Appl. Mater. Interfaces, 2014, 6: 22823.https://www.ncbi.nlm.nih.gov/pubmed/25423613

doi: 10.1021/am5069936     URL     pmid: 25423613
[100]
Yao Q , Fan B , Xiong Y , Wang C , Wang H , Jin C , Sun Q . Carbohyd. Polym., 2017, 168: 265.https://linkinghub.elsevier.com/retrieve/pii/S0144861717303545

doi: 10.1016/j.carbpol.2017.03.089     URL    
[101]
Wang M , Anoshkin I V , Nasibulin A G , Korhonen J T , Seitsonen J , Pere J , Kauppinen E I , Ras R H A, Ikkala O. Adv. Mater., 2013, 25: 2428.https://www.ncbi.nlm.nih.gov/pubmed/23450504

URL     pmid: 23450504
[1] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[2] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[3] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[4] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[7] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[8] 黄妮, 许峰, 夏江滨. 聚噻吩的固相聚合及其应用[J]. 化学进展, 2019, 31(8): 1103-1115.
[9] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[10] 姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*. 聚双环戊二烯基多孔材料的制备及性能[J]. 化学进展, 2017, 29(5): 524-529.
[11] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[12] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[13] 孙怡然, 杨明轩, 于飞, 陈君红, 马杰. 石墨烯气凝胶吸附剂的制备及其在水处理中的应用[J]. 化学进展, 2015, 27(8): 1133-1146.
[14] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[15] 高燕, 周永风, 杨青林, 郭林, 江雷. 超轻材料[J]. 化学进展, 2015, 27(12): 1714-1721.
阅读次数
全文


摘要

超低密度气凝胶的制备及应用