English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 497-504 DOI: 10.7536/PC190816 前一篇   

• •

金属-有机框架材料在活性肽富集中的应用

宁鹏, 程云辉, 许宙, 丁利, 陈茂龙*()   

  1. 长沙理工大学 化学与食品工程学院 长沙 410114
  • 收稿日期:2019-08-15 修回日期:2019-10-11 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 陈茂龙
  • 作者简介:
    * 通信作者 Corresponding author e-mail:
  • 基金资助:
    *国家重点研发项目(2018YFD0400405); 湖南省自然科学基金项目(2019JJ50638)

Application of Metal-Organic Framework Materials in Enrichment of Active Peptides

Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen*()   

  1. College of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • Received:2019-08-15 Revised:2019-10-11 Online:2020-04-05 Published:2020-03-30
  • Contact: Maolong Chen
  • Supported by:
    The work was supported by the National Key Research and Development Project of China(2018YFD0400405); the Hunan Natural Science Foundation Project(2019JJ50638)

生物活性肽在整个生理系统当中发挥着重要作用,对于生物活性肽的精确分析将有助于进一步开发其功效,然而当前对复杂生物系统中肽的分析依然存在相当大的难度,这是由于肽通常与高浓度蛋白质共存这一特质所造成的,严重降低了色谱中肽的分离效率,并在质谱中抑制肽的峰信号。鉴于此,人们引入金属-有机框架材料对活性肽进行富集分析。金属-有机框架(MOFs),是由金属离子或团簇和有机配体,通过配位键自行组装形成的具有多孔结构的有机-无机杂化材料。由于它们具有框架结构可调、高孔隙率、化学稳定性良好、可再生性、合成过程简单等优点而广泛应用于活性肽富集、气体吸附与分离、传感器、药物缓释与催化反应等领域。本文系统梳理了近年来MOFs材料用于磷酸肽、糖肽和内源肽等活性肽富集的研究进展,在此基础上总结了当前MOFs材料在该领域中存在的局限,并对研究新趋向提出了展望。

Bioactive peptides play an important role in physiological processes. Accurate analysis of bioactive peptides will help to further develop their efficacy. Due to the bioactive peptides often coexisting with high concentrations of proteins, it is still quite difficult to analyze peptides in complex biological systems. These coexisted proteins may severely reduce the separation efficiency of chromatographic column for bioactive peptides and inhibit the peak signal of the peptide in the mass spectrum. In view of this, metal-organic frameworks are introduced to perform enrichment analysis of active peptides. Metal-organic frameworks(MOFs) is a type of framework self-assembled by coordination bonds between metal ions or metal clusters and organic ligands to form organic-inorganic hybrid materials with porous structure. Due to their adjustable frame structure, high porosity, good chemical stability, reproducibility, and simple synthesis process, they are widely used in active peptides enrichment, gas adsorption and separation, the areas of sensors, drug delivery and catalytic reactions. In this paper, the research progress of MOF materials as active peptide enrichment materials such as phosphopeptides, glycopeptides and endogenous peptides in recent years is reviewed, and the shortcomings and outlook of MOFs materials in this area are pointed out.

Contents

1 Introduction

2 MOFs for endogenous peptide enrichment

3 MOFs for glycopeptide enrichment

4 MOFs for phosphopeptide enrichment

5 Conclusion and outlook

()
表1 近年来MOFs应用于内源肽富集的比较
Table 1 Comparison of MOFs for endogenous peptide enrichment in recent years
图1 Fe3O4-COOH@MIL-101复合材料的合成路线以及使用Fe3O4-COOH@MIL-101复合材料快速方便地从细胞裂解物中富集生物标记物的流程图[27]
Fig. 1 The synthesis route of Fe3O4-COOH@MIL-101 composites and the flowchart of fast and convenient enrichment of biomarkers from cell lysates using Fe3O4-COOH@MIL-101 composites[27]
表 2 近年来MOFs应用于糖肽富集的比较
Table 2 Comparison of MOFs for glycopeptide enrichment in recent years
图2 MIL-101(NH2)@Au-Cys的合成路线(a)和糖肽的富集过程(b)[42]
Fig. 2 Synthesis route of MIL-101(NH2)@Au-Cys (a) and the enrichment procedure of glycopeptides (b)[42]
图3 MG@Zn-MOFs生物复合材料的合成和MG@Zn-MOFs选择性富集糖肽的方法[46]
Fig. 3 Synthesis of MG@Zn-MOFs biocomposites and method for selective enrichment of glycopeptides by MG@Zn-MOFs[46]
表3 近年来MOFs应用于磷酸肽富集的比较
Table 3 Comparison of MOFs for phosphopeptide enrichment in recent years
图4 SPMA纳米球的合成和磷酸肽富集的示意图[53]
Fig. 4 Schematic representation of the synthesis and phosphopeptide enrichment of the SPMA nanospheres[53]
图5 Fe3O4@PDA@Zr-Ti-MOF的合成方法和从生物样品中富集磷酸肽的工作流程[63]
Fig. 5 Synthesis of Fe3O4@PDA@Zr-Ti-MOF and workflow for enrichment of phosphopeptides from biological samples[63]
[1]
Li Y W , Li B , He J , Qian P . Journal of Molecular Structure, 2011,998:53. 26e71678-5333-4d21-a6f0-3ec9331e7575 http://dx.doi.org/10.1016/j.molstruc.2011.05.011

doi: 10.1016/j.molstruc.2011.05.011     URL    
[2]
庞广昌(Pang G C), 陈庆森(Chen Q S) . 食品科学(Food Science), 1999,20:25. 3d5b02c3-26af-4dff-bb4a-956bd2530f73 http://www.spkx.net.cn//CN/abstract/abstract21352.shtml
[3]
田建明(Tian J M), 韦康(Wei K), 陈英红(Chen Y H), 罗浩铭(Luo H M), 王颖(Wang Y), 姜瑞芝(Jiang R Z), 张晓荧(Zhang X Y) . 中国新药杂志(Chinese New Drug Journal), 2018,27:1658.
[4]
唐婷(Tang T), 马力(Ma L) . 中国食物与营养(Chinese food and nutrition), 2008,9:28. 83548cd8-e1a9-4383-8a7f-39558d3748df http://d.wanfangdata.com.cn/Periodical_zgswyyy200809008.aspx
[5]
于文皓(Yu W H), 祁艳霞(Qi Y X), 靳艳(Jin Y) . 色谱(Chromatography), 2019,37:471.
[6]
Chertov O , Biragyn A , Kwak L W , Simpson J T , Boronina T , Hoang V M , Prieto D A , Conrads T P , Veenstra T D , Fisher R J . Proteomics, 2004,4:1195.
[7]
Greening D W , Simpson R J . Journal of Proteomics, 2010,73:637.
[8]
Herraiz T , Casal V . Journal of Chromatography A, 1995,708:209.
[9]
Qin H , Gao P , Wang F , Zhao L , Zhu J , Wang A , Zhang T , Wu R A , Zou H . Angewandte Chemie-International Edition, 2011,50:12218.
[10]
Tian R , Zhang H , Ye M , Jiang X , Hu L , Li X , Bao X , Zou H . Angewandte Chemie-International Edition, 2007,46:962.
[11]
Qing G , Lu Q , Xiong Y , Zhang L , Wang H , Li X , Liang X , Sun T . Advanced Materials, 2017,29:1.
[12]
Wen Y , Chen L , Li J , Liu D , Chen L . Trac-Trends in Analytical Chemistry, 2014,59:26.
[13]
Tian J , Xu J , Zhu F , Lu T , Su C , Ouyang G . Journal of Chromatography A, 2013,1300:2. 53fcd8c2-9840-4f25-ac74-025b1314dfec http://dx.doi.org/10.1016/j.chroma.2013.04.010

doi: 10.1016/j.chroma.2013.04.010     URL    
[14]
Lin G , Gao C , Zheng Q , Lei Z , Geng H , Lin Z , Yang H , Cai Z . Chemical Communications, 2017,53:3649.
[15]
Zhu X , Gu J , Yang J , Wang Z , Li Y , Zhao L , Zhao W , Shi J . Journal of Materials Chemistry B, 2015,3:4242.
[16]
Li J , Liu J , Liu Z , Tan Y , Liu X , Wang F . Analytical Chemistry, 2017,89:4339.
[17]
蔡建锋(Cai J F) . 浙江大学硕士学位论文(Master Dissertation of Zhejiang University), 2015.
[18]
He Y , Zhou W , Qian G , Chen B . Chemical Society Reviews, 2014,43:5657.
[19]
Li J R , Sculley J , Zhou H C . Chemical Reviews, 2012,112:869.
[20]
Zhang T , Lin W . Chemical Society Reviews, 2014,43:5982.
[21]
Liu J , Chen L , Cui H , Zhang J , Zhang L , Su C Y . Chemical Society Reviews, 2014,43:6011. http://xlink.rsc.org/?DOI=C4CS00094C

doi: 10.1039/C4CS00094C     URL    
[22]
张光耀(Zhang G Y) . 南京理工大学硕士学位论文(Master Dissertation of Nanjing University of Science and Technology), 2017.
[23]
Horcajada P , Gref R , Baati T , Allan P K , Maurin G , Couvreur P , Ferey G , Morris R E , Serre C . Chemical Reviews, 2012,112:1232. 5b58c4c9-326b-4c0f-92a6-c7fab9483a93 http://dx.doi.org/10.1021/cr200256v

doi: 10.1021/cr200256v     URL    
[24]
龙星宇(Long X Y), 吴迪(Wu D), 龚小见(Gong X J), 邓琴(Deng Q), 杨珍(Yang Z), 付荗(Fu M) . 贵州师范大学学报(Journal of Guizhou Normal University), 2017,35:104.
[25]
Peng J , Wu R . Anal Chim Acta, 2018,1027:9.
[26]
Gu Z Y , Chen Y J , Jiang J Q , Yan X P . Chemical Communications, 2011,47:4787.
[27]
Wei J P , Qiao B , Song W J , Chen T , Li F , Li B Z , Wang J , Han Y , Huang Y F , Zhou Z J . Analytica Chimica Acta, 2015,868:36.
[28]
Xiong Z , Ji Y , Fang C , Zhang Q , Zhang L , Ye M , Zhang W , Zou H . Chemistry- A European Journal, 2014,20:7389.
[29]
Zhao M , Deng C , Zhang X , Yang P . Proteomics, 2013,13:3387.
[30]
Wei J P , Wang H , Luo T , Zhou Z J , Huang Y F , Qiao B . Analytical and Bioanalytical Chemistry, 2017,409:1895.
[31]
Zhao M , Xie Y , Chen H , Deng C . Talanta, 2017,167:392.
[32]
Cheng G , Wang Z G , Denagamage S , Zheng S Y . ACS Applied Materials & Interfaces, 2016,8:10234.
[33]
Zhao Y M , Zhang Q Q , Zhang L Y , Zhang W B . Talanta, 2019,200:443.
[34]
Marino K , Bones J , Kattla J J , Rudd P M . Nature Chemical Biology, 2010,6:713. https://doi.org/10.1038/nchembio.437

doi: 10.1038/nchembio.437     URL    
[35]
Sun S , Shah P , Eshghi S T , Yang W , Trikannad N , Yang S , Chen L , Aiyetan P , Hoti N , Zhang Z , Chan D W , Zhang H . Nature Biotechnology, 2016,34:84.
[36]
Gaunitz S , Nagy G , Pohl N L B, Noyotny M V. Analytical Chemistry, 2017,89:389.
[37]
Li J , Wang F , Wan H , Liu J , Liu Z , Cheng K , Zou H . Journal of Chromatography A, 2015,1425:213.
[38]
Li J , Wang J , Ling Y , Chen Z , Gao M , Zhang X , Zhou Y . Chemical Communications, 2017,53:4018.
[39]
Ji Y , Xiong Z , Huang G , Liu J , Zhang Z , Liu Z , Ou J , Ye M , Zou H . Analyst, 2014,139:4987.
[40]
Zhang Y W , Li Z , Zhao Q , Zhou Y L , Liu H W , Zhang X X . Chemical Communications, 2014,50:11504.
[41]
Ma W , Xu L , Li Z , Sun Y , Bai Y , Liu H . Nanoscale, 2016,8:10908.
[42]
Ma W , Xu L , Li X , Shen S , Wu M , Bai Y , Liu H . ACS Applied Materials & Interfaces, 2017,9:19562.
[43]
Wang Y , Wang J , Gao M , Zhang X . Proteomics, 2017,17:1.
[44]
Liu Q , Xie Y , Deng C , Lie Y . Talanta, 2017,175:477.
[45]
Xie Y , Deng C , Li Y . Journal of Chromatography A, 2017,1508:1.
[46]
Wang J , Li J , Wang Y , Gao M , Zhang X , Yang P . ACS Applied Materials & Interfaces, 2016,8:27482.
[47]
Xie Y , Deng C . Scientific Reports, 2017,7:1162.
[48]
Peng J , Hu Y , Zhang H , Wan L , Wang L , Liang Z , Zhang L , Wei R A . Analytical Chemistry, 2019,91:4852.
[49]
Sun N , Wang J , Yao J , Deng C . Analytical Chemistry, 2017,89:1764.
[50]
Zolnierowicz S , Bollen M . The EMBO journal, 2000,19:483. http://emboj.embopress.org/cgi/doi/10.1093/emboj/19.4.483

doi: 10.1093/emboj/19.4.483     URL    
[51]
Ptacek J , Devgan G , Michaud G , Zhu H , Zhu X , Fasolo J , Guo H , Jona G , Breitkreutz A , Sopko R , McCartney R R , Schmidt M C , Rachidi N , Lee S J , Mah A S , Meng L , Stark M J R , Stern D F , de Virgilio C , Tyers M , Andrews B , Gerstein M , Schweitzer B , Predki P F , Snyder M . Nature, 2005,438:679.
[52]
Olsen J V , Blagoev B , Gnad F , Macek B , Kumar C , Mortensen P , Mann M . Cell, 2006,127:635.
[53]
Luo B , Yang M , Jiang P , Lan F , Wu Y . Nanoscale, 2018,10:8391.
[54]
Yang X , Xia Y . Microchimica Acta, 2016,183:2235.
[55]
Peng J , Zhang H , Li X , Liu S , Zhao X , Wu J , Kang X , Qin H , Pan Z , Wu R . ACS Applied Materials & Interfaces, 2016,8:35012.
[56]
Chen Y , Xiong Z , Peng L , Gan Y , Zhao Y , Shen J , Qian J , Zhang L , Zhang W . ACS Applied Materials & Interfaces, 2015,7:16338.
[57]
Zhao M , Deng C , Zhang X . Chemical Communications, 2014,50:6228.
[58]
Xie Y , Deng C . Talanta, 2016,159:1.
[59]
Han G , Zeng Q , Jiang Z , Deng W , Huang C , Li Y . Talanta, 2017,171:283.
[60]
Zhao M , Zhang X , Deng C . RSC Advances, 2015,5:35361.
[61]
Zhao M , Chen T , Deng C . RSC Advances, 2016,6:51670.
[62]
Wu Y , Liu Q , Deng C . Analytica Chimica Acta, 2019,1061:110.
[63]
Liu Q , Sun N , Gao M , Deng C H . ACS Sustainable Chemistry & Engineering, 2018,6:4382.
[64]
Li D , Bie Z . RSC Advances, 2017,7:15894.
[65]
Cao L , Zhao Y , Chu Z , Zhang X , Zhang W . Talanta, 2020,206:120165. https://linkinghub.elsevier.com/retrieve/pii/S003991401930791X

doi: 10.1016/j.talanta.2019.120165     URL    
[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[4] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[5] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[6] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[7] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[8] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[9] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[10] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.
[11] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[12] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[13] 石婷, 陈铭, 陈雄平, 汪汲涛, 万锕俊, 赵一雷. 蛋白质巯基亚硝基化分子机制及其疾病相关性[J]. 化学进展, 2015, 27(5): 594-600.
[14] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[15] 曹亚, 朱小立, 赵婧, 李昊, 李根喜. 肿瘤标志蛋白的电化学分析[J]. 化学进展, 2015, 27(1): 1-10.