English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 627-641 DOI: 10.7536/PC190917 前一篇   后一篇

• 综述 •

大气颗粒物中棕色碳的化学组成、来源和生成机制

王玉珏1, 胡敏1,2,**(), 李晓1, 徐楠1   

  1. 1.北京大学 环境模拟与污染控制国家重点联合实验室 区域污染控制国际合作联合实验室 环境科学与工程学院 北京 100871
    2.北京大学 工程科学与新兴技术高精尖创新中心 北京 100871
  • 收稿日期:2019-09-11 修回日期:2019-12-04 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 胡敏
  • 基金资助:
    国家自然科学基金项目(91844301); 国家自然科学基金项目(91544214); 大气重污染成因与治理攻关项目(DQGG0103); 中国博士后科学基金资助项目(2019M650354)

Chemical Composition, Sources and Formation Mechanisms of Particulate Brown Carbon in the Atmosphere

Yujue Wang1, Min Hu1,2,**(), Xiao Li1, Nan Xu1   

  1. 1.State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
    2.Beijing Innovation Center for Engineering Sciences and Advanced Technology, Peking University, Beijing 100871, China
  • Received:2019-09-11 Revised:2019-12-04 Online:2020-05-15 Published:2020-02-20
  • Contact: Min Hu
  • About author:
    ** e-mail:
  • Supported by:
    National Natural Science Foundation of China(91844301); National Natural Science Foundation of China(91544214); National Research Program for Key Issues in Air Pollution Control(DQGG0103); China Postdoctoral Science Foundation(2019M650354)

大气颗粒物中棕色碳(BrC)在近紫外波段具有强吸光性,并因其显著的气候效应被广泛关注。BrC组成、来源、演变和光学性质的不确定性是造成气候模型估算气溶胶辐射强迫不确定性的重要因素。本文综述了大气颗粒物中BrC的化学组成、来源和生成机制,聚焦分子水平上BrC组成、二次生成机制和吸光间的关联。大气颗粒物中BrC的主要类别包括有机溶剂(甲醇)提取的碳质组分、水溶性有机碳及类腐殖质; 分子水平上,硝基芳香烃和含氮杂环有机物是BrC的主要发色团。BrC的来源包括生物质等不完全燃烧一次排放和挥发性有机物氧化二次生成; 二次生成途径主要包括人为源芳香烃氧化生成硝基芳香烃等含氮组分、羰基化合物与铵/胺反应生成含氮杂环组分或低聚物。前体物和反应条件影响二次生成BrC的组成和吸光性质; BrC在大气传输过程中还会发生“光漂白”现象。在分子水平上识别和阐明BrC的发色团、二次生成机制及其演变过程是未来该领域的重点研究方向。

Particulate brown carbon(BrC) has strong wavelength dependence with absorption increasing sharply from visible to UV ranges and has attracted much attention due to its significant climate effects. The composition, sources, evolution and optical properties of BrC remain highly uncertain, which contributes significantly to the uncertainty in estimating aerosol radiation forcing by climate models. The chemical compositions, sources and formation pathways of particulate BrC in the atmosphere are summarized in this review, which focuses on the relationship between molecular-level compositions, secondary formation mechanisms and light absorption properties. Particulate BrC are classfied into several major compound categories, including methanol soluble organic carbon(MSOC), water soluble fractions WSOC(Water Soluble Organic Carbon) and HULIS-C(Carbon Component of HUmic-like Substances). Nitroaromatic compounds(NACs) and N-heterocyclic compounds are major BrC chromophores. The sources of BrC include primary emissions from inefficient combustion, especially biomass burning, and secondary formation via the oxidation of volatile organic compounds(VOCs) in gas and particle phases. Secondary formation pathways include oxidation of aromatics and reactions between carbonyls and ammonia/amines. Oxidation of anthropogenic aromatic hydrocarbons in the presence of NOx produces BrC dominated by nitrogen-containing organic compounds(e.g. NACs). Reactions between carbonyls and ammonia/amines generate BrC dominated by N-heterocyclic compounds and oligomers. Precursors and reaction conditions are important factors influencing the compositions and light absorption of secondary BrC. The chromophores would go through decomposition and BrC light absorption would change rapidly during transport in the atmosphere, which is usually named photobleaching. Molecular-level identification of BrC chromophores and further understanding on the secondary formation mechanisms and atmospheric evolution of BrC are required in future studies.

Contents

1 Introduction

2 Measurements of BrC

3 Chemical composition of BrC

3.1 Major compound categories

3.2 Molecular compositions

4 Sources of BrC

4.1 Source apportionment

4.2 Biomass burning emissions

5 Secondary formation pathways of BrC

5.1 BrC from oxidation of anthropogenic aromatic precursors

5.2 BrC from reactions between carbonyls and ammonia/amines

5.3 Atmospheric aging of BrC

6 Conclusion and outlook

()
图1 碳质气溶胶的分类和分子组成[4]
Fig. 1 Classification and molecular composition of carbonaceous aerosol components[4]
图2 不同环境大气类腐殖质中碳质组分(HULIS-C)和水溶性有机碳(WSOC)的浓度和占比[46, 48~76]。 亚洲地区浓度对应右侧坐标, 其他地区浓度对应左侧坐标。 灰色、绿色和蓝色背景分别表示城市站点、乡村或郊区站点、清洁站点(包括高山/高原站点、海洋站点和北极站点)。 站点名称后括号中sp、su、a、w和y分别表示春、夏、秋、冬和全年观测结果; *号标出的为本论文研究结果
Fig. 2 The observed concentrations of carbon component of HUmic-LIke Substances(HULIS-C), water soluble organic carbon(WSOC) and their ratios in different atmospheric environments[46, 48~76].The concentrations in Asia correspond to the right axis and others correspond to the left axis. Gray, green and blue backgrounds demote the urban site, rural/suburban site and clean site, respectively. The clean site include mountain/highland site, marine and Arctic sites. The markers “sp”, “su”, “a”, “w” and “y” in parentheses represent the studies conducted in spring, summer, autumn, winter or yearly round, respectively. The site names marked by “*” are reported in this study
表1 颗粒态棕色碳中的吸光性含氮有机物
Table 1 List of nitrogen-containing organic compounds contributing to the light absorption by particulate BrC
Formula Sources ref Formula Sources ref
Oxidation of
aromatic VOCs
Biomass burning MG+AS a Biomass burning MG+AS a
C5H4N2O5 21 C13H13NO3 84
C6H3N3O7 21 C13H13NO4 86
C6H4N2O5 21 C15H23N3O2 91
C6H4N2O6 21, 92 C16H9NO3 84
C6H5NO2 21 C17H11N 86
C6H5NO3 17, 21, 85, 87, 90, 92 C18H27NO5 84
C6H5NO4 17, 84, 85, 87, 90, 92 C21H11N 84, 86
C6H5NO5 84~86, 92 C21H13N 84
C6H6N2O6 21 C22H34N2O6 84
C7H4N2O6 21 C23H13N 84
C7H4N2O7 21 C23H31NO4 84
C7H5NO6 21 C27H39NO2 84
C7H6N2O6 21, 92 C48H66N4O4 84
C7H7NO2 21 C6H7NO2 88
C7H7NO3 17, 21, 85, 87, 90~92 C6H8N2 88
C7H7NO4 17, 21, 84~87, 90~92 C6H8N2O 88
C7H7NO5 21, 84, 85, 87, 92 C6H9NO3 88
C7H8N2O7 21 C7H10N2O 88
C7H9NO5 21 C8H10N2O 88
C8H7NO4 17, 84, 86, 92 C8H11NO 88
C8H8N2O5 21 C8H11NO3 88
C8H9NO4 85~87, 92 C8H12N2O 88
C8H9NO5 17, 84~87, 92 C8H7NO2 88
C8H13NO8 21 C9H11N3 88
C9H9NO4 17, 85, 87, 92 C9H11N3O 88
C10H7NO4 92 C9H11NO3 88
C5H4N2O3 85 C9H12N2O 88
C5H5NO4 85 C9H9NO3 88
C6H4N2O5 85, 90 C10H11NO2 88
C6H6N2O3 85 C10H13N3O 88
C7H5NO5 85, 91, 92 C10H14N2O4 88
C7H6N2O5 85 C11H14N2O3 88
C8H5NO4 85 C11H14N2O4 88
C8H7NO3 84, 87 C11H15NO6 88
C8H8N2O5 85 C11H17N3O3 88
C8H9NO3 85, 91 C12H14N2O3 88
C9H11NO4 85, 86, 88 C12H14N2O4 88
C9H7NO3 84 C12H15N3O3 88
C9H7NO4 84, 85 C12H16N2O4 88
C9H9NO5 85 C12H16N2O5 88
C10H10N2O7 85 C13H16N2O2 88
C10H11NO4 85 C13H17N3O3 88
C10H11NO5 85, 86 C13H18N2O6 88
C10H13NO4 86 C14H16N2O2 88
C10H7NO3 84~86, 92 C14H17N3O3 88
C10H7NO5 85 C15H17N3O3 88
C10H8N2O3 85 C15H19NO6 88
C10H9NO5 85 C15H21N3O6 88
C11H11NO4 85 C15H21NO7 88
C11H13NO4 86 C17H19NO5 88
C11H13NO5 86 C17H20N2O6 88
C11H9NO3 84 C17H20N2O7 88
C12H11NO3 84 C18H23N3O5 88
图3 硝基芳香烃在气相和颗粒相中的二次生成途径[24, 25, 111~114]
Fig. 3 Secondary formation pathways of nitroaromatic compounds in gas and particle phases[24, 25, 111~114]
图4 乙二醛和硫酸铵反应生成咪唑及其他氮杂环化合物的反应途径[128,129,130]
Fig. 4 Proposed reaction pathways for the formation of imidazole and other N-heterocyclic compounds in the glyoxal/ammonium sulfate system[128,129,130]
图5 棕色碳研究框架
Fig. 5 The research framework of brown carbon
[1]
Andreae M O, Gelencsér A. Atmos. Chem. Phys., 2006,6:3131. http://www.atmos-chem-phys.net/6/3131/2006/

doi: 10.5194/acp-6-3131-2006     URL    
[2]
Laskin A, Laskin J, Nizkorodov S A. Chem. Rev., 2015,115:4335. https://pubs.acs.org/doi/10.1021/cr5006167

doi: 10.1021/cr5006167     URL    
[3]
Moise T, Flores J M, Rudich Y. Chem. Rev., 2015,115:4400. https://pubs.acs.org/doi/10.1021/cr5005259

doi: 10.1021/cr5005259     URL    
[4]
Poschl U. Anal. Bioanal. Chem., 2003,375:30. http://link.springer.com/10.1007/s00216-002-1611-5

doi: 10.1007/s00216-002-1611-5     URL    
[5]
Alexander D T, Crozier P A, Anderson J R. Science, 2008,321:833. https://www.sciencemag.org/lookup/doi/10.1126/science.1155296

doi: 10.1126/science.1155296     URL    
[6]
Jo D S, Park R J, Lee S, Kim S W, Zhang X. Atmos. Chem. Phys., 2016,16:3413. https://www.atmos-chem-phys.net/16/3413/2016/

doi: 10.5194/acp-16-3413-2016     URL    
[7]
Feng Y, Ramanathan V, Kotamarthi V R. Atmos. Chem. Phys., 2013,13:8607. http://dx.doi.org/10.5194/acp-13-8607-2013

doi: 10.5194/acp-13-8607-2013     URL    
[8]
Wang X, Heald C L, Liu J, Weber R J, Campuzano-Jost P, Jimenez J L, Schwarz J P, Perring A E. Atmos. Chem. Phys., 2018,18:635. https://www.atmos-chem-phys.net/18/635/2018/

doi: 10.5194/acp-18-635-2018     URL    
[9]
Zhang Y, Forrister H, Liu J, Dibb J, Anderson B, Schwarz J P, Perring A E, Jimenez J L, Campuzano-Jost P, Wang Y, Nenes A, Weber R J. Nature Geosci., 2017,10:486. http://www.nature.com/articles/ngeo2960

doi: 10.1038/ngeo2960     URL    
[10]
Liu J, Scheuer E, Dibb J, Ziemba L D, Thornhill K L, Anderson B E, Wisthaler A, Mikoviny T, Devi J J, Bergin M, Weber R J. Geophys. Res. Lett., 2014,41:2191. http://doi.wiley.com/10.1002/2013GL058976

doi: 10.1002/2013GL058976     URL    
[11]
Park R J, Kim M J, Jeong J I, Youn D, Kim S. Atmos. Environ., 2010,44:1414. https://linkinghub.elsevier.com/retrieve/pii/S1352231010001019

doi: 10.1016/j.atmosenv.2010.01.042     URL    
[12]
Gustafsson O, Krusa M, Zencak Z, Sheesley R J, Granat L, Engstrom E, Praveen P S, Rao P S, Leck C, Rodhe H. Science, 2009,323:495. https://www.sciencemag.org/lookup/doi/10.1126/science.1164857

doi: 10.1126/science.1164857     URL    
[13]
Menon S, Hansen J, Nazarenko L, Luo Y. Science, 2002,297:2250. https://www.sciencemag.org/lookup/doi/10.1126/science.1075159

doi: 10.1126/science.1075159     URL    
[14]
Ramanathan V, Crutzen P J, Kiehl J T, Rosenfeld D. Science, 2001,294:2119. https://www.sciencemag.org/lookup/doi/10.1126/science.1064034

doi: 10.1126/science.1064034     URL    
[15]
Ramanathan V, Ramana M V, Roberts G, Kim D, Corrigan C, Chung C, Winker D. Nature, 2007,448:575. https://doi.org/10.1038/nature06019

doi: 10.1038/nature06019     URL    
[16]
Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl J T, Washington W M, Fu Q, Sikka D R, Wild M. Proc. Natl. Acad. Sci. U. S. A., 2005,102:5326. http://www.pnas.org/cgi/doi/10.1073/pnas.0500656102

doi: 10.1073/pnas.0500656102     URL    
[17]
Bluvshtein N, Lin P, Flores J M, Segev L, Mazar Y, Tas E, Snider G, Weagle C, Brown S S, Laskin A, Rudich Y. J. Geophys. Res. [Atmos.], 2017,122:5441.
[18]
Liu J, Scheuer E, Dibb J, Diskin G S, Ziemba L D, Thornhill K L, Anderson B E, Wisthaler A, Mikoviny T, Devi J J, Bergin M, Perring A E, Markovic M Z, Schwarz J P, Campuzano-Jost P, Day D A, Jimenez J L, Weber R J. Atmos. Chem. Phys., 2015,15:7841. https://www.atmos-chem-phys.net/15/7841/2015/

doi: 10.5194/acp-15-7841-2015     URL    
[19]
Washenfelder R A, Attwood A R, Brock C A, Guo H, Xu L, Weber R J, Ng N L, Allen H M, Ayres B R, Baumann K, Cohen R C, Draper D C, Duffey K C, Edgerton E, Fry J L, Hu W W, Jimenez J L, Palm B B, Romer P, Stone E A, Wooldridge P J, Brown S S. Geophys. Res. Lett., 2015,42:653. http://doi.wiley.com/10.1002/2014GL062444

doi: 10.1002/2014GL062444     URL    
[20]
Liu J, Lin P, Laskin A, Laskin J, Kathmann S M, Wise M, Caylor R, Imholt F, Selimovic V, Shilling J E. Atmos. Chem. Phys., 2016,16:12815. https://www.atmos-chem-phys.net/16/12815/2016/

doi: 10.5194/acp-16-12815-2016     URL    
[21]
Lin P, Liu J, Shilling J E, Kathmann S M, Laskin J, Laskin A. Phys. Chem. Chem. Phys., 2015,17:23312. http://xlink.rsc.org/?DOI=C5CP02563J

doi: 10.1039/C5CP02563J     URL    
[22]
Gelencsér A, Hoffer A, Kiss G, Tombácz E, Kurdi R, Bencze L. J. Atmos. Chem., 2003,45:25. http://www.springerlink.com/content/l461j77052476248/

doi: 10.1023/A:1024060428172     URL    
[23]
Graber E R, Rudich Y. Atmos. Chem. Phys., 2006,6:729. http://www.atmos-chem-phys.net/6/729/2006/

doi: 10.5194/acp-6-729-2006     URL    
[24]
Vidovic K, Lasic Jurkovic D, Sala M, Kroflic A, Grgic I. Environ. Sci. Technol., 2018,52:9722. https://pubs.acs.org/doi/10.1021/acs.est.8b01161

doi: 10.1021/acs.est.8b01161     URL    
[25]
Frka S, Sala M, Kroflic A, Hus M, Cusak A, Grgic I. Environ. Sci. Technol., 2016,50:5526. https://pubs.acs.org/doi/10.1021/acs.est.6b00823

doi: 10.1021/acs.est.6b00823     URL    
[26]
Zhao R, Lee A K Y, Huang L, Li X, Yang F, Abbatt J P D. Atmos. Chem. Phys., 2015,15:6087. https://www.atmos-chem-phys.net/15/6087/2015/

doi: 10.5194/acp-15-6087-2015     URL    
[27]
Forrister H, Liu J, Scheuer E, Dibb J, Ziemba L, Thornhill K L, Anderson B, Diskin G, Perring A E, Schwarz J P, Campuzano-Jost P, Day D A, Palm B B, Jimenez J L, Nenes A, Weber R J. Geophys. Res. Lett., 2015,42:4623. https://onlinelibrary.wiley.com/toc/19448007/42/11

doi: 10.1002/grl.v42.11     URL    
[28]
Wong J P S, Nenes A, Weber R J. Environ. Sci. Technol., 2017,51:8414. https://pubs.acs.org/doi/10.1021/acs.est.7b01739

doi: 10.1021/acs.est.7b01739     URL    
[29]
Sengupta D, Samburova V, Bhattarai C, Kirillova E, Mazzoleni L, Iaukea-Lum M, Watts A, Moosmüller H, Khlystov A. Atmos. Chem. Phys., 2018,18:10849. https://www.atmos-chem-phys.net/18/10849/2018/

doi: 10.5194/acp-18-10849-2018     URL    
[30]
Wu G M, Cong Z Y, Kang S C, Kawamura K, Fu P Q, Zhang Y L, Wan X, Gao S P, Liu B. Adv. Climate Change Res., 2016,7:82. https://linkinghub.elsevier.com/retrieve/pii/S1674927816300302

doi: 10.1016/j.accre.2016.06.002     URL    
[31]
Yan J, Wang X, Gong P, Wang C, Cong Z. Sci. Total Environ., 2018,634:1475. https://linkinghub.elsevier.com/retrieve/pii/S0048969718312476

doi: 10.1016/j.scitotenv.2018.04.083     URL    
[32]
Hansen A D A, Rosen H, Novakov T. Sci. Total Environ., 1984,36:191. https://linkinghub.elsevier.com/retrieve/pii/0048969784902651

doi: 10.1016/0048-9697(84)90265-1     URL    
[33]
Liu S, Aiken A C, Gorkowski K, Dubey M K, Cappa C D, Williams L R, Herndon S C, Massoli P, Fortner E C, Chhabra P S, Brooks W A, Onasch T B, Jayne J T, Worsnop D R, China S, Sharma N, Mazzoleni C, Xu L, Ng N L, Liu D, Allan J D, Lee J D, Fleming Z L, Mohr C, Zotter P, Szidat S, Prevot A S H. Nat. Commun., 2015,6:8435. https://doi.org/10.1038/ncomms9435

doi: 10.1038/ncomms9435     URL    
[34]
Lack D A, Langridge J M, Bahreini R, Cappa C D, Middlebrook A M, Schwarz J P. Proc. Natl. Acad. Sci. U. S. A., 2012,109:14802. http://www.pnas.org/cgi/doi/10.1073/pnas.1206575109

doi: 10.1073/pnas.1206575109     URL    
[35]
Lack D A, Bahreini R, Langridge J M, Gilman J B, Middlebrook A M. Atmos. Chem. Phys., 2013,13:2415. http://dx.doi.org/10.5194/acp-13-2415-2013

doi: 10.5194/acp-13-2415-2013     URL    
[36]
Saleh R, Hennigan C J, McMeeking G R, Chuang W K, Robinson E S, Coe H, Donahue N M, Robinson A L. Atmos. Chem. Phys., 2013,13:7683. http://dx.doi.org/10.5194/acp-13-7683-2013

doi: 10.5194/acp-13-7683-2013     URL    
[37]
Lack D A, Langridge J M. Atmos. Chem. Phys., 2013,13:10535. http://dx.doi.org/10.5194/acp-13-10535-2013

doi: 10.5194/acp-13-10535-2013     URL    
[38]
Yang M, Howell S G, Zhuang J, Huebert B J. Atmos. Chem. Phys., 2009,9:2035. https://www.atmos-chem-phys.net/9/2035/2009/

doi: 10.5194/acp-9-2035-2009     URL    
[39]
Varga B, Kiss G, Ganszky I, Gelencser A, Krivacsy Z. Talanta, 2001,55:561. https://linkinghub.elsevier.com/retrieve/pii/S0039914001004465

doi: 10.1016/S0039-9140(01)00446-5     URL    
[40]
Lin P, Huang X F, He L Y, Yu J Z. J. Aerosol Sci., 2010,41:74. https://linkinghub.elsevier.com/retrieve/pii/S002185020900161X

doi: 10.1016/j.jaerosci.2009.09.001     URL    
[41]
Liu J, Bergin M, Guo H, King L, Kotra N, Edgerton E, Weber R J. Atmos. Chem. Phys., 2013,13:12389. http://dx.doi.org/10.5194/acp-13-12389-2013

doi: 10.5194/acp-13-12389-2013     URL    
[42]
Weber R J, Orsini D, Daun Y, Lee Y N, Klotz P J, Brechtel F. Aerosol Sci. Tech., 2001,35:718. http://www.tandfonline.com/doi/abs/10.1080/02786820152546761

doi: 10.1080/02786820152546761     URL    
[43]
Hecobian A, Zhang X, Zheng M, Frank N, Edgerton E S, Weber R J. Atmos. Chem. Phys., 2010,10:5965. https://www.atmos-chem-phys.net/10/5965/2010/

doi: 10.5194/acp-10-5965-2010     URL    
[44]
Zhang X, Lin Y H, Surratt J D, Weber R J. Environ. Sci. Technol., 2013,47:3685. https://pubs.acs.org/doi/10.1021/es305047b

doi: 10.1021/es305047b     URL    
[45]
Hoffer A, Gelencsér A, Guyon P, Kiss G, Schmid O, Frank G P, Artaxo P, Andreae M O. Atmos. Chem. Phys., 2006,6:3563. http://www.atmos-chem-phys.net/6/3563/2006/

doi: 10.5194/acp-6-3563-2006     URL    
[46]
Mo Y, Li J, Jiang B, Su T, Geng X, Liu J, Jiang H, Shen C, Ding P, Zhong G, Cheng Z, Liao Y, Tian C, Chen Y, Zhang G. Environ. Pollut., 2018,239:322. https://linkinghub.elsevier.com/retrieve/pii/S0269749118300101

doi: 10.1016/j.envpol.2018.04.041     URL    
[47]
Zheng G, He K, Duan F, Cheng Y, Ma Y. Environ. Pollut., 2013,181:301. http://dx.doi.org/10.1016/j.envpol.2013.05.055

doi: 10.1016/j.envpol.2013.05.055     URL    
[48]
Nguyen Q T, Kristensen T B, Hansen A M K, Skov H, Bossi R, Massling A, Sørensen L L, Bilde M, Glasius M, Nøjgaard J K. J. Geophys. Res. [Atmos.], 2014,119:5011.
[49]
Kumar V, Goel A, Rajput P. Atmos. Environ., 2017,164:468. https://linkinghub.elsevier.com/retrieve/pii/S1352231017303886

doi: 10.1016/j.atmosenv.2017.06.008     URL    
[50]
Wang Y, Hu M, Lin P, Guo Q, Wu Z, Li M, Zeng L, Song Y, Zeng L, Wu Y, Guo S, Huang X, He L. Environ. Sci. Technol., 2017,51:5951. https://pubs.acs.org/doi/10.1021/acs.est.7b00248

doi: 10.1021/acs.est.7b00248     URL    
[51]
Feczko T, Puxbaum H, Kasper-Giebl A, Handler M, Limbeck A, Gelencser A, Pio C, Preunkert S, Legrand M. J. Geophys. Res.-Atmos., 2007, 112: D23S10.
[52]
Baduel C, Voisin D, Jaffrezo J L. Atmos. Chem. Phys., 2010,10:4085. https://www.atmos-chem-phys.net/10/4085/2010/

doi: 10.5194/acp-10-4085-2010     URL    
[53]
Chen Q, Ikemori F, Higo H, Asakawa D, Mochida M. Environ. Sci. Technol., 2016,50:1721. https://pubs.acs.org/doi/10.1021/acs.est.5b05277

doi: 10.1021/acs.est.5b05277     URL    
[54]
El Haddad I, Marchand N, Temime-Roussel B, Wortham H, Piot C, Besombes J L, Baduel C, Voisin D, Armengaud A, Jaffrezo J L. Atmos. Chem. Phys., 2011,11:2059. http://dx.doi.org/10.5194/acp-11-2059-2011

doi: 10.5194/acp-11-2059-2011     URL    
[55]
Emmenegger C, Reinhardt A, Hueglin C, Zenobi R, Kalberer M. Environ. Sci. Technol., 2007,41:2473. https://pubs.acs.org/doi/10.1021/es061095t

doi: 10.1021/es061095t     URL    
[56]
Fan X, Song J, Peng P a. Atmos. Res., 2016,172/173:8. https://linkinghub.elsevier.com/retrieve/pii/S0169809516000107

doi: 10.1016/j.atmosres.2015.12.024     URL    
[57]
Kiss G, Varga B, Galambos I, Ganszky I. J. Geophys. Res.-Atmos., 2002,107:8339.
[58]
Krivácsy Z, Gelencsér A, Kiss G, Mészáros E, Molnár Á, Hoffer A, Mészáros T, Sárvári Z, Temesi D, Varga B, Baltensperger U, Nyeki S, Weingartner E. J. Atmos. Chem., 2001,39:235. http://www.springerlink.com/content/k64276tl84134h43/

doi: 10.1023/A:1010637003083     URL    
[59]
Krivacsy Z, Kiss G, Ceburnis D, Jennings G, Maenhaut W, Salma I, Shooter D. Atmos. Res., 2008,87:1.
[60]
Kuang B Y, Lin P, Huang X H H, Yu J Z. Atmos. Chem. Phys., 2015,15:1995. https://www.atmos-chem-phys.net/15/1995/2015/

doi: 10.5194/acp-15-1995-2015     URL    
[61]
Limbeck A, Handler M, Neuberger B, Klatzer B, Puxbaum H. Anal. Chem., 2005,77:7288. https://pubs.acs.org/doi/10.1021/ac050953l

doi: 10.1021/ac050953l     URL    
[62]
Lin P, Engling G, Yu J Z. Atmos. Chem. Phys., 2010,10:6487. https://www.atmos-chem-phys.net/10/6487/2010/

doi: 10.5194/acp-10-6487-2010     URL    
[63]
Park S S, Son S C. Atmos. Res., 2017,185:73. https://linkinghub.elsevier.com/retrieve/pii/S0169809516305804

doi: 10.1016/j.atmosres.2016.11.005     URL    
[64]
Park S, Son S C, Lee S. Atmos. Res., 2018,213:370. https://linkinghub.elsevier.com/retrieve/pii/S0169809518301984

doi: 10.1016/j.atmosres.2018.06.017     URL    
[65]
Qiao T, Zhao M, Xiu G, Yu J. Atmos. Environ., 2015,123:306. https://linkinghub.elsevier.com/retrieve/pii/S1352231015002241

doi: 10.1016/j.atmosenv.2015.03.010     URL    
[66]
Salma I, Ocskay R, Chi X, Maenhaut W. Atmos. Environ., 2007,41:4106. https://linkinghub.elsevier.com/retrieve/pii/S1352231007000799

doi: 10.1016/j.atmosenv.2007.01.027     URL    
[67]
Salma I, Ocskay R, Láng G G. Atmos. Chem. Phys., 2008,8:2243. https://www.atmos-chem-phys.net/8/2243/2008/

doi: 10.5194/acp-8-2243-2008     URL    
[68]
Salma I, Mészáros T, Maenhaut W, Vass E, Majer Z. Atmos. Chem. Phys., 2010,10:1315. https://www.atmos-chem-phys.net/10/1315/2010/

doi: 10.5194/acp-10-1315-2010     URL    
[69]
Samburova V, Szidat S, Hueglin C, Fisseha R, Baltensperger U, Zenobi R, Kalberer M. J. Geophys. Res. -Atmos., 2005,110:D23310. http://doi.wiley.com/10.1029/2005JD005783

doi: 10.1029/2005JD005783     URL    
[70]
Samburova V, Zenobi R, Kalberer M. Atmos. Chem. Phys., 2005,5:2163. http://www.atmos-chem-phys.net/5/2163/2005/

doi: 10.5194/acp-5-2163-2005     URL    
[71]
Samburova V, Didenko T, Kunenkov E, Emmenegger C, Zenobi R, Kalberer M. Atmos. Environ., 2007,41:4703. https://linkinghub.elsevier.com/retrieve/pii/S1352231007002890

doi: 10.1016/j.atmosenv.2007.03.033     URL    
[72]
Song J, He L, Peng P a, Zhao J, Ma S. Aerosol Sci. Tech., 2012,46:533. http://dx.doi.org/10.1080/02786826.2011.645956

doi: 10.1080/02786826.2011.645956     URL    
[73]
Song J, Zhu M, Wei S, Peng P a, Ren M. Atmospheric Pollution Research, 2019,10:313. https://linkinghub.elsevier.com/retrieve/pii/S1309104218301168

doi: 10.1016/j.apr.2018.09.003     URL    
[74]
Tan J, Xiang P, Zhou X, Duan J, Ma Y, He K, Cheng Y, Yu J, Querol X. Sci. Total Environ., 2016,573:1481. https://linkinghub.elsevier.com/retrieve/pii/S0048969716317168

doi: 10.1016/j.scitotenv.2016.08.025     URL    
[75]
Wu G, Wan X, Gao S, Fu P, Yin Y, Li G, Zhang G, Kang S, Ram K, Cong Z. Environ. Sci. Technol., 2018,52:7203. https://pubs.acs.org/doi/10.1021/acs.est.8b01251

doi: 10.1021/acs.est.8b01251     URL    
[76]
Zhao M, Qiao T, Li Y, Tang X, Xiu G, Yu J Z. Sci. Total Environ., 2016,571:18. https://linkinghub.elsevier.com/retrieve/pii/S0048969716315728

doi: 10.1016/j.scitotenv.2016.07.127     URL    
[77]
Cheng Y, He K B, Engling G, Weber R, Liu J M, Du Z Y, Dong S P. Sci. Total Environ., 2017,599/600:1047. https://linkinghub.elsevier.com/retrieve/pii/S0048969717311610

doi: 10.1016/j.scitotenv.2017.05.061     URL    
[78]
Cheng Y, He K B, Du Z Y, Engling G, Liu J M, Ma Y L, Zheng M, Weber R J. Atmos. Environ., 2016,127:355. https://linkinghub.elsevier.com/retrieve/pii/S1352231015306075

doi: 10.1016/j.atmosenv.2015.12.035     URL    
[79]
Park S, Yu G H, Lee S. Atmos. Res., 2018,203:16. https://linkinghub.elsevier.com/retrieve/pii/S016980951730892X

doi: 10.1016/j.atmosres.2017.12.002     URL    
[80]
Zhu C S, Cao J J, Huang R J, Shen Z X, Wang Q Y, Zhang N N. Sci. Total Environ., 2018,625:246. https://linkinghub.elsevier.com/retrieve/pii/S0048969717336094

doi: 10.1016/j.scitotenv.2017.12.183     URL    
[81]
Noziere B, Kalberer M, Claeys M, Allan J, D’Anna B, Decesari S, Finessi E, Glasius M, Grgic I, Hamilton J F, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf C J, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt J D, Szidat S, Szmigielski R, Wisthaler A. Chem. Rev., 2015,115:3919. https://pubs.acs.org/doi/10.1021/cr5003485

doi: 10.1021/cr5003485     URL    
[82]
Laskin J, Laskin A, Roach P J, Slysz G W, Anderson G A, Nizkorodov S A, Bones D L, Nguyen L Q. Anal. Chem., 2010,82:2048. https://pubs.acs.org/doi/10.1021/ac902801f

doi: 10.1021/ac902801f     URL    
[83]
Nizkorodov S A, Laskin J, Laskin A. Phys. Chem. Chem. Phys., 2011,13:3612. http://xlink.rsc.org/?DOI=c0cp02032j

doi: 10.1039/c0cp02032j     URL    
[84]
Lin P, Aiona P K, Li Y, Shiraiwa M, Laskin J, Nizkorodov S A, Laskin A. Environ. Sci. Technol., 2016,50:11815. https://pubs.acs.org/doi/10.1021/acs.est.6b03024

doi: 10.1021/acs.est.6b03024     URL    
[85]
Lin P, Bluvshtein N, Rudich Y, Nizkorodov S A, Laskin J, Laskin A. Environ. Sci. Technol., 2017,51:11561. https://pubs.acs.org/doi/10.1021/acs.est.7b02276

doi: 10.1021/acs.est.7b02276     URL    
[86]
Lin P, Fleming L T, Nizkorodov S A, Laskin J, Laskin A. Anal. Chem., 2018,90:12493. https://pubs.acs.org/doi/10.1021/acs.analchem.8b02177

doi: 10.1021/acs.analchem.8b02177     URL    
[87]
Desyaterik Y, Sun Y, Shen X, Lee T, Wang X, Wang T, Collett J L. J. Geophys. Res. [Atmos.], 2013,118:7389.
[88]
Lin P, Laskin J, Nizkorodov S A, Laskin A. Environ. Sci. Technol., 2015,49:14257. https://pubs.acs.org/doi/10.1021/acs.est.5b03608

doi: 10.1021/acs.est.5b03608     URL    
[89]
Qin Y M, Tan H B, Li Y J, Li Z J, Schurman M I, Liu L, Wu C, Chan C K. Atmos. Chem. Phys., 2018,18:16409. https://www.atmos-chem-phys.net/18/16409/2018/

doi: 10.5194/acp-18-16409-2018     URL    
[90]
Mohr C, Lopez-Hilfiker F D, Zotter P, Prevot A S, Xu L, Ng N L, Herndon S C, Williams L R, Franklin J P, Zahniser M S, Worsnop D R, Knighton W B, Aiken A C, Gorkowski K J, Dubey M K, Allan J D, Thornton J A. Environ. Sci. Technol., 2013,47:6316.
[91]
Budisulistiorini S H, Riva M, Williams M, Chen J, Itoh M, Surratt J D, Kuwata M. Environ. Sci. Technol., 2017,51:4415. https://pubs.acs.org/doi/10.1021/acs.est.7b00397

doi: 10.1021/acs.est.7b00397     URL    
[92]
Xie M, Chen X, Hays M D, Lewandowski M, Offenberg J, Kleindienst T E, Holder A L. Environ. Sci. Technol., 2017,51:11607. https://pubs.acs.org/doi/10.1021/acs.est.7b03263

doi: 10.1021/acs.est.7b03263     URL    
[93]
Marrero-Ortiz W, Hu M, Du Z, Ji Y, Wang Y, Guo S, Lin Y, Gomez-Hermandez M, Peng J, Li Y, Secrest J, Levy Zamora M, Wang Y, An T, Zhang R. Environ. Sci. Technol., 2018,53:117. https://pubs.acs.org/doi/10.1021/acs.est.8b03995

doi: 10.1021/acs.est.8b03995     URL    
[94]
Lin P, Rincon A G, Kalberer M, Yu J Z. Environ. Sci. Technol., 2012,46:7454. https://pubs.acs.org/doi/10.1021/es300285d

doi: 10.1021/es300285d     URL    
[95]
Laskin A, Smith J S, Laskin J. Environ. Sci. Technol., 2009,43:3764. https://pubs.acs.org/doi/10.1021/es803456n

doi: 10.1021/es803456n     URL    
[96]
Liu J, Mo Y, Ding P, Li J, Shen C, Zhang G. Sci. Total Environ., 2018,633:1571. https://linkinghub.elsevier.com/retrieve/pii/S0048969718310532

doi: 10.1016/j.scitotenv.2018.03.293     URL    
[97]
Du Z, He K, Cheng Y, Duan F, Ma Y, Liu J, Zhang X, Zheng M, Weber R. Atmos. Environ., 2014,92:514. https://linkinghub.elsevier.com/retrieve/pii/S135223101400346X

doi: 10.1016/j.atmosenv.2014.04.060     URL    
[98]
Ma Y, Cheng Y, Qiu X, Cao G, Fang Y, Wang J, Zhu T, Yu J, Hu D. Atmos. Chem. Phys., 2018,18:5607. https://www.atmos-chem-phys.net/18/5607/2018/

doi: 10.5194/acp-18-5607-2018     URL    
[99]
Li X, Han J, Hopke P K, Hu J, Shu Q, Chang Q, Ying Q. Atmos. Chem. Phys., 2019,19:2327. https://www.atmos-chem-phys.net/19/2327/2019/

doi: 10.5194/acp-19-2327-2019     URL    
[100]
Moschos V, Kumar N K, Daellenbach K R, Baltensperger U, Prévôt A S H, El Haddad I. Environ. Sci. Tech. Let., 2018,5:302.
[101]
Aurell J, Gullett B K. Environ. Sci. Technol., 2013,47:8443.
[102]
Kirchstetter T W, Novakov T, Hobbs P V. J. Geophys. Res. [Atmos.], 2004,109:D21208.
[103]
Park S S, Yu J. Atmos. Environ., 2016,136:114. https://linkinghub.elsevier.com/retrieve/pii/S1352231016303053

doi: 10.1016/j.atmosenv.2016.04.022     URL    
[104]
Fan X, Wei S, Zhu M, Song J, Peng P a. Atmos. Chem. Phys., 2016,16:13321. https://www.atmos-chem-phys.net/16/13321/2016/

doi: 10.5194/acp-16-13321-2016     URL    
[105]
Chakrabarty R K, Gyawali M, Yatavelli R L N, Pandey A, Watts A C, Knue J, Chen L W A, Pattison R R, Tsibart A, Samburova V, Moosmüller H. Atmos. Chem. Phys., 2016,16:3033. https://www.atmos-chem-phys.net/16/3033/2016/

doi: 10.5194/acp-16-3033-2016     URL    
[106]
Wang Y, Hu M, Wang Y, Qin Y, Chen H, Zeng L, Lei J, Huang X, He L, Zhang R, Wu Z. Acta Chim. Sinica, 2016,74:356. http://sioc-journal.cn/Jwk_hxxb/CN/abstract/abstract345441.shtml

doi: 10.6023/A16010008     URL    
[107]
Huo Y, Li M, Jiang M, Qi W. Atmos. Environ., 2018,191:490. https://linkinghub.elsevier.com/retrieve/pii/S1352231018305594

doi: 10.1016/j.atmosenv.2018.08.038     URL    
[108]
Chen Y, Bond T C. Atmos. Chem. Phys., 2010,10:1773. https://www.atmos-chem-phys.net/10/1773/2010/

doi: 10.5194/acp-10-1773-2010     URL    
[109]
Updyke K M, Nguyen T B, Nizkorodov S A. Atmos. Environ., 2012,63:22. https://linkinghub.elsevier.com/retrieve/pii/S1352231012008710

doi: 10.1016/j.atmosenv.2012.09.012     URL    
[110]
Cheng Y, He K B, Zheng M, Duan F K, Du Z Y, Ma Y L, Tan J H, Yang F M, Liu J M, Zhang X L, Weber R J, Bergin M H, Russell A G. Atmos. Chem. Phys., 2011,11:11497. https://www.atmos-chem-phys.net/11/11497/2011/

doi: 10.5194/acp-11-11497-2011     URL    
[111]
Wang Y, Hu M, Wang Y, Zheng J, Shang D, Yang Y, Liu Y, Li X, Tang R, Zhu W, Du Z, Wu Y, Guo S, Wu Z, Lou S, Hallquist M, Yu J Z. Atmos. Chem. Phys., 2019,19:7649. https://www.atmos-chem-phys.net/19/7649/2019/

doi: 10.5194/acp-19-7649-2019     URL    
[112]
Jenkin M E, Saunders S M, Wagner V, Pilling M J. Atmos. Chem. Phys., 2003,3:181. http://www.atmos-chem-phys.net/3/181/2003/

doi: 10.5194/acp-3-181-2003     URL    
[113]
Vione D, Maurino V, Minero C, Pelizzetti E. Chemosphere, 2001,45:893. https://linkinghub.elsevier.com/retrieve/pii/S0045653501000352

doi: 10.1016/S0045-6535(01)00035-2     URL    
[114]
Vione D, Maurino V, Minero C, Lucchiari M, Pelizzetti E. Chemosphere, 2004,56:1049. http://www.sciencedirect.com/science/article/pii/S0045653504003492

doi: 10.1016/j.chemosphere.2004.05.027     URL    
[115]
Sato K, Hatakeyama S, Imamura T. J. Phys. Chem. A, 2007,111:9796. https://pubs.acs.org/doi/10.1021/jp071419f

doi: 10.1021/jp071419f     URL    
[116]
Ji Y, Zhao J, Terazono H, Misawa K, Levitt N P, Li Y, Lin Y, Peng J, Wang Y, Duan L, Pan B, Zhang F, Feng X, An T, Marrero-Ortiz W, Secrest J, Zhang A L, Shibuya K, Molina M J, Zhang R. Proc. Natl. Acad. Sci. U.S. A., 2017,114:8169. http://www.pnas.org/lookup/doi/10.1073/pnas.1705463114

doi: 10.1073/pnas.1705463114     URL    
[117]
Olariu R I, Klotz B, Barnes I, Becker K H, Mocanu R. Atmos. Environ., 2002,36:3685. https://linkinghub.elsevier.com/retrieve/pii/S1352231002002029

doi: 10.1016/S1352-2310(02)00202-9     URL    
[118]
Harrison M A J, Barra S, Borghesi D, Vione D, Arsene C, Iulian Olariu R. Atmos. Environ., 2005,39:231. https://linkinghub.elsevier.com/retrieve/pii/S1352231004009252

doi: 10.1016/j.atmosenv.2004.09.044     URL    
[119]
Iinuma Y, Boge O, Grafe R, Herrmann H. Environ. Sci. Technol., 2010,44:8453. https://pubs.acs.org/doi/10.1021/es102938a

doi: 10.1021/es102938a     URL    
[120]
Claeys M, Vermeylen R, Yasmeen F, Gomez-Gonzalez Y, Chi X G, Maenhaut W, Meszaros T, Salma I. Environ. Chem., 2012,9:273. http://dx.doi.org/10.1071/EN11163

doi: 10.1071/EN11163     URL    
[121]
Finewax Z, de Gouw J A, Ziemann P J. Environ. Sci. Technol., 2018,52:1981. https://pubs.acs.org/doi/10.1021/acs.est.7b05864

doi: 10.1021/acs.est.7b05864     URL    
[122]
Lauraguais A, Coeur-Tourneur C, Cassez A, Deboudt K, Fourmentin M, Choël M. Atmos. Environ., 2014,86:155. https://linkinghub.elsevier.com/retrieve/pii/S1352231013009242

doi: 10.1016/j.atmosenv.2013.11.074     URL    
[123]
Yuan B, Liggio J, Wentzell J, Li S M, Stark H, Roberts J M, Gilman J, Lerner B, Warneke C, Li R, Leithead A, Osthoff H D, Wild R, Brown S S, de Gouw J A. Atmos. Chem. Phys., 2016,16:2139. https://www.atmos-chem-phys.net/16/2139/2016/

doi: 10.5194/acp-16-2139-2016     URL    
[124]
Nakayama T, Sato K, Matsumi Y, Imamura T, Yamazaki A, Uchiyama A. Atmos. Chem. Phys., 2013,13:531. http://dx.doi.org/10.5194/acp-13-531-2013

doi: 10.5194/acp-13-531-2013     URL    
[125]
Trainic M, Riziq A A, Lavi A, Rudich Y. J. Phys. Chem. A, 2012,116:5948. http://dx.doi.org/10.1021/jp2104837

doi: 10.1021/jp2104837     URL    
[126]
De Haan D O, Corrigan A L, Smith K W, Stroik D R, Turley J J, Lee F E, Tolbert M A, Jimenez J L, Cordova K E, Ferrell G R. Environ. Sci. Technol., 2009,43:2818. https://pubs.acs.org/doi/10.1021/es803534f

doi: 10.1021/es803534f     URL    
[127]
Ervens B, Turpin B J, Weber R J. Atmos. Chem. Phys., 2011,11:11069. https://www.atmos-chem-phys.net/11/11069/2011/

doi: 10.5194/acp-11-11069-2011     URL    
[128]
Kampf C J, Jakob R, Hoffmann T. Atmos. Chem. Phys., 2012,12:6323. http://dx.doi.org/10.5194/acp-12-6323-2012

doi: 10.5194/acp-12-6323-2012     URL    
[129]
Yu G, Bayer A R, Galloway M M, Korshavn K J, Fry C G, Keutsch F N. Environ. Sci. Technol., 2011,45:6336. https://pubs.acs.org/doi/10.1021/es200989n

doi: 10.1021/es200989n     URL    
[130]
Galloway M M, Chhabra P S, Chan A W H, Surratt J D, Flagan R C, Seinfeld J H, Keutsch F N. Atmos. Chem. Phys., 2009,9:3331. https://www.atmos-chem-phys.net/9/3331/2009/

doi: 10.5194/acp-9-3331-2009     URL    
[131]
Lee A K, Zhao R, Li R, Liggio J, Li S M, Abbatt J P. Environ. Sci. Technol., 2013,47:12819. https://pubs.acs.org/doi/10.1021/es402687w

doi: 10.1021/es402687w     URL    
[132]
De Haan D O, Hawkins L N, Kononenko J A, Turley J J, Corrigan A L, Tolbert M A, Jimenez J L. Environ. Sci. Technol., 2011,45:984. https://pubs.acs.org/doi/10.1021/es102933x

doi: 10.1021/es102933x     URL    
[133]
Nguyen T B, Laskin A, Laskin J, Nizkorodov S A. Faraday Discussions, 2013,165:473. http://dx.doi.org/10.1039/c3fd00036b

doi: 10.1039/c3fd00036b     URL    
[134]
De Haan D O, Tolbert M A, Jimenez J L. Geophys. Res. Lett., 2009,36.
[135]
Bones D L, Henricksen D K, Mang S A, Gonsior M, Bateman A P, Nguyen T B, Cooper W J, Nizkorodov S A. J. Geophys. Res., 2010,115.
[136]
Aiona P K, Lee H J, Lin P, Heller F, Laskin A, Laskin J, Nizkorodov S A. Environ. Sci. Technol., 2017,51:11048. https://pubs.acs.org/doi/10.1021/acs.est.7b02293

doi: 10.1021/acs.est.7b02293     URL    
[137]
Montoya-Aguilera J, Horne J R, Hinks M L, Fleming L T, Perraud V, Lin P, Laskin A, Laskin J, Dabdub D, Nizkorodov S A. Atmos. Chem. Phys., 2017,17:11605. https://www.atmos-chem-phys.net/17/11605/2017/

doi: 10.5194/acp-17-11605-2017     URL    
[138]
Powelson M H, Espelien B M, Hawkins L N, Galloway M M De Haan D O. Environ. Sci. Technol., 2014,48:985. https://pubs.acs.org/doi/10.1021/es4038325

doi: 10.1021/es4038325     URL    
[139]
Jang M, Czoschke N M, Lee S, Kamens R M. Science, 2002,298:814. https://www.sciencemag.org/lookup/doi/10.1126/science.1075798

doi: 10.1126/science.1075798     URL    
[140]
Sedehi N, Takano H, Blasic V A, Sullivan K A, De Haan D O. Atmos. Environ., 2013,77:656. https://linkinghub.elsevier.com/retrieve/pii/S1352231013004433

doi: 10.1016/j.atmosenv.2013.05.070     URL    
[141]
Fan X, Yu X, Wang Y, Xiao X, Li F, Xie Y, Wei S, Song J, Peng P. Atmos. Environ., 2019,205:9. https://linkinghub.elsevier.com/retrieve/pii/S1352231019301372

doi: 10.1016/j.atmosenv.2019.02.039     URL    
[142]
Lee H J, Aiona P K, Laskin A, Laskin J, Nizkorodov S A. Environ. Sci. Technol., 2014,48:10217. https://pubs.acs.org/doi/10.1021/es502515r

doi: 10.1021/es502515r     URL    
[143]
Phillips S M, Bellcross A D, Smith G D. Environ. Sci. Technol., 2017,51:6782. https://pubs.acs.org/doi/10.1021/acs.est.7b01116

doi: 10.1021/acs.est.7b01116     URL    
[1] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[2] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[3] 金梨娟, 陈宝梁*. 环境中卤代有机污染物的自然来源、背景浓度及形成机理[J]. 化学进展, 2017, 29(9): 1093-1114.
[4] 方齐乐, 陈宝梁*. 环境中高氯酸盐的自然来源、形成机制及其归趋行为[J]. 化学进展, 2012, (10): 2040-2053.
[5] 阴永光, 刘景富, 江桂斌. 海洋环境中的天然溴代有机物[J]. 化学进展, 2011, 23(01): 254-260.
[6] 刘永春,贺泓. 大气颗粒物化学组成分析*[J]. 化学进展, 2007, 19(10): 1620-1631.
[7] 刘汉霞,张庆华,江桂斌,蔡宗苇. 多溴联苯醚及其环境问题[J]. 化学进展, 2005, 17(03): 554-562.