English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 309-319 DOI: 10.7536/PC190618 前一篇   后一篇

• •

介孔碳球的制备及作为药物传输系统的应用

何天稀1,2,**(), 王文斌1, 王九1, 陈波水1, 梁琼麟2,**()   

  1. 1. 重庆化工职业学院 重庆 401228
    2. 清华大学化学系 北京 100084
  • 收稿日期:2019-06-17 出版日期:2020-02-15 发布日期:2019-12-19
  • 通讯作者: 何天稀, 梁琼麟
  • 基金资助:
    国家科技重大专项项目(2013ZX09507005); 国家自然科学基金项目(21305074); 重庆市自然科学基金项目(cstc2019jcyj-msxmX0611)

Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System

Tianxi He1,2,**(), Wenbin Wang1, Jiu Wang1, Boshui Chen1, Qionglin Liang2,**()   

  1. 1. Chongqing Chemical Industry Vocational College, Chongqing 401228, China
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2019-06-17 Online:2020-02-15 Published:2019-12-19
  • Contact: Tianxi He, Qionglin Liang
  • About author:
    ** e-mail: (Tianxi He);
    (Qionglin Liang)
  • Supported by:
    National Major Special Project of Science and Technology(2013ZX09507005); National Natural Science Foundation of China(21305074); Chongqing Natural Science Foundation(cstc2019jcyj-msxmX0611)

介孔碳球是一种新型多孔球形碳材料,因具有比表面积大、化学稳定性高、生物相容性好以及孔容孔径可调及粒径大小可控等许多优点,在生物医药、能量储存与转化、环境治理和催化等领域有着巨大的应用前景。本文介绍了模板法、St?ber法和微流控液滴法制备介孔碳球的相关研究,综述了近年来介孔碳球作为药物传输系统(Drug delivery system, DDS)的应用研究进展,重点对表面性质控释、刺激响应控释、靶向输送、诊疗一体化等四种DDS的研究进行了评述,并提出了当前介孔碳球制备及在作为癌症治疗DDS的应用中尚待解决的主要问题和发展趋势。

Mesoporous carbon spheres are a new type of porous spherical carbon materials. They are promising in many fields such as biomedicine, energy storage/conversion, environmental treatment, and catalysis, thanks to their high surface area, good chemical stability, excellent biocompatibility, tunable pore sizes and volume, and controllable particle size distribution. In the present work, recent advances in the preparing methods of mesoporous carbon spheres, including templating methods, St?ber methods, and microfluidic droplets methods, are summarized. Moreover, the applications of mesoporous carbon spheres as drug delivery system(DDS) including controlled surface property release, stimuli-responsive release, targeted delivery, and theranostic delivery, are reviewed. Finally, the main problems and development trends in the synthesis of mesoporous carbon spheres and applications in DDS for cancer therapy are proposed and discussed.

()
图1 合成介孔碳球方法[17,46]:(a)模板法:硬模板法(i);软模板法(ii);(b)St?ber法;(c)微流控液滴法
Fig.1 Primary methods for synthesizing mesoporous carbon spheres(meso-CS) or microspheres carbon spheres(micro-CS)[17,46]. (a)Templating methods: Hard templating process(i); soft templating process(ii). (b) St?ber method; (c) Droplet based microfluidics[17,46].Copyright 2015, Nature Publishing Group, Copyright 2016, Elsevier.
图2 制备的介孔碳球内部结构随(a)NaOH浓度,(b)温度和苯酚量的SEM图像变化,标尺=10 μm[33]
Fig.2 SEM images showing the interior structural evolution of MCMs as a function of (a) base concentration, and (b) temperature and amount of phenol. Scale bar=10 μm[33]. Copyright 2018, Wiley-VCH
图3 相同浓度的载有顺铂-紫杉醇、顺铂、空白的介孔碳/硅纳米球对卵巢癌细胞毒性考察(a)正常卵巢癌细胞SKOV3中孵育3 h,(b)耐药卵巢癌细胞A2780(CP70)中孵育24 h[47]
Fig.3 Cytotoxicity of cisplatin and PTX-loaded MC@MS nanospheres, cisplatin-loaded MC@MS nanospheres, and mesoporous MC@MS nanospheres at the same dose in different human ovarian cancer cells:(a) normal ovarian cancer cells SKOV3 for 3 h, and (b) drug-resistant A2780(CP70) cells for 24 h[47]. Copyright 2014, Wiley-VCH
图4 (a)化疗与光热治疗协同作用介孔碳球的靶向细胞摄取;(b)构建的诊断治疗介孔碳球在不同条件下的释药曲线[60]
Fig.4 (a) Illustration of the MCM-based system for targeted cellular uptake and combined chemo-photothermal therapy.(b) Release profiles of the MCM in integrating chemotherapy with photothermal therapy for targeted cellular uptake under different conditions[60]. Copyright 2018, American Chemical Society
图5 (a) 用于乳腺癌治疗的PA成像引导的化疗/基因治疗/热疗协同的四合一靶向DOPPT/pDNA的制备;(b)不同治疗组对MCF-7细胞的抑制作用[65]。数据以平均值±标准偏差的形式展现, n=4, *p < 0.05; **p < 0.01
Fig.5 (a) Illustration of the preparation of DOPPT/pDNA and PA imaging-guided trimodal chemo-gene-thermo synergistic targeting therapy of breast cancer.(b)Cell viability to MCF-7 cells after different treatments. Data are presented as the mean ± SD, n=4. *p < 0.05; **p < 0.01[65]. Copyright 2018, American Chemical Society
[1]
Shi J J, Kantoff P W, Wooster R, Farokhzad O C . Nat. Rev. Cancer, 2017,17(1):20. https://www.ncbi.nlm.nih.gov/pubmed/27834398

doi: 10.1038/nrc.2016.108     URL     pmid: 27834398
[2]
Byrne J D, Betancourt T, Brannon-Peppas L . Adv. Drug Deliver. Rev., 2008,60(15):1615. https://www.ncbi.nlm.nih.gov/pubmed/18840489

doi: 10.1016/j.addr.2008.08.005     URL     pmid: 18840489
[3]
Gabizon A, Shmeeda H, Barenholz Y . Clin. Pharmacokinet., 2003,42(5):419. https://www.ncbi.nlm.nih.gov/pubmed/12739982

doi: 10.2165/00003088-200342050-00002     URL     pmid: 12739982
[4]
Wang J, Hu Z B, Xu J X, Zhao Y L . NPG Asia Mater., 2014,6(2):1.
[5]
Vivero-Escoto J L, Slowing I I, Trewyn B G, Lin V S Y . Small, 2010,6(18):1952. https://www.ncbi.nlm.nih.gov/pubmed/20690133

doi: 10.1002/smll.200901789     URL     pmid: 20690133
[6]
袁丽(Yuan L), 王蓓娣(Wang B D), 唐倩倩(Tang Q Q), 张晓鸿(Zhang X H), 张晓环(Zhang X H), 杨东(Yang D), 胡建华(Hu J H) . 有机化学 (Chinese J. Org. Chem.), 2010,30(5):640.
[7]
Ma T Y, Liu L, Yuan Z Y . Chem. Soc. Rev., 2013,42(9):3977. https://www.ncbi.nlm.nih.gov/pubmed/23132523

doi: 10.1039/c2cs35301f     URL     pmid: 23132523
[8]
张凌峰(Zhang L F), 胡忠攀(Hu Z P), 高泽敏(Gao Z M), 刘亚录(Liu Y L), 袁忠勇(Yuan Z Y) . 化学进展 (Progress in Chemistry), 2015,27(8):1042.
[9]
Zhai Y P, Dou Y Q, Zhao D Y, Fulvio P F, Mayes R T, Dai S . Adv. Mater., 2011,23(42):4828. https://www.ncbi.nlm.nih.gov/pubmed/21953940

doi: 10.1002/adma.201100984     URL     pmid: 21953940
[10]
Wang C H, Li X F, Xi X L, Zhou W, Lai Q Z, Zhang H M . Nano Energy, 2016,21:217.
[11]
Nieto-Marquez A, Romero R, Romero A, Valverde J L . J Mater. Chem., 2011,21(6):1664. http://xlink.rsc.org/?DOI=C0JM01350A

doi: 10.1039/C0JM01350A     URL    
[12]
Kim T W, Chung P W, Slowing I I, Tsunoda M, Yeung E S, Lin V S Y . Nano Lett., 2008,8(11):3724. https://www.ncbi.nlm.nih.gov/pubmed/18954128

doi: 10.1021/nl801976m     URL     pmid: 18954128
[13]
Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y . Angew. Chem. Int. Edit., 2010,49(43):7987. https://www.ncbi.nlm.nih.gov/pubmed/20839199

doi: 10.1002/anie.201002849     URL     pmid: 20839199
[14]
Liu J, Yang T Y, Wang D W, Lu G Q, Zhao D Y, Qiao S Z . Nat. Commun., 2013,4:2798.
[15]
Choma J, Jamiola D, Augustynek K, Marszewski M, Gao M, Jaroniec M . J. Mater. Chem., 2012,22(25):12636.
[16]
Qiao Z A, Guo B K, Binder A J, Chen J H, Veith G M, Dai S . Nano Lett., 2013,13(1):207. https://www.ncbi.nlm.nih.gov/pubmed/23256449

doi: 10.1021/nl303889h     URL     pmid: 23256449
[17]
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M . Nat. Mater., 2015,14(8):763. https://www.ncbi.nlm.nih.gov/pubmed/26201892

doi: 10.1038/nmat4317     URL     pmid: 26201892
[18]
Ryoo R, Joo S H, Kruk M, Jaroniec M . Adv. Mater., 2001,13(9):677.
[19]
Hampsey J E, Hu Q Y, Wu Z W, Rice L, Pang J B, Lu Y F . Carbon, 2005,43(14):2977.
[20]
Hampsey J E, Hu Q Y, Rice L, Pang J B, Wu Z W, Lu Y F . Chem. Commun., 2005,28:3606. https://www.ncbi.nlm.nih.gov/pubmed/16010339

doi: 10.1039/b502866c     URL     pmid: 16010339
[21]
Sun Z K, Liu Y, Li B, Wei J, Wang M H, Yue Q, Deng Y H, Kaliaguine S, Zhao D Y . ACS Nano, 2013,7(10):8706. https://www.ncbi.nlm.nih.gov/pubmed/24044674

doi: 10.1021/nn402994m     URL     pmid: 24044674
[22]
Schuster J, He G, Mandlmeier B, Yim T, Lee K T, Bein T, Nazar L F . Angew. Chem. Int. Edit., 2012,51(15):3591. https://www.ncbi.nlm.nih.gov/pubmed/22383067

doi: 10.1002/anie.201107817     URL     pmid: 22383067
[23]
Bottger-Hiller F, Kempe P, Cox G, Panchenko A, Janssen N, Petzold A, Thurn-Albrecht T, Borchardt L, Rose M, Kaskel S, Georgi C, Lang H, Spange S . Angew. Chem. Int. Edit., 2013,52(23):6088. https://www.ncbi.nlm.nih.gov/pubmed/23620268

doi: 10.1002/anie.201209849     URL     pmid: 23620268
[24]
Wang Z J, Balkus Jr K J . Mater. Lett., 2017,195:139.
[25]
Liang C D, Hong K L, Guiochon G A, Mays J W, Dai S . Angew. Chem. Int. Edit., 2004,43(43):5785. https://www.ncbi.nlm.nih.gov/pubmed/15523736

doi: 10.1002/anie.200461051     URL     pmid: 15523736
[26]
Tanaka S, Nishiyama N, Egashira Y, Ueyama K . Chem. Commun., 2005,16:2125. https://www.ncbi.nlm.nih.gov/pubmed/15846421

doi: 10.1039/b501259g     URL     pmid: 15846421
[27]
Wan Y, Shi Y, Zhao D Y . Chem. Mater., 2008,20(3):932.
[28]
Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y . Angew. Chem. Int. Edit., 2005,44(43):7053. https://www.ncbi.nlm.nih.gov/pubmed/16222652

doi: 10.1002/anie.200501561     URL     pmid: 16222652
[29]
Yan Y, Zhang F G, Meng Y, Tu B, Zhao D Y . Chem. Commun., 2007,27:2867. https://www.ncbi.nlm.nih.gov/pubmed/17609803

doi: 10.1039/b702232h     URL     pmid: 17609803
[30]
Wu Z X, Wu W D, Liu W J, Selomuya C, Chen X D, Zhao D Y . Angew. Chem. Int. Edit., 2013,52(51):13764. https://www.ncbi.nlm.nih.gov/pubmed/24222382

doi: 10.1002/anie.201307608     URL     pmid: 24222382
[31]
Li M, Xue J M . J. Colloid Interf. Sci., 2012,377(1):169. https://www.ncbi.nlm.nih.gov/pubmed/22542324

doi: 10.1016/j.jcis.2012.03.085     URL     pmid: 22542324
[32]
Huang W Q, Xie H, Tian Y, Wang X F . ACS Appl. Mater. Inter., 2018,10(23):20073. https://www.ncbi.nlm.nih.gov/pubmed/29856590

doi: 10.1021/acsami.8b02040     URL     pmid: 29856590
[33]
Liu D W, Xue N, Wei L J, Zhang Y, Qin Z F, Li X K, Binks B P, Yang H Q . Angew. Chem. Int. Edit., 2018,57(34):10899. https://www.ncbi.nlm.nih.gov/pubmed/29962066

doi: 10.1002/anie.201805022     URL     pmid: 29962066
[34]
Deshmukh A A, Mhlanga S D, Coville N J . Mater. Sci. Eng. R, 2010,70(1/2):1.
[35]
Liu J, Qiao S Z, Liu H, Chen J, Orpe A, Zhao D Y, Lu G Q . Angew. Chem. Int. Edit., 2011,50(26):5947. https://www.ncbi.nlm.nih.gov/pubmed/21630403

doi: 10.1002/anie.201102011     URL     pmid: 21630403
[36]
Lu A H, Hao G P, Sun Q . Angew. Chem. Int. Edit., 2011,50(39):9023. https://www.ncbi.nlm.nih.gov/pubmed/21919134

doi: 10.1002/anie.201103514     URL     pmid: 21919134
[37]
Zhang K, Zhao Q, Tao Z L, Chen J . Nano Res., 2013,6(1):38.
[38]
Fuertes A B, Valle-Vigon P, Sevilla M . Chem. Commun., 2012,48(49):6124. https://www.ncbi.nlm.nih.gov/pubmed/22582187

doi: 10.1039/c2cc32552g     URL     pmid: 22582187
[39]
Zhou H H, Xu S, Su H P, Wang M, Qiao W M, Ling L C, Long D H . Chem. Commun., 2013,49(36):3763. https://www.ncbi.nlm.nih.gov/pubmed/23535952

doi: 10.1039/c3cc41109e     URL     pmid: 23535952
[40]
Friedel B, Greulich-Weber S . Small, 2006,2(7):859. https://www.ncbi.nlm.nih.gov/pubmed/17193134

doi: 10.1002/smll.200500516     URL     pmid: 17193134
[41]
林炳承(Lin B C), 秦建华(Qin J H) . 图解微流控芯片实验室 (Graphic Laboratory on a Microfluidic Chip). 北京:科学出版社 (Beijing: Science Press), 2008. 264.
[42]
张逢(Zhang F), 高丹(Gao D), 梁琼麟(Liang Q L) . 分析化学 (Chinese J. Anal. Chem.), 2016,44(12):1942.
[43]
何天稀(He T X), 梁琼麟(Liang Q L), 王九(Wang J), 罗国安(Luo G A) . 化学进展 (Progress in Chemistry), 2018,30(11):1734.
[44]
汪伟(Wang W), 谢锐(Xie R), 巨晓洁(Ju X J), 刘壮(Liu Z), 褚良银(Chu L Y) . 化学进展 (Progress in Chemistry), 2018,30(1):44.
[45]
He T X, Liang Q L, Zhang K, Mu X, Luo T T, Wang Y M, Luo G A . Microfluid. Nanofluid., 2011,10(6):1289.
[46]
Ge H, Xu H B, Lu T Y, Li J, Chen H S, Wan J D . J. Colloid Interf. Sci., 2016,461:168. https://www.ncbi.nlm.nih.gov/pubmed/26397924

doi: 10.1016/j.jcis.2015.09.018     URL     pmid: 26397924
[47]
Fang Y, Zheng G F, Yang J P, Tang H S, Zhang Y F, Kong B, Lv Y Y, Xu C J, Asiri A M, Zi J, Zhang F, Zhao D Y . Angew. Chem. Int. Edit., 2014,53(21):5366. https://www.ncbi.nlm.nih.gov/pubmed/24764082

doi: 10.1002/anie.201402002     URL     pmid: 24764082
[48]
Chen Y, Xu P F, Wu M Y, Chen H R, Shu Z, Wang J, Zhang L X, Li Y P, Shi J L . Adv. Mater., 2014,26(25):4294. https://www.ncbi.nlm.nih.gov/pubmed/24687452

doi: 10.1002/adma.201400303     URL     pmid: 24687452
[49]
Gu J L, Su S S, Li Y S, He Q J, Shi J L . Chem. Commun., 2011,47(7):2101. https://www.ncbi.nlm.nih.gov/pubmed/21183990

doi: 10.1039/c0cc04598e     URL     pmid: 21183990
[50]
张咚咚(Zhang D D), 刘敬民(Liu J M), 刘瑶瑶(Liu Y Y), 党梦(Dang M), 方国臻(Fang G Z), 王硕(Wang S) . 化学进展( Progress in Chemistry), 2018,30(12):1908.
[51]
Zhu J, Liao L, Bian X J, Kong J L, Yang P Y, Liu B H . Small, 2012,8(17):2715. https://www.ncbi.nlm.nih.gov/pubmed/22674566

doi: 10.1002/smll.201200217     URL     pmid: 22674566
[52]
杨旦(Yang D), 王宇洋(Wang Y Y), 朱树凯(Zhu S K), 陈太军(Chen T J), 武欣(Wu X), 汪建新(Wang J X) . 化学推进剂与高分子材料( Chemical Propellants Polymeric Materials), 2017,15(2):69.
[53]
王欢(Wang H), 佘岚(She L), 王琳召(Wang L Z), 马志强(Ma Z Q), 张欣荣(Zhang X R), 杨峰(Yang F) . 药学实践杂志( Journal of Pharmaceutical Practice), 2015,33(2):114.
[54]
Wang H, Li X G, Ma Z Q, Wang D, Wang L Z, Zhan J Q, She L, Yang F . Int. J. Nanomedicine, 2016,11:1793. https://www.ncbi.nlm.nih.gov/pubmed/27175077

doi: 10.2147/IJN.S103020     URL     pmid: 27175077
[55]
王鑫(Wang X) . 哈尔滨工业大学硕士论文 (Master Dissertations of Harbin Institute of Technology), 2016.
[56]
Li X, Wang X D, Sha L P, Wang D, Shi W, Zhao Q F, Wang S L . ACS Appl. Mater. Inter., 2018,10(31):19386.
[57]
Meng Y, Wang S S, Li C Y, Qian M, Yan X Y, Yao S C, Peng X Y, Wang Y, Huang R Q . Biomaterials, 2016,100:134. https://www.ncbi.nlm.nih.gov/pubmed/27258483

doi: 10.1016/j.biomaterials.2016.05.033     URL     pmid: 27258483
[58]
朱杰(Zhu J), 廖蕾(Liao L), 朱丽娜(Zhu L N), 孔继烈(Kong J L), 刘宝红(Liu B H) . 化学学报 (Acta Chim Sinica), 2013,71(1):69.
[59]
Xu G J, Liu S J, Niu H, Lv W P, Wu R A . RSC Adv., 2014,4(64):33986. https://www.ncbi.nlm.nih.gov/pubmed/26989477

doi: 10.1039/C4RA05256K     URL     pmid: 26989477
[60]
Cai X L, Yan H Y, Luo Y N, Song Y, Zhao Y T, Li H, Du D, Lin Y H . ACS Appl. Bio. Mater., 2018,1(4):1165.
[61]
Li C Y, Meng Y, Wang S S, Qian M, Wang J X, Lu W Y, Huang R Q . ACS Nano, 2015,9(12):12096. https://www.ncbi.nlm.nih.gov/pubmed/26575351

doi: 10.1021/acsnano.5b05137     URL     pmid: 26575351
[62]
Kuang Y, Cao Y, Liu M, Zu G Y, Zhang Y J, Zhang Y, Pei R J . ACS Appl. Mater. Inter., 2018,10(31):26099. https://www.ncbi.nlm.nih.gov/pubmed/30016059

doi: 10.1021/acsami.8b09709     URL     pmid: 30016059
[63]
Mohapatra S, Rout S R, Das R K, Nayak S, Ghosh S K . Langmuir, 2016,32(6):1611. https://www.ncbi.nlm.nih.gov/pubmed/26794061

doi: 10.1021/acs.langmuir.5b03898     URL     pmid: 26794061
[64]
Zhang Q Q, Wang P Y, Li X M, Yang Y T, Liu X F, Zhang F, Ling Y, Zhou Y M . J. Mater. Chem. B, 2017,5(20):3765. https://www.ncbi.nlm.nih.gov/pubmed/32264065

doi: 10.1039/c7tb00614d     URL     pmid: 32264065
[65]
Wang S S, Li C Y, Meng Y, Qian M, Jiang H L, Du Y L, Huang R Q, Wang Y . ACS Biomater-Sci. Eng., 2017,3(8):1702.
[66]
Wei J, Sun Z K, Luo W, Li Y H, Elzatahry A A, Al-Enizi A M, Deng Y H, Zhao D Y . J. Am. Chem. Soc., 2017,139(5):1706. https://www.ncbi.nlm.nih.gov/pubmed/28085258

doi: 10.1021/jacs.6b11411     URL     pmid: 28085258
[1] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[2] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
[3] 汤洁, 刘仁发, 戴志飞*. 多功能脂质体递药系统[J]. 化学进展, 2018, 30(11): 1669-1680.
[4] 沈娟, 朱阳, 师红东, 刘扬中. 铂类抗癌药物的多功能纳米递送体系[J]. 化学进展, 2018, 30(10): 1557-1572.
[5] 陈盼盼, 史兵兵*. 基于大环主体构筑的超分子载药体系[J]. 化学进展, 2017, 29(7): 720-739.
[6] 周帅, 陈未, 肖自林, 叶盛, 丁晨迪, 傅佳骏*. 联合递送药物和基因的智能抗癌控释体系[J]. 化学进展, 2017, 29(5): 502-512.
[7] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[8] 梁嘉美, 冯岸超, 袁金颖. 刺激响应星形聚合物的合成及其药物可控释放研究[J]. 化学进展, 2015, 27(5): 522-531.
[9] 于京, 哈伟, 师彦平. 智能水凝胶双抗癌药物控释体系[J]. 化学进展, 2015, 27(11): 1640-1648.
[10] 刘静静, 楚晖娟, 魏宏亮, 祝红征, 朱靖, 何娟. 石墨烯基水凝胶的研究进展[J]. 化学进展, 2015, 27(11): 1591-1603.
[11] 宿丹, 第凤, 邢季, 车剑飞, 肖迎红. 导电聚合物在药物可控释放领域的应用[J]. 化学进展, 2014, 26(12): 1962-1976.
[12] 张磊, 刘晓燕, 沈晶晶, 卢晓梅, 范曲立, 黄维. 纳米颗粒在抗癌药物可控靶向释放中的应用[J]. 化学进展, 2013, 25(08): 1375-1382.
[13] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[14] 倪敏, 徐琴琴, 徐刚, 王恩俊, 银建中. 超临界流体输运技术在缓/控释药物制备中的应用[J]. 化学进展, 2011, 23(8): 1611-1617.
[15] 孙婕衎 王雪飞 计剑. 层状组装:先进药物控释涂层材料的新选择*[J]. 化学进展, 2009, 21(12): 2682-2688.