English
新闻公告
More
化学进展 2020, Vol. 32 Issue (1): 93-102 DOI: 10.7536/PC190607 前一篇   后一篇

所属专题: 电化学有机合成

• •

开环易位聚合合成瓶刷聚合物

陈柯睿1, 胡欣2,**(), 邱江凯1,**(), 朱宁1,**(), 郭凯1   

  1. 1. 南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 211800
    2. 南京工业大学材料科学与工程学院 南京 211800
  • 收稿日期:2019-06-10 出版日期:2020-01-15 发布日期:2019-12-11
  • 通讯作者: 胡欣, 邱江凯, 朱宁
  • 基金资助:
    国家自然科学基金项目(21878145); 江苏省先进生物制造创新中心项目资助(XTD1823); 江苏省先进生物制造创新中心项目资助(XTB1802)

Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization

Kerui Chen1, Xin Hu2,**(), Jiangkai Qiu1,**(), Ning Zhu1,**(), Kai Guo1   

  1. 1. College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, China
    2. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China
  • Received:2019-06-10 Online:2020-01-15 Published:2019-12-11
  • Contact: Xin Hu, Jiangkai Qiu, Ning Zhu
  • About author:
    ** E-mail: (Xin Hu);
  • Supported by:
    National Natural Science Foundation of China(21878145); Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTD1823); Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(XTB1802)

瓶刷聚合物是一类具有独特侧链结构的梳形聚合物。功能性瓶刷聚合物在光子晶体、表面活性剂、医药载体、防污涂层以及智能材料等领域具有良好的应用价值。通过开环易位聚合合成瓶刷聚合物的方法具有合成步骤简单、聚合物接枝密度高和侧链组成均一等优点,在控制聚合物组成、分子量和分散性等方面具有显著优势。本文基于开环易位聚合,简述了合成瓶刷均聚物以及嵌段型、混合型和核-壳型三种类型的瓶刷共聚物的方法,并介绍了合成精确结构的瓶刷聚合物的新进展。

Bottlebrush polymers are a class of comb polymers that have the unique side chain structures and properties. Functional bottlebrush polymers have found broad applications in photonic crystals, surfactants, pharmaceutical carriers, antifouling coatings and smart materials. The synthetic strategies to bottlebrush polymers by ring-opening metathesis polymerization (ROMP) exhibit various advantages, such as simple synthesis steps, high polymer graft density and uniform side chain composition. Well control of polymer composition, molecular weight and molecular weight dispersity could be achieved by ROMP. This review summarizes the synthesis of homo, block, Janus, core-shell bottlebrush copolymers via ROMP. Moreover, the advances in finely controlling the bottlebrush polymer architecture are discussed.

()
图1 瓶刷聚合物合成方法[5]
Fig. 1 Methods for synthesizing bottlebrush polymers[5]
图式1 通过阴离子聚合与开环易位聚合合成瓶刷均聚物[36]
Scheme. 1 Synthesis of bottlebrush homopolymers by anionic polymerization and ring-opening metathesis polymerization[36]
图式2 通过原子转移自由基聚合与开环易位聚合合成瓶刷均聚物[37]
Scheme. 2 Synthesis of bottlebrush homopolymers by atom transfer radical polymerization and ring-opening metathesis polymerization[37]
图式3 通过开环聚合与开环易位聚合合成瓶刷均聚物[40]
Scheme. 3 Synthesis of bottlebrush homopolymers by ring -opening polymerization and ring-opening metathesis polymerization[40]
图式4 通过格氏置换聚合与开环易位聚合合成瓶刷均聚物[43]
Scheme. 4 Synthesis of bottlebrush homopolymers by Grignard metathesis polymerization and ring-opening metathesis polymerization[43]
图2 瓶刷共聚物的结构类型[3,44]
Fig. 2 Structures of bottlebrush copolymers[3,44]
图式5 二嵌段三元瓶刷共聚物合成方式[47]
Scheme. 5 Synthesis of the diblock brush terpolymers[47]
图式6 通过两仪聚合和开环易位聚合合成混合型瓶刷共聚物[65]
Scheme. 6 Synthesis of heterograft molecular polymer brushes via Janus polymerization and ROMP[65]
图3 多种结构的Janus粒子[69]
Fig. 3 Structures of Janus particles[69]
图式7 Janus型瓶刷共聚物合成方式[67]
Scheme. 7 Synthesis of Janus bottlebrush copolymers[67]
图式8 核-壳型瓶刷共聚物合成方式[73]
Scheme. 8 Synthesis of core-shell bottlebrush copolymers[73]
图4 核心可分解的核-壳型瓶刷聚合物[72,76]
Fig. 4 Core decomposable core-shell bottlebrush polymers[72,76]
图5 加入小分子稀释剂控制瓶刷聚合物合成[35,81]
Fig. 5 Adding diluent to control synthesis of bottlebrush polymers[35,81]
图6 通过SAM策略合成锥形瓶刷聚合物[83]
Fig. 6 Synthesis of tapered bottlebrush polymers by sequential addition of macromonomers[83]
[1]
Sheiko S S , Sumerlin B S , Matyjaszewski K . Prog. Polym. Sci., 2008,33:759.
[2]
Hadjichristidis N , Pitsikalis M , Iatrou H , Pispas S . Macromol. Rapid Commun., 2003,24:979. http://doi.wiley.com/10.1002/%28ISSN%291521-3927

doi: 10.1002/(ISSN)1521-3927     URL    
[3]
Verduzco R , Li X , Pesek S L , Stein G E . Chem. Soc. Rev., 2015,44:2405. https://www.ncbi.nlm.nih.gov/pubmed/25688538

doi: 10.1039/c4cs00329b     URL     pmid: 25688538
[4]
Guo J , Peng L , Yuan J . Eur. Polym. J., 2015,69:449.
[5]
Müllner M . Macromol. Chem. Phys., 2016,217:2209.
[6]
Liberman-Martin A L , Chu C K , Grubbs R H . Macromol. Rapid Commun., 2017,38:1700058.
[7]
Krivorotova T , Radzevicius P , Makuska R . Eur. Polym. J., 2015,66:543.
[8]
Nese A , Sheiko S S , Matyjaszewski K . Eur. Polym. J., 2011,47:1198.
[9]
Jia J , Liu C , Wang L , Liang X , Chai X . Chem. Eng. J., 2018,347:631.
[10]
Müllner M , Müller A H E . Polymer, 2016,98:389.
[11]
Rzayev J . ACS Macro Lett., 2012,1:1146.
[12]
Zhang A , Guo Y . Chem. Eur. J., 2008,14:8939. https://www.ncbi.nlm.nih.gov/pubmed/18696526

doi: 10.1002/chem.200801191     URL     pmid: 18696526
[13]
Li W , Zhang X , Wang J , Qiao X , Liu K , Zhang A . J. Polym. Sci. Pol. Chem., 2012,50:4063.
[14]
Pelras T , Mahon C S , Mullner M . Angew. Chem. Int. Ed., 2018,57:6982. https://www.ncbi.nlm.nih.gov/pubmed/29484797

doi: 10.1002/anie.201711878     URL     pmid: 29484797
[15]
Bielawski C W , Grubbs R H . Prog. Polym. Sci., 2007,32:1.
[16]
Leitgeb A , Wappel J , Slugovc C . Polymer, 2010,51:2927. https://linkinghub.elsevier.com/retrieve/pii/S0032386110004039

doi: 10.1016/j.polymer.2010.05.002     URL    
[17]
Le D , Morandi G , Legoupy S , Pascual S , Montembault V , Fontaine L . Eur. Polym. J., 2013,49:972.
[18]
Zhou C , Wang Y , Zhao L , Liu Z , Cheng J . Eur. Polym. J., 2019,112:60.
[19]
赵健(Zhao J), 吕英莹(Lv Y Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2001,13:48.
[20]
Bazan G C , Khosravi E , Schrock R R , Feast W J , Gibson V C , Oregan M B , Thomas J K , Davis W M . J. Am. Chem. Soc., 1990,112:8378.
[21]
Schrock R R . Dalton Trans., 2011,40:7484. https://www.ncbi.nlm.nih.gov/pubmed/21547311

doi: 10.1039/c1dt10215j     URL     pmid: 21547311
[22]
Nguyen S T , Johnson L K , Grubbs R H , Ziller J W . J. Am. Chem. Soc., 1992,114:3974.
[23]
Scholl M , Ding S , Lee C W , Grubbs R H . Org. Lett., 1999,1:953. https://www.ncbi.nlm.nih.gov/pubmed/10823227

doi: 10.1021/ol990909q     URL     pmid: 10823227
[24]
Vougioukalakis G C , Grubbs R H . Chem. Rev., 2010,110:1746. https://www.ncbi.nlm.nih.gov/pubmed/20000700

doi: 10.1021/cr9002424     URL     pmid: 20000700
[25]
Bielawski C W , Grubbs R H . Angew. Chem. Int. Ed., 2000,39:2903. https://www.ncbi.nlm.nih.gov/pubmed/11028004

doi: 10.1002/1521-3773(20000818)39:16【-逻*辑*与-】lt;2903::aid-anie2903【-逻*辑*与-】gt;3.0.co;2-q     URL     pmid: 11028004
[26]
Cruz T R , Silva R A N , Machado A E H , Lima-Neto B S , Goi B E P , Carvalho V . New J. Chem., 2019,43:6220.
[27]
Grubbs R H . Angew. Chem. Int. Ed., 2006,45:3760. https://www.ncbi.nlm.nih.gov/pubmed/16724297

doi: 10.1002/anie.200600680     URL     pmid: 16724297
[28]
Schrock R R , Hoveyda A H . Angew. Chem. Int. Ed., 2003,42:4592. https://www.ncbi.nlm.nih.gov/pubmed/14533149

doi: 10.1002/anie.200300576     URL     pmid: 14533149
[29]
张勇杰(Zhang Y J), 李化毅(Li H Y), 董金勇(Dong J Y), 胡友良(Hu Y L). 化学进展(Progress in Chemistry), 2014,26:110.
[30]
张磊(Zhang L), 李文(Li W), 张阿方(Zhang A F). 化学进展(Progress in Chemistry), 2006,18:939.
[31]
Nikovia C , Theodoridis L , Alexandris S , Bilalis P , Hadjichristidis N , Floudas G , Pitsikalis M . Macromolecules, 2018,51:8940.
[32]
Wang Y , Ren R , Ling J , Sun W , Shen Z . Polymer, 2018,138:378.
[33]
Teo Y C , Xia Y . Macromolecules, 2018,52:81.
[34]
Radzinski S C , Foster J C , Chapleski R C , Troya D , Matson J B . J. Am. Chem. Soc., 2016,138:6998. https://www.ncbi.nlm.nih.gov/pubmed/27219866

doi: 10.1021/jacs.5b13317     URL     pmid: 27219866
[35]
Chang A B , Lin T P , Thompson N B , Luo S X , Liberman-Martin A L , Chen H Y , Lee B , Grubbs R H . J. Am. Chem. Soc., 2017,139:17683. https://www.ncbi.nlm.nih.gov/pubmed/29117478

doi: 10.1021/jacs.7b10525     URL     pmid: 29117478
[36]
Sukegawa T , Masuko I , Oyaizu K , Nishide H . Macromolecules, 2014,47:8611.
[37]
Xu Y , Wang W , Wang Y , Zhu J , Uhrig D , Lu X , Keum J K , Mays J W , Hong K . Polym. Chem., 2016,7:680.
[38]
Foster J C , Radzinski S C , Lewis S E , Slutzker M B , Matson J B . Polymer, 2015,79:205.
[39]
Fu Q , Ren J M , Qiao G G . Polym. Chem., 2012,3:343.
[40]
Radzinski S C , Foster J C , Matson J B . Macromol. Rapid Commun., 2016,37:616. https://www.ncbi.nlm.nih.gov/pubmed/26847467

doi: 10.1002/marc.201500672     URL     pmid: 26847467
[41]
Yang B , Abel B A McCormick C L , Storey R F . Macromolecules, 2017,50:7458.
[42]
Arrington K J , Radzinski S C , Drummey K J , Long T E , Matson J B . ACS Appl. Mater. Interfaces, 2018,10:26662. https://www.ncbi.nlm.nih.gov/pubmed/30062885

doi: 10.1021/acsami.8b08480     URL     pmid: 30062885
[43]
van As D , Subbiah J , Jones D J , Wong W W H . Macromol. Chem. Phys., 2016,217:403.
[44]
Lanson D , Ariura F , Schappacher M , Borsali R , Deffieux A . Macromolecules, 2009,42:3942.
[45]
Su L , Heo G S , Lin Y N , Dong M , Zhang S , Chen Y , Sun G , Wooley K L . J. Polym. Sci. Pol. Chem., 2017,55:2966.
[46]
Yamauchi Y , Yamada K , Horimoto N N , Ishida Y . Polymer, 2017,120:68.
[47]
Sun G , Cho S , Clark C , Verkhoturov S V , Eller M J , Li A , Pavia-Jimenez A , Schweikert E A , Thackeray J W , Trefonas P , Wooley K L . J. Am. Chem. Soc., 2013,135:4203. https://www.ncbi.nlm.nih.gov/pubmed/23480169

doi: 10.1021/ja3126382     URL     pmid: 23480169
[48]
Miyake G M , Piunova V A , Weitekamp R A , Grubbs R H . Angew. Chem. Int. Ed., 2012,51:11246. https://www.ncbi.nlm.nih.gov/pubmed/22976479

doi: 10.1002/anie.201205743     URL     pmid: 22976479
[49]
Yu Y G , Chae C G , Kim M J , Seo H B , Grubbs R H , Lee J S . Macromolecules, 2018,51:447.
[50]
梁晨(Liang C) Master Dissertation of Changchun University of Science and Technology(长春理工大学硕士学位论文), 2016.
[51]
Qiao Y , Zhao Y , Yuan X , Zhao Y , Ren L . J. Mater. Sci., 2018,53:16160.
[52]
Song D P , Li C , Colella N S , Lu X , Lee J H , Watkins J J . Adv. Optical Mater., 2015,3:1169.
[53]
Song D P , Li C , Li W , Watkins J J . ACS Nano, 2016,10:1216. https://www.ncbi.nlm.nih.gov/pubmed/26713452

doi: 10.1021/acsnano.5b06525     URL     pmid: 26713452
[54]
Song D P , Jacucci G , Dundar F , Naik A , Fei H F , Vignolini S , Watkins J J . Macromolecules, 2018,51:2395. https://www.ncbi.nlm.nih.gov/pubmed/29681653

doi: 10.1021/acs.macromol.7b02288     URL     pmid: 29681653
[55]
Song D P , Zhao T H , Guidetti G , Vignolini S , Parker R M . ACS Nano, 2019,13:1764. https://www.ncbi.nlm.nih.gov/pubmed/30620557

doi: 10.1021/acsnano.8b07845     URL     pmid: 30620557
[56]
Yao Q , Gutierrez D C , Hoang N H , Kim D , Wang R , Hobbs C , Zhu L . Mol. Pharmaceutics, 2017,14:2378. https://www.ncbi.nlm.nih.gov/pubmed/28605595

doi: 10.1021/acs.molpharmaceut.7b00278     URL     pmid: 28605595
[57]
Meng C S , Yan Y K , Wang W . Polym. Chem., 2017,8:6824.
[58]
Chae C G , Yu Y G , Seo H B , Kim M J , Mallela Y L N K , Lee J S . Macromolecules, 2019,52:1912.
[59]
Pesek S L , Lin Y H , Mah H Z , Kasper W , Chen B , Rohde B J , Robertson M L , Stein G E , Verduzco R . Polymer, 2016,98:495. https://linkinghub.elsevier.com/retrieve/pii/S0032386116300581

doi: 10.1016/j.polymer.2016.01.057     URL    
[60]
You L , Ling J . Macromolecules, 2014,47:2219.
[61]
Li Y , Bai T , Li Y , Ling J . Macromol. Chem. Phys., 2017,218:1600450.
[62]
Shah M , Yang Z , Li Y , Jiang L , Ling J . Polymers, 2017,9:559.
[63]
Li Y , von der Lühe M , Schacher F H , Ling J . Macromolecules, 2018,51:4938.
[64]
Qiu H , Yang Z , Shah M I , Mao Z , Ling J . Polymer, 2017,128:71.
[65]
Li Y , Schacher F H , Ling J . Macromol. Rapid Commun., 2019,40:1800905.
[66]
Walther A , Müller A H E . Soft Matter, 2008,4:663.
[67]
Li Y , Themistou E , Zou J , Das B P , Tsianou M , Cheng C . ACS Macro Lett., 2011,1:52.
[68]
刘一寰(Liu Y H), 胡欣(Hu X), 朱宁(Zhu N), 郭凯(Guo K). 化学进展(Progress in Chemistry), 2018,30:1133.
[69]
Ruhland T M , Groschel A H , Ballard N , Skelhon T S , Walther A , Muller A H , Bon S A . Langmuir, 2013,29:1388. https://www.ncbi.nlm.nih.gov/pubmed/23311383

doi: 10.1021/la3048642     URL     pmid: 23311383
[70]
Burts A O , Gao A X , Johnson J A . Macromol. Rapid Commun., 2014,35:168. https://www.ncbi.nlm.nih.gov/pubmed/24265215

doi: 10.1002/marc.201300618     URL     pmid: 24265215
[71]
Nguyen H V , Gallagher N M , Vohidov F , Jiang Y , Kawamoto K , Zhang H , Park J V , Huang Z , Ottaviani M F , Rajca A , Johnson J A . ACS Macro Lett., 2018,7:472. https://www.ncbi.nlm.nih.gov/pubmed/30271675

doi: 10.1021/acsmacrolett.8b00201     URL     pmid: 30271675
[72]
Cheng C , Qi K , Khoshdel E , Wooley K L . J. Am. Chem. Soc., 2006,128:6808. https://www.ncbi.nlm.nih.gov/pubmed/16719459

doi: 10.1021/ja061892r     URL     pmid: 16719459
[73]
Cheng C , Khoshdel E , Wooley K L . Macromolecules, 2007,40:2289.
[74]
Onbulak S , Rzayev J . J. Polym. Sci. Pol. Chem., 2017,55:3868.
[75]
Johnson J A , Lu Y Y , Burts A O , Xia Y , Durrell A C , Tirrell D A , Grubbs R H . Macromolecules, 2010,43:10326. https://www.ncbi.nlm.nih.gov/pubmed/21532937

doi: 10.1021/ma1021506     URL     pmid: 21532937
[76]
Liu J , Burts A O , Li Y , Zhukhovitskiy A V , Ottaviani M F , Turro N J , Johnson J A . J. Am. Chem. Soc., 2012,134:16337.
[77]
Zhang H , Hadjichristidis N . Macromolecules, 2016,49:1590.
[78]
Radzinski S C , Foster J C , Matson J B . Polym. Chem., 2015,6:5643.
[79]
Radzinski S C , Foster J C , Lewis S E , French E V , Matson J B . Polym. Chem., 2017,8:1636.
[80]
Sarapas J M , Chan E P , Rettner E M , Beers K L . Macromolecules, 2018,51:2359.
[81]
Lin T P , Chang A B , Chen H Y , Liberman-Martin A L , Bates C M , Voegtle M J , Bauer C A , Grubbs R H . J. Am. Chem. Soc., 2017,139:3896. https://www.ncbi.nlm.nih.gov/pubmed/28221030

doi: 10.1021/jacs.7b00791     URL     pmid: 28221030
[82]
Teo Y C , Xia Y . Macromolecules, 2015,48:5656.
[83]
Radzinski S C , Foster J C , Scannelli S J , Weaver J R , Arrington K J , Matson J B . ACS Macro Lett., 2017,6:1175.
[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[3] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[4] 白阳, 阎晓晨, 刘彩萍, 姚灏. H型聚合物的合成及性质[J]. 化学进展, 2020, 32(12): 1879-1884.
[5] 张勇杰, 樊明帅, 李晓佩, 李化毅, 王书唯, 祝文亲. 含硅功能化聚烯烃:合成及应用[J]. 化学进展, 2020, 32(1): 84-92.
[6] 张浩, 许芳, 王合营, 姜涛, 马志. 基于聚亚甲基的新型共聚物的可控合成[J]. 化学进展, 2018, 30(2/3): 179-189.
[7] 张艳, 刘雪杰, 闫南, 胡跃鑫, 李海英, 朱雨田. 嵌段共聚物三维软受限自组装[J]. 化学进展, 2018, 30(2/3): 166-178.
[8] 项青, 罗英武*. RAFT乳液聚合[J]. 化学进展, 2018, 30(1): 101-111.
[9] 姚臻, 王祖飞, 于云飞, 杨文龙, 曹堃*. 聚双环戊二烯基多孔材料的制备及性能[J]. 化学进展, 2017, 29(5): 524-529.
[10] 王倩倩, 吴立萍, 王菁, 王力元*. 嵌段共聚物的导向自组装[J]. 化学进展, 2017, 29(4): 435-442.
[11] 张勇杰, 李化毅, 曲敏杰, 冯钠, 杨威, 张翀. 结构明确聚烯烃接枝共聚物:合成、结构与性能[J]. 化学进展, 2016, 28(11): 1634-1647.
[12] 冯雨晨, 介素云, 李伯耿. 烯烃易位聚合制备遥爪聚合物及嵌段共聚物[J]. 化学进展, 2015, 27(8): 1074-1086.
[13] 熊丽娜, 张雪勤, 孙莹, 杨洪. 全共轭嵌段共聚物的合成组装与应用[J]. 化学进展, 2015, 27(12): 1774-1783.
[14] 魏玮, 刘敬成, 李虎, 穆启道, 刘晓亚. 微电子光致抗蚀剂的发展及应用[J]. 化学进展, 2014, 26(11): 1867-1888.
[15] 杨洁心, 刘雷, 徐君庭. 嵌段共聚物结晶性胶束[J]. 化学进展, 2014, 26(11): 1811-1820.
阅读次数
全文


摘要

开环易位聚合合成瓶刷聚合物