English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1509-1527 DOI: 10.7536/PC190734 前一篇   后一篇

• •

爆炸物检测用荧光聚合物材料

吴晓甫, 童辉**(), 王利祥**()   

  1. 中国科学院长春应用化学研究所 高分子物理与化学国家重点实验室 长春 130022
  • 收稿日期:2019-07-25 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 童辉, 王利祥
  • 基金资助:
    国家自然科学基金项目(51833009); 国家自然科学基金项目(21574131); 国家自然科学基金项目(91333205); 国家自然科学基金项目(21674111); 国家自然科学基金项目(21322403)

Fluorescent Polymer Materials for Detection of Explosives

Xiaofu Wu, Hui Tong**(), Lixiang Wang**()   

  1. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received:2019-07-25 Online:2019-11-15 Published:2019-10-23
  • Contact: Hui Tong, Lixiang Wang
  • About author:
    ** E-mail: (Hui Tong);
    (Lixiang Wang)
  • Supported by:
    National Natural Science Foundation of China(51833009); National Natural Science Foundation of China(21574131); National Natural Science Foundation of China(91333205); National Natural Science Foundation of China(21674111); National Natural Science Foundation of China(21322403)

作为荧光传感材料,荧光聚合物不仅具有传感单元多、荧光亮度高、光稳定性好等特点,而且方便制备荧光传感薄膜,易于实现器件化,在爆炸物荧光检测中得到了广泛的研究与应用。近年来,随着荧光聚合物从传统的线型结构向支化和多孔网络结构的拓展,以及各种功能单元的引入,大量的新型荧光聚合物有效地提升了爆炸物检测的灵敏度、选择性和响应速度等性能。本综述从线型聚合物、支化聚合物、多孔聚合物三类体系出发,总结和评述了用于爆炸物荧光检测的线型共轭与非共轭聚合物、树枝状分子与超支化聚合物、无定形与结晶型多孔聚合物等典型体系的分子结构设计策略、功能特点以及传感性能,并展望了荧光聚合物未来在爆炸物检测应用中所面临的机遇和挑战。

As fluorescent sensing materials, fluorescent polymers not only have many sensing units, high brightness and good light stability, but also facilitate the fabrication of fluorescent sensing films, which are easy to implement devices. Therefore, fluorescent polymers have been widely studied and applied in fluorescence detection of explosives. In recent years, a large number of fluorescent polymers with various functional units have been developed, and their structures have evolved from common linear structures to branched and porous network structures, which have effectively improved the sensitivity, selectivity and response rate of explosive detection. This review is aimed to summarize the research progress on fluorescent polymers used for detection of explosives, including linear polymers, branched polymers and porous polymers. The emphasis of this review is especially focused on the structure design strategies, functional characteristics and sensing performances of typical linear conjugated and non-conjugated polymers, dendrimers and hyperbranched polymers and amorphous and crystalline porous polymers. Finally, the future opportunities and challenges of fluorescent polymers in application of explosive detection are presented.

()
图1 主链含五蝶烯单元和稠环芳烃的共轭聚合物[14, 17~20]
Fig. 1 Conjugated polymers with pentiptycene and polycyclic polycyclic aromatic hydrocarbons in the backbones[14, 17~20]
图2 主链含AIE单元的共轭聚合物[21, 22, 28]
Fig. 2 Conjugated polymers containing aggregation-induced emission(AIE) units in the backbones[21, 22, 28]
图3 具有大位阻侧链的共轭聚合物[29,30,31,32,33]
Fig. 3 Conjugated polymers with bulky side chains[29,30,31,32,33]
图4 具有杯[4]芳烃侧链的共轭聚合物[34,35]
Fig. 4 Conjugated polymers with calix[4]arene as side chains[34,35]
图5 侧链带有离子基团的水溶性共轭聚合物[36,38,39]
Fig. 5 Conjugated polymers with ionic side chains[36,38,39]
图6 侧链具有荧光团的非共轭聚合物[40,45]
Fig. 6 Nonconjugated polymers with fluorophores in side chains[40,45]
图7 主链具有荧光团及无荧光团的非共轭聚合物[46,47,48,49,50,51]
Fig. 7 Nonconjugated polymers with fluorophores in backbones and without fluorophores[46,47,48,49,50,51]
图8 基于齐聚芴树枝和噻吩-苯树枝的共轭树枝状分子[53, 55~57]
Fig. 8 Conjugated dendrimers based on fluorene dendrons and thiophene-benezene dendrons[53, 55~57]
图9 基于咔唑树枝的共轭型树枝状分子[59. 60]
Fig. 9 Conjugated dendrimers based on carbazole dendrons[59. 60]
图10 含荧光团的非共轭树枝状分子[61. 62]
Fig. 10 Nonconjugated dendrimers containing fluorophores[61. 62]
图11 无荧光团的非共轭树枝状分子[64. 65]
Fig. 11 Nonconjugated dendrimers without fluorophores[64. 65]
图12 基于噻咯单元的AIE型超支化聚合物[68. 69]
Fig. 12 AIE-type hyperbranched polymers based on silole units[68. 69]
图13 基于四苯基乙烯单元的AIE型超支化聚合物[70, 71,74,76]
Fig. 13 AIE-type hyperbranched polymers based on tetraphenylethylene units[70, 71, 74, 76]
图14 非AIE型荧光超支化共轭聚合物[77,78,79,80]
Fig. 14 NonAIE-type fluorescent hyperbranched polymers[77,78,79,80]
图15 荧光超支化共轭聚合物纳米粒子[81,82,83,84]
Fig. 15 Fluorescent hyperbranched conjugated polymer nanoparticles[81,82,83,84]
图16 非共轭的荧光超支化聚合物[85,86,87,88]
Fig. 16 Fluorescent hyperbranched nonconjugated polymers[85,86,87,88]
图17 Yamamoto偶联反应制备的共轭多孔聚合物[97,98,99]
Fig. 17 Conjugated porous polymers prepared by Yamamoto coupling reaction[97,98,99]
图18 Heck偶联聚合制备的共轭多孔聚合物[100,101]
Fig. 18 Conjugated porous polymers prepared by Heck coupling reaction[100,101]
图19 Friedel-Crafts偶联反应制备的共轭多孔聚合物[102,103,104]
Fig. 19 Conjugated porous polymers prepared by Friedel-Crafts coupling reaction[102,103,104]
图20 氧化偶联反应制备的共轭多孔聚合物[105, 106]
Fig. 20 Conjugated porous polymers prepared by oxidation coupling reaction[105, 106]
图21 细乳液Suzuki偶联反应制备的可溶液加工的共轭多孔聚合物纳米粒子[108, 109]
Fig. 21 Solution-processable conjugated porous polymer nanoparticles prepared by Suzuki coupling reaction in miniemulsion[108, 109]
图22 在烯丙基硅烷修饰的SiO2基底上进行烯烃复分解反应制备的共轭多孔聚合物薄膜[112]
Fig. 22 Conjugated porous polymer films prepared by olefin metathesis reaction on alylsilane-functionalized SiO2 substrates[112]
图23 Sonogashira偶联反应制备的共轭多孔聚合物[111, 113, 114]
Fig. 23 Conjugated porous polymers prepared by Sonogashira coupling reaction[111, 113, 114]
图24 电化学聚合反应制备的共轭多孔聚合物[115. 116]
Fig. 24 Conjugated porous polymers prepared by electrochemical polymerization[115. 116]
图25 非共轭多孔聚合物[118,119,120]
Fig. 25 Nonconjugated porous polymers[118,119,120]
图26 硼酸缩合反应制备的三维结晶多孔聚合物材料[123, 124]
Fig. 26 Three demensional crystalline porous polymers prepared by boronic acid condensation reaction[123, 124]
图27 席夫碱缩合反应制备的COFs材料[125,126,127,128]
Fig. 27 Covalent organic frameworks(COFs) prepared by Schiff-base condensation reaction[125,126,127,128]
图28 酰亚胺化反应和Michael加成-消除反应制备的COFs[129, 130]
Fig. 28 COFs prepared by imidization reaction and Michael addition-elimination reaction[129, 130]
[1]
Juhasz A L, Naidu R . Rev. Environ. Contam. Toxicol., 2007,191:163. https://www.ncbi.nlm.nih.gov/pubmed/17708075

doi: 10.1007/978-0-387-69163-3_6     URL     pmid: 17708075
[2]
Ewing R G, Waltman M J, Atkinson D A, Grate J W, Hotchkiss P J . TrAC Trend Anal. Chem., 2013,42:35. https://linkinghub.elsevier.com/retrieve/pii/S0165993612002828

doi: 10.1016/j.trac.2012.09.010     URL    
[3]
Germain M E, Knapp M J . Chem. Soc. Rev., 2009,38:2543. https://www.ncbi.nlm.nih.gov/pubmed/19690735

doi: 10.1039/b809631g     URL     pmid: 19690735
[4]
Salinas Y, Martinez-Manez R, Marcos M D, Sancenon F, Costero A M, Parra M, Gil S . Chem. Soc. Rev., 2012,41:1261. https://www.ncbi.nlm.nih.gov/pubmed/21947358

doi: 10.1039/c1cs15173h     URL     pmid: 21947358
[5]
Sun X, Wang Y, Lei Y . Chem. Soc. Rev., 2015,44:8019. https://www.ncbi.nlm.nih.gov/pubmed/26335504

doi: 10.1039/c5cs00496a     URL     pmid: 26335504
[6]
Minei P, Pucci A . Polym. Int, 2016,65:609. http://doi.wiley.com/10.1002/pi.2016.65.issue-6

doi: 10.1002/pi.2016.65.issue-6     URL    
[7]
McQuade D T, Pullen A E, Swager T M . Chem. Rev., 2000,100:2537. https://www.ncbi.nlm.nih.gov/pubmed/11749295

doi: 10.1021/cr9801014     URL     pmid: 11749295
[8]
Toal S J, Trogler W C . J. Mater. Chem., 2006,16:2871. http://xlink.rsc.org/?DOI=b517953j

doi: 10.1039/b517953j     URL    
[9]
Thomas III S W, Joly G D, Swager T M . Chem. Rev., 2007,107:1339. https://www.ncbi.nlm.nih.gov/pubmed/17385926

doi: 10.1021/cr0501339     URL     pmid: 17385926
[10]
Rochat S, Swager T M . ACS Appl. Mater. Interfaces, 2013,5:4488. https://www.ncbi.nlm.nih.gov/pubmed/23682919

doi: 10.1021/am400939w     URL     pmid: 23682919
[11]
Zhou Q, Swager T M . J. Am. Chem. Soc., 1995,117:12593. https://pubs.acs.org/doi/abs/10.1021/ja00155a023

doi: 10.1021/ja00155a023     URL    
[12]
Zhou Q, Swager T M . J. Am. Chem. Soc., 1995,117:7017. https://pubs.acs.org/doi/abs/10.1021/ja00131a031

doi: 10.1021/ja00131a031     URL    
[13]
Swager T M . Acc. Chem. Res., 1998,31:201. https://pubs.acs.org/doi/10.1021/ar9600502

doi: 10.1021/ar9600502     URL    
[14]
Yang J S, Swager T M . J. Am. Chem. Soc., 1998,120:5321. 2d8931b5-3967-494d-a262-25ebb5669d18https://pubs.acs.org/doi/10.1021/ja9742996

doi: 10.1021/ja9742996     URL    
[15]
Xue W, Lin J Y, Liu B, Shi N E, Yu M N, Wu W D, Zhu W S, Xie L H, Wang L H, Huang W . Polymer, 2018,153:338. https://linkinghub.elsevier.com/retrieve/pii/S0032386118304191

doi: 10.1016/j.polymer.2018.05.025     URL    
[16]
Liping L, Shanghui Y, Wei H . Chinese J. Appl. Chem., 2017,34:1.
[17]
He G, Yan N, Yang J, Wang H, Ding L, Yin S, Fang Y . Macromolecules, 2011,44:4759. https://pubs.acs.org/doi/10.1021/ma200953s

doi: 10.1021/ma200953s     URL    
[18]
Jagtap S B, Potphode D D, Ghorpade T K, Palai A K, Patri M, Mishra S P . Polymer, 2014,55:2792. 5262dbb3-fe4d-47d3-86a6-5d16eb5de671http://dx.doi.org/10.1016/j.polymer.2014.04.028

doi: 10.1016/j.polymer.2014.04.028     URL    
[19]
Ghorpade T K, Palai A K, Rath S K, Sharma S K, Sudarshan K, Pujari P K, Patri M, Mishra S P . Sens. Actuators B, 2017,252:901. https://linkinghub.elsevier.com/retrieve/pii/S0925400517310808

doi: 10.1016/j.snb.2017.06.059     URL    
[20]
Zhou L L, Li M, Lu H Y, Chen C F . Polym. Chem., 2016,7:310. http://xlink.rsc.org/?DOI=C5PY01794G

doi: 10.1039/C5PY01794G     URL    
[21]
Wu Y W, Qin A J, Tang B Z . Chinese J. Polym. Sci., 2016,35:141. http://link.springer.com/10.1007/s10118-017-1882-0

doi: 10.1007/s10118-017-1882-0     URL    
[22]
Ghosh K R, Saha S K, Wang Z Y . Polym. Chem., 2014,5:5638. http://xlink.rsc.org/?DOI=C4PY00673A

doi: 10.1039/C4PY00673A     URL    
[23]
Zhou H, Wang X B, Lin T T, Song J, Tang B Z, Xu J W . Polym. Chem., 2016,7:6309. http://xlink.rsc.org/?DOI=C6PY01358A

doi: 10.1039/C6PY01358A     URL    
[24]
Dineshkumar S, Laskar I R . Polym. Chem., 2018,9:5123. http://xlink.rsc.org/?DOI=C8PY01153B

doi: 10.1039/C8PY01153B     URL    
[25]
Gao M, Wu Y, Chen B, He B, Nie H, Li T, Wu F, Zhou W, Zhou J, Zhao Z . Polym. Chem, 2015,6:7641. http://xlink.rsc.org/?DOI=C5PY01458A

doi: 10.1039/C5PY01458A     URL    
[26]
Adil L R, Gopikrishna P, Iyer P K . ACS Appl. Mater. Interfaces, 2018,10:27260. https://www.ncbi.nlm.nih.gov/pubmed/30022660

doi: 10.1021/acsami.8b07019     URL     pmid: 30022660
[27]
Zhang L H, Jiang T, Wu L B, Wan J H, Chen C H, Pei Y B, Lu H, Deng Y, Bian G F, Qiu H Y, Lai G Q . Chem. Asian J., 2012,7:1583. https://www.ncbi.nlm.nih.gov/pubmed/22529046

doi: 10.1002/asia.201200070     URL     pmid: 22529046
[28]
Xu B, Wu X, Li H, Tong H, Wang L . Macromolecules, 2011,44:5089. https://pubs.acs.org/doi/10.1021/ma201003f

doi: 10.1021/ma201003f     URL    
[29]
Nie H, Zhao Y, Zhang M, Ma Y, Baumgarten M, Muellen K . Chem. Commun, 2011,47:1234. https://www.ncbi.nlm.nih.gov/pubmed/21103499

doi: 10.1039/c0cc03659e     URL     pmid: 21103499
[30]
Nie H, Sun G, Zhang M, Baumgarten M, Muellen K . J. Mater. Chem., 2012,22:2129. http://xlink.rsc.org/?DOI=C1JM14691B

doi: 10.1039/C1JM14691B     URL    
[31]
Dong W, Fei T, Palma-Cando A, Scherf U . Polym. Chem, 2014,5:4048. http://xlink.rsc.org/?DOI=c4py00251b

doi: 10.1039/c4py00251b     URL    
[32]
Dong W, Pan Y, Fritsch M, Scherf U . J. Polym. Sci. Part A: Polym. Chem., 2015,53:1753. http://doi.wiley.com/10.1002/pola.27631

doi: 10.1002/pola.27631     URL    
[33]
Xu B, Xu Y, Wang X, Li H, Wu X, Tong H, Wang L . Polym. Chem, 2013,4:5056. http://xlink.rsc.org/?DOI=c3py00806a

doi: 10.1039/c3py00806a     URL    
[34]
Costa A I, Pinto H D, Ferreira L F V, Prata J V. Sens . Actuators B, 2012,161:702. https://linkinghub.elsevier.com/retrieve/pii/S0925400511010148

doi: 10.1016/j.snb.2011.11.017     URL    
[35]
Barata P D, Prata J V . Chempluschem, 2014,79:83. https://www.ncbi.nlm.nih.gov/pubmed/31986770

doi: 10.1002/cplu.201300280     URL     pmid: 31986770
[36]
Malik A H, Hussain S, Kalita A, Iyer P K . ACS Appl. Mater. Interfaces, 2015,7:26968. https://www.ncbi.nlm.nih.gov/pubmed/26580229

doi: 10.1021/acsami.5b08068     URL     pmid: 26580229
[37]
Tanwar A S, Adil L R, Afroz M A, Iyer P K . ACS Sens., 2018,3:1451. https://www.ncbi.nlm.nih.gov/pubmed/30039698

doi: 10.1021/acssensors.8b00093     URL     pmid: 30039698
[38]
Tanwar A S, Iyer P K . ACS Omega, 2017,2:4424. https://www.ncbi.nlm.nih.gov/pubmed/31457734

doi: 10.1021/acsomega.7b00765     URL     pmid: 31457734
[39]
Wang B H, Han J S, Bender M, Seehafer K, Bunz U H F . Macromolecules, 2017,50:4126. https://pubs.acs.org/doi/10.1021/acs.macromol.7b00738

doi: 10.1021/acs.macromol.7b00738     URL    
[40]
Burattini S, Colquhoun H M, Greenland B W, Hayes W, Wade M . Macromol. Rapid Commun., 2009,30:459. https://www.ncbi.nlm.nih.gov/pubmed/21706625

doi: 10.1002/marc.200800630     URL     pmid: 21706625
[41]
Hu H Z, Wang F Y, Yu L S, Sugimura K, Zhou J P, Nishio Y . ACS Sustain. Chem. Eng., 2018,6:1436. https://pubs.acs.org/doi/10.1021/acssuschemeng.7b03855

doi: 10.1021/acssuschemeng.7b03855     URL    
[42]
Kumar V, Maiti B, Chini M K, De P, Satapathi S . Sci. Rep, 2019,9:7269. https://www.ncbi.nlm.nih.gov/pubmed/31086230

doi: 10.1038/s41598-019-43836-w     URL     pmid: 31086230
[43]
Zhou H, Ye Q, Neo W T, Song J, Yan H, Zong Y, Tang B Z, Hor T S, Xu J . Chem. Commun, 2014,50:13785. https://www.ncbi.nlm.nih.gov/pubmed/25252003

doi: 10.1039/c4cc06559j     URL     pmid: 25252003
[44]
Li Q S, Yang Z M, Ren Z J, Yan S K . Macromol. Rapid Commun., 2016,37:1772. https://www.ncbi.nlm.nih.gov/pubmed/27611625

doi: 10.1002/marc.201600378     URL     pmid: 27611625
[45]
Chua M H, Zhou H, Lin T T, Wu J S, Xu J W . J. Polym. Sci. Part A: Polym. Chem., 2017,55:672. http://doi.wiley.com/10.1002/pola.28382

doi: 10.1002/pola.28382     URL    
[46]
Jiang N, Li G F, Che W L, Zhu D X, Su Z M, Bryce M R . J. Mater. Chem. C, 2018,6:11287. http://xlink.rsc.org/?DOI=C8TC04250K

doi: 10.1039/C8TC04250K     URL    
[47]
Shin S, Lim J, Gu M L, Yu C Y, Hong M, Char K, Choi T L . Polym. Chem., 2017,8:7507. http://xlink.rsc.org/?DOI=C7PY01582H

doi: 10.1039/C7PY01582H     URL    
[48]
Li H, Mei J, Wang J, Zhang S, Zhao Q, Wei Q, Qin A, Sun J, Tang B Z . Sci. China Chem., 2011,54:611. http://link.springer.com/10.1007/s11426-011-4235-9

doi: 10.1007/s11426-011-4235-9     URL    
[49]
Li H, Wang J, Sun J Z, Hu R, Qin A, Tang B Z . Polym. Chem., 2012,3:1075. http://xlink.rsc.org/?DOI=c2py00586g

doi: 10.1039/c2py00586g     URL    
[50]
He B Z, Wu Y W, Qin A J, Tang B Z . Macromolecules, 2017,50:5719. https://pubs.acs.org/doi/10.1021/acs.macromol.7b00992

doi: 10.1021/acs.macromol.7b00992     URL    
[51]
Bauri K, Saha B, Mahanti J, De P . Polym. Chem, 2017,8:7180. http://xlink.rsc.org/?DOI=C7PY01579H

doi: 10.1039/C7PY01579H     URL    
[52]
Lo S C, Burn P L . Chem. Rev., 2007,107:1097. https://www.ncbi.nlm.nih.gov/pubmed/17385927

doi: 10.1021/cr050136l     URL     pmid: 17385927
[53]
Cavaye H, Shaw P E, Wang X, Burn P L, Lo S C, Meredith P . Macromolecules, 2010,43:10253. https://pubs.acs.org/doi/10.1021/ma102369q

doi: 10.1021/ma102369q     URL    
[54]
Hammer B A, Moritz R, Stangenberg R, Baumgarten M, Mullen K . Chem. Soc. Rev., 2015,44:4072. https://www.ncbi.nlm.nih.gov/pubmed/25256012

doi: 10.1039/c4cs00245h     URL     pmid: 25256012
[55]
Cavaye H, Shaw P E, Smith A R G, Burn P L, Gentle I R, James M, Lo S C, Meredith P . J. Phys. Chem. C, 2011,115:18366. https://pubs.acs.org/doi/10.1021/jp205586s

doi: 10.1021/jp205586s     URL    
[56]
Olley D A, Wren E J, Vamvounis G, Fernee M J, Wang X, Burn P L, Meredith P, Shaw P E . Chem. Mater., 2011,23:789. https://pubs.acs.org/doi/10.1021/cm1020355

doi: 10.1021/cm1020355     URL    
[57]
Vamvounis G, Shaw P E, Burn P L . J. Mater. Chem. C, 2013,1:1322. http://xlink.rsc.org/?DOI=C2TC00541G

doi: 10.1039/C2TC00541G     URL    
[58]
Geng Y, Ali M A, Clulow A J, Fan S, Burn P L, Gentle I R, Meredith P, Shaw P E . Nat. Commun., 2015,6:8240. https://www.ncbi.nlm.nih.gov/pubmed/26370931

doi: 10.1038/ncomms9240     URL     pmid: 26370931
[59]
Tang G, Chen S S Y, Shaw P E, Hegedus K, Wang X, Burn P L, Meredith P . Polym. Chem., 2011,2:2360. http://xlink.rsc.org/?DOI=c1py00222h

doi: 10.1039/c1py00222h     URL    
[60]
Ding Z, Zhao Q, Xing R, Wang X, Ding J, Wang L, Han Y . J. Mater. Chem. C, 2013,1:786. http://xlink.rsc.org/?DOI=C2TC00125J

doi: 10.1039/C2TC00125J     URL    
[61]
Narayanan A, Varnavski O, Mongin O, Majoral J P, Blanchard-Desce M, Goodson Ⅲ T . Nanotechnology, 2008,19:115502. https://iopscience.iop.org/article/10.1088/0957-4484/19/11/115502

doi: 10.1088/0957-4484/19/11/115502     URL    
[62]
Guo M, Varnavski O, Narayanan A, Mongin O, Majoral J P, Blanchard-Desce M, Goodson Ⅲ T . J. Phys. Chem. A, 2009,113:4763. https://www.ncbi.nlm.nih.gov/pubmed/19317441

doi: 10.1021/jp8112123     URL     pmid: 19317441
[63]
Bragança A M, Araújo M, Bonifácio V D B . Part. Part. Syst. Charact., 2015,32:98. http://doi.wiley.com/10.1002/ppsc.201400120

doi: 10.1002/ppsc.201400120     URL    
[64]
Koley S, Ghosh S . Phys. Chem. Chem. Phys., 2016,18:24830. https://www.ncbi.nlm.nih.gov/pubmed/27711522

doi: 10.1039/c6cp05054a     URL     pmid: 27711522
[65]
Bagul R S, Rajesh Y B R D, Jayamurugan G, Bera A, Sood A K, Jayaraman N . J. Photochem. Photobiol. A: Chem., 2013,253:1. https://linkinghub.elsevier.com/retrieve/pii/S1010603012005692

doi: 10.1016/j.jphotochem.2012.12.011     URL    
[66]
Caminade A M, Yan D, Smith D K . Chem. Soc. Rev., 2015,44:3870. https://www.ncbi.nlm.nih.gov/pubmed/26024369

doi: 10.1039/c5cs90049b     URL     pmid: 26024369
[67]
Wu W, Tang R, Li Q, Li Z . Chem. Soc. Rev., 2015,44:3997. https://www.ncbi.nlm.nih.gov/pubmed/25170592

doi: 10.1039/c4cs00224e     URL     pmid: 25170592
[68]
Liu J, Zhong Y, Lam J W Y, Lu P, Hong Y, Yu Y, Yue Y, Faisal M, Sung H H Y, Williams I D, Wong K S, Tang B Z . Macromolecules, 2010,43:4921. https://pubs.acs.org/doi/10.1021/ma902432m

doi: 10.1021/ma902432m     URL    
[69]
Zhao Z, Guo Y, Jiang T, Chang Z, Lam J W, Xu L, Qiu H, Tang B Z . Macromol. Rapid Commun., 2012,33:1074. https://www.ncbi.nlm.nih.gov/pubmed/22431373

doi: 10.1002/marc.201200085     URL     pmid: 22431373
[70]
Lu P, Lam J W, Liu J, Jim C K, Yuan W, Xie N, Zhong Y, Hu Q, Wong K S, Cheuk K K, Tang B Z . Macromol. Rapid Commun., 2010,31:834. https://www.ncbi.nlm.nih.gov/pubmed/21590975

doi: 10.1002/marc.200900794     URL     pmid: 21590975
[71]
Wu W, Ye S, Huang L, Xiao L, Fu Y, Huang Q, Yu G, Liu Y, Qin J, Li Q, Li Z . J. Mater. Chem., 2012,22:6374. http://xlink.rsc.org/?DOI=c2jm16514g

doi: 10.1039/c2jm16514g     URL    
[72]
Hu R, Lam J W Y, Liu J, Sung H H Y, Williams I D, Yue Z, Wong K S, Yuen M M F, Tang B Z . Polym. Chem., 2012,3:1481. http://xlink.rsc.org/?DOI=c2py20057k

doi: 10.1039/c2py20057k     URL    
[73]
Hu R, Lam J W Y, Li M, Deng H, Li J, Tang B Z . J. Polym. Sci. Part A: Polym. Chem., 2013,51:4752. https://www.ncbi.nlm.nih.gov/pubmed/23761950

doi: 10.1002/pola.26646     URL     pmid: 23761950
[74]
Wang J, Mei J, Yuan W, Lu P, Qin A, Sun J, Ma Y, Tang B Z . J. Mater. Chem., 2011,21:4056. http://xlink.rsc.org/?DOI=c0jm04100a

doi: 10.1039/c0jm04100a     URL    
[75]
Yao B, Hu T, Zhang H, Li J, Sun J Z, Qin A, Tang B Z . Macromolecules, 2015,48:7782. https://pubs.acs.org/doi/10.1021/acs.macromol.5b01868

doi: 10.1021/acs.macromol.5b01868     URL    
[76]
Chi W, Yuan W, Du J, Han T, Li H, Li Y, Tang B Z . Macromol. Rapid Commun., 2018,39:e1800604. https://www.ncbi.nlm.nih.gov/pubmed/30252976

doi: 10.1002/marc.201800604     URL     pmid: 30252976
[77]
Ma X S, Cui Y Z, Ding Y Q, Tao F R, Zheng B, Yu R H, Huang W . Sens. Actuators B, 2017,238:48. https://linkinghub.elsevier.com/retrieve/pii/S0925400516310590

doi: 10.1016/j.snb.2016.07.025     URL    
[78]
Zheng B, Li Y, Tao F, Cui Y, Li T . Sens. Actuators B, 2017,241:357. https://linkinghub.elsevier.com/retrieve/pii/S0925400516316859

doi: 10.1016/j.snb.2016.10.057     URL    
[79]
Huang W, Smarsly E, Han J, Bender M, Seehafer K, Wacker I, Schroder R R, Bunz U H . ACS Appl. Mater. Interfaces, 2017,9:3068. https://www.ncbi.nlm.nih.gov/pubmed/28051292

doi: 10.1021/acsami.6b12419     URL     pmid: 28051292
[80]
Chen L, Gao Y, Fu Y, Zhu D, He Q, Cao H, Cheng J . RSC Adv, 2015,5:29624. http://xlink.rsc.org/?DOI=C5RA02472B

doi: 10.1039/C5RA02472B     URL    
[81]
Li H, Wu X, Xu B, Tong H, Wang L . RSC Adv, 2013,3:8645. http://xlink.rsc.org/?DOI=c3ra40901e

doi: 10.1039/c3ra40901e     URL    
[82]
Xu Y, Wu X, Chen Y, Hang H, Tong H, Wang L . Polym. Chem, 2016,7:4542. http://xlink.rsc.org/?DOI=C6PY00930A

doi: 10.1039/C6PY00930A     URL    
[83]
Wu X, Hang H, Li H, Chen Y, Tong H, Wang L . Mater. Chem. Front., 2017,1:1875. http://xlink.rsc.org/?DOI=C7QM00173H

doi: 10.1039/C7QM00173H     URL    
[84]
Li H, Wu X, Hang H, Chen Y, Tong H, Wang L . Acta Polym. Sin., 2018,2:248.
[85]
Ma X, Tao F, Zhang Y, Li T, Raymo F M, Cui Y . J. Mater. Chem. A, 2017,5:14343. http://xlink.rsc.org/?DOI=C7TA04351A

doi: 10.1039/C7TA04351A     URL    
[86]
Wu H T, Xu H, Tao F R, Su X, Yu W W, Li T D, Cui Y Z . New J. Chem., 2018,42:12802. http://xlink.rsc.org/?DOI=C8NJ01881B

doi: 10.1039/C8NJ01881B     URL    
[87]
Wang Y, La A, Bruckner C, Lei Y . Chem. Commun, 2012,48:9903. http://xlink.rsc.org/?DOI=c2cc34492k

doi: 10.1039/c2cc34492k     URL    
[88]
Liu S G, Luo D, Li N, Zhang W, Lei J L, Li N B, Luo H Q . ACS Appl. Mater. Interfaces, 2016,8:21700. https://www.ncbi.nlm.nih.gov/pubmed/27471907

doi: 10.1021/acsami.6b07407     URL     pmid: 27471907
[89]
Chen D, Liu C, Tang J, Luo L, Yu G . Polym. Chem, 2019,10:1168. http://xlink.rsc.org/?DOI=C8PY01620H

doi: 10.1039/C8PY01620H     URL    
[90]
Suresh V M, Scherf U . Macromol. Chem. Phys., 2018,219:1800207. http://doi.wiley.com/10.1002/macp.v219.18

doi: 10.1002/macp.v219.18     URL    
[91]
Zhang C, Che Y, Zhang Z, Yang X, Zang L . Chem. Commun, 2011,47:2336. https://www.ncbi.nlm.nih.gov/pubmed/21165504

doi: 10.1039/c0cc04836d     URL     pmid: 21165504
[92]
Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore J S, Zang L . J. Am. Chem. Soc., 2007,129:6978. https://www.ncbi.nlm.nih.gov/pubmed/17500522

doi: 10.1021/ja070747q     URL     pmid: 17500522
[93]
Chen Q, Han B H . Macromol. Rapid Commun., 2018,39:1800040. https://www.ncbi.nlm.nih.gov/pubmed/29575467

doi: 10.1002/marc.201800040     URL     pmid: 29575467
[94]
Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K . Chem. Rev, 2012,112:3959. https://www.ncbi.nlm.nih.gov/pubmed/22594539

doi: 10.1021/cr200440z     URL     pmid: 22594539
[95]
Patra A, Scherf U . Chem. Eur. J., 2012,18:10074. https://www.ncbi.nlm.nih.gov/pubmed/22736336

doi: 10.1002/chem.201200804     URL     pmid: 22736336
[96]
Wong Y L, Tobin J M, Xu Z, Vilela F . J. Mater. Chem. A, 2016,4:18677. http://xlink.rsc.org/?DOI=C6TA07697A

doi: 10.1039/C6TA07697A     URL    
[97]
Xiang Z, Cao D . Macromol. Rapid Commun., 2012,33:1184. https://www.ncbi.nlm.nih.gov/pubmed/22508391

doi: 10.1002/marc.201100865     URL     pmid: 22508391
[98]
Sang N, Zhan C, Cao D . J. Mater. Chem. A, 2015,3:92. http://xlink.rsc.org/?DOI=C4TA04903A

doi: 10.1039/C4TA04903A     URL    
[99]
Liu X, Xu Y, Jiang D . J. Am. Chem. Soc., 2012,134:8738. https://www.ncbi.nlm.nih.gov/pubmed/22587302

doi: 10.1021/ja303448r     URL     pmid: 22587302
[100]
Sun L, Liang Z, Yu J, Xu R . Polym. Chem, 2013,4:1932. http://xlink.rsc.org/?DOI=c2py21034g

doi: 10.1039/c2py21034g     URL    
[101]
Sun L, Zou Y, Liang Z, Yu J, Xu R . Polym. Chem, 2014,5:471. http://xlink.rsc.org/?DOI=C3PY00980G

doi: 10.1039/C3PY00980G     URL    
[102]
Krishnan S, Suneesh C V . J. Photochem. Photobiol. A: Chem., 2019,371:414. https://linkinghub.elsevier.com/retrieve/pii/S1010603018311985

doi: 10.1016/j.jphotochem.2018.11.044     URL    
[103]
Geng T, Zhu Z, Zhang W, Wang Y . J. Mater. Chem. A, 2017,5:7612. http://xlink.rsc.org/?DOI=C7TA00590C

doi: 10.1039/C7TA00590C     URL    
[104]
Geng T, Ye S, Zhu Z, Zhang W . J. Mater. Chem. A, 2018,6:2808. http://xlink.rsc.org/?DOI=C7TA08251G

doi: 10.1039/C7TA08251G     URL    
[105]
Zhang Y, A S, Zou Y, Luo X, Li Z, Xia H, Liu X, Mu Y . J. Mater. Chem. A, 2014,2:13422. http://xlink.rsc.org/?DOI=C4TA01871K

doi: 10.1039/C4TA01871K     URL    
[106]
Wei F, Cai X, Nie J, Wang F, Lu C, Yang G, Chen Z, Ma C, Zhang Y . Polym. Chem, 2018,9:3832. http://xlink.rsc.org/?DOI=C8PY00702K

doi: 10.1039/C8PY00702K     URL    
[107]
Patra A, Koenen J M, Scherf U . Chem. Commun, 2011,47:9612. http://xlink.rsc.org/?DOI=c1cc13420e

doi: 10.1039/c1cc13420e     URL    
[108]
Wu X, Li H, Xu Y, Xu B, Tong H, Wang L . Nanoscale, 2014,6:2375. https://www.ncbi.nlm.nih.gov/pubmed/24435090

doi: 10.1039/c3nr05402k     URL     pmid: 24435090
[109]
Wu X, Li H, Xu B, Tong H, Wang L . Polym. Chem, 2014,5:4521. http://xlink.rsc.org/?DOI=c4py00305e

doi: 10.1039/c4py00305e     URL    
[110]
Gopalakrishnan D, Dichtel W R . J. Am. Chem. Soc., 2013,135:8357. https://www.ncbi.nlm.nih.gov/pubmed/23641956

doi: 10.1021/ja402668e     URL     pmid: 23641956
[111]
Novotney J L, Dichtel W R . ACS Macro Lett., 2013,2:423. https://pubs.acs.org/doi/10.1021/mz4000249

doi: 10.1021/mz4000249     URL    
[112]
Gopalakrishnan D, Dichtel W R . Chem. Mater., 2015,27:3813. https://pubs.acs.org/doi/10.1021/acs.chemmater.5b00857

doi: 10.1021/acs.chemmater.5b00857     URL    
[113]
Ko J H, Moon J H, Kang N, Park J H, Shin H W, Park N, Kang S, Lee S M, Kim H J, Ahn T K, Lee J Y, Son S U . Chem. Commun., 2015,51:8781. https://www.ncbi.nlm.nih.gov/pubmed/25912710

doi: 10.1039/c5cc02144h     URL     pmid: 25912710
[114]
Kang C W, Lee D H, Shin Y J, Choi J, Ko Y J, Lee S M, Kim H J, Ko K C, Son S U . J. Mater. Chem. A, 2018,6:17312. http://xlink.rsc.org/?DOI=C8TA06744A

doi: 10.1039/C8TA06744A     URL    
[115]
Gu C, Huang N, Wu Y, Xu H, Jiang D . Angew. Chem. Int. Ed., 2015,54:11540. https://www.ncbi.nlm.nih.gov/pubmed/26234636

doi: 10.1002/anie.201504786     URL     pmid: 26234636
[116]
Raupke A, Palma-Cando A, Shkura E, Teckhausen P, Polywka A, Gorrn P, Scherf U, Riedl T . Sci. Rep, 2016,6:29118. https://www.ncbi.nlm.nih.gov/pubmed/27373905

doi: 10.1038/srep29118     URL     pmid: 27373905
[117]
Ma H, Li F, Li P, Wang H, Zhang M, Zhang G, Baumgarten M, Müllen K . Adv. Funct. Mater., 2016,26:2025. http://doi.wiley.com/10.1002/adfm.201504692

doi: 10.1002/adfm.201504692     URL    
[118]
Wang D, Feng S, Liu H . Chem. Eur. J., 2016,22:14319. https://www.ncbi.nlm.nih.gov/pubmed/27533795

doi: 10.1002/chem.201602688     URL     pmid: 27533795
[119]
Wang D, Sun R, Feng S, Li W, Liu H . Polymer, 2017,130:218. https://linkinghub.elsevier.com/retrieve/pii/S0032386117309850

doi: 10.1016/j.polymer.2017.10.021     URL    
[120]
Gou Z, Zuo Y, Tian M, Lin W . ACS Appl. Mater. Interfaces, 2018,10:28979. https://www.ncbi.nlm.nih.gov/pubmed/30088906

doi: 10.1021/acsami.8b08582     URL     pmid: 30088906
[121]
Dalapati S, Gu C, Jiang D . Small, 2016,12:6513. https://www.ncbi.nlm.nih.gov/pubmed/27740717

doi: 10.1002/smll.201602427     URL     pmid: 27740717
[122]
Babu H V, Bai M G M, Rajeswara Rao M . ACS Appl. Mater. Interfaces, 2019,11:11029. https://www.ncbi.nlm.nih.gov/pubmed/30817118

doi: 10.1021/acsami.8b19087     URL     pmid: 30817118
[123]
Yuan Y, Ren H, Sun F, Jing X, Cai K, Zhao X, Wang Y, Wei Y, Zhu G . J. Mater. Chem., 2012,22:24558. http://xlink.rsc.org/?DOI=c2jm35341e

doi: 10.1039/c2jm35341e     URL    
[124]
Yuan Y, Ren H, Sun F, Jing X, Cai K, Zhao X, Wang Y, Wei Y, Zhu G . J. Phys. Chem. C, 2012,116:26431. https://pubs.acs.org/doi/10.1021/jp309068x

doi: 10.1021/jp309068x     URL    
[125]
Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D . J. Am. Chem. Soc., 2013,135:17310. https://www.ncbi.nlm.nih.gov/pubmed/24182194

doi: 10.1021/ja4103293     URL     pmid: 24182194
[126]
Gomes R, Bhaumik A . RSC Adv, 2016,6:28047. http://xlink.rsc.org/?DOI=C6RA01717G

doi: 10.1039/C6RA01717G     URL    
[127]
Das P, Mandal S K . J. Mater. Chem. A, 2018,6:16246. http://xlink.rsc.org/?DOI=C8TA05070H

doi: 10.1039/C8TA05070H     URL    
[128]
Das G, Biswal B P, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R . Chem. Sci, 2015,6:3931. https://www.ncbi.nlm.nih.gov/pubmed/29218164

doi: 10.1039/c5sc00512d     URL     pmid: 29218164
[129]
Zhang C, Zhang S, Yan Y, Xia F, Huang A, Xian Y . ACS Appl. Mater. Interfaces, 2017,9:13415. https://www.ncbi.nlm.nih.gov/pubmed/28375606

doi: 10.1021/acsami.6b16423     URL     pmid: 28375606
[130]
Rao M R, Fang Y, de Feyter S, Perepichka D F . J. Am. Chem. Soc., 2017,139:2421. https://www.ncbi.nlm.nih.gov/pubmed/28088854

doi: 10.1021/jacs.6b12005     URL     pmid: 28088854
[131]
Zhang W, Qiu L G, Yuan Y P, Xie A J, Shen Y H, Zhu J F . J. Hazard. Mater., 2012,221/222:147. https://linkinghub.elsevier.com/retrieve/pii/S0304389412004165

doi: 10.1016/j.jhazmat.2012.04.025     URL    
[1] 孙鹏飞, 候焕知, 范曲立, 黄维. 水溶性含糖共轭聚合物的制备及应用[J]. 化学进展, 2016, 28(10): 1489-1500.
[2] 晏菲, 刘向洋, 赵冬娇, 包炜幸, 董晓平, 奚凤娜*. 荧光金纳米团簇在小分子化合物检测中的应用[J]. 化学进展, 2013, 25(05): 799-808.
[3] 张夏聪, 李文*, 张阿方. 温度敏感树形聚合物[J]. 化学进展, 2012, (9): 1765-1775.
[4] 董博, 闫熙博, 牛玉洁, 王欣, 王连永, 王燕铭* . 聚酰胺-胺型树枝状大分子及其衍生物在基因传递中的应用[J]. 化学进展, 2012, 24(12): 2352-2358.
[5] 田威 范晓东 孔杰 刘郁杨 张卫红. 基于环糊精的高度支化聚合物*[J]. 化学进展, 2010, 22(04): 669-676.
[6] 万德成 王光成 杨根金 杨正龙 浦鸿汀. 共价胶束:核内官能团的性质与作用*[J]. 化学进展, 2010, 22(0203): 465-471.
[7] 刘勇 舒远杰 刘学涌 熊鹰 钟发春 孙毅. 分子印迹技术和荧光分析技术在爆炸物检测中的应用*[J]. 化学进展, 2009, 21(12): 2712-2717.
[8] 刘军民,卜建华,麦健航,江焕峰. 含有杯芳烃的树枝状分子[J]. 化学进展, 2008, 20(11): 1716-1725.
[9] 张灯青,赵圣印,刘海雄. 一氧化氮荧光分子探针[J]. 化学进展, 2008, 20(09): 1396-1405.
[10] 武照强,孟令芝. 荧光聚合物研究进展*[J]. 化学进展, 2007, 19(9): 1381-1392.
[11] 孟宪乐,朱为宏,田禾. 树枝状有机电致发光材料*[J]. 化学进展, 2007, 19(11): 1671-1680.
[12] 王红,张华山. 分离检测生物活性物质的荧光标记试剂与分子探针及其应用*[J]. 化学进展, 2007, 19(05): 633-642.
[13] 李景果,孟超,张修强,张磊,张阿方. 树形聚醚的合成及其应用*[J]. 化学进展, 2006, 18(09): 1157-1180.
[14] 王建军,王立,王学杰. 高度支化状二茂铁基聚合物研究进展*[J]. 化学进展, 2003, 15(05): 409-.
阅读次数
全文


摘要

爆炸物检测用荧光聚合物材料