English
新闻公告
More
化学进展 2020, Vol. 32 Issue (2/3): 298-308 DOI: 10.7536/PC190610 前一篇   后一篇

所属专题: 锂离子电池 金属有机框架材料

• •

MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用

陈豪登1,2, 徐建兴1, 籍少敏1,**(), 姬文晋1, 崔立峰2,**(), 霍延平1,**()   

  1. 1. 广东工业大学轻工化工学院 广州 510006
    2. 东莞理工学院材料科学与工程学院 东莞 523808
  • 收稿日期:2019-06-10 出版日期:2020-02-15 发布日期:2019-10-17
  • 通讯作者: 籍少敏, 崔立峰, 霍延平
  • 基金资助:
    国家自然科学基金项目(61671162); 国家自然科学基金项目(21975055); 国家自然科学基金项目(21975053); 广东省教育厅应用研究重大项目(2017KZDXM025); 广东省科技计划项目(2019A050510042)

Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries

Haodeng Chen1,2, Jianxing Xu1, Shaomin Ji1,**(), Wenjin Ji1, Lifeng Cui2,**(), Yanping Huo1,**()   

  1. 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2. School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
  • Received:2019-06-10 Online:2020-02-15 Published:2019-10-17
  • Contact: Shaomin Ji, Lifeng Cui, Yanping Huo
  • About author:
    ** e-mail: (Shaomin Ji);
    (Lifeng Cui);
    (Yanping Huo)
  • Supported by:
    National Natural Science Foundation of China(61671162); National Natural Science Foundation of China(21975055); National Natural Science Foundation of China(21975053); Key Project of Educational Commission of Guangdong Province, China(2017KZDXM025); Technology Plan of Guangdong Province(2019A050510042)

锂离子电池作为比能量最高的二次电池,广泛用于便携电子设备、新能源汽车和大规模储能电站等领域。目前商用锂离子电池正面临着一些技术瓶颈,如能量密度低和使用寿命短等。关于锂离子电池负极材料的报道有很多,但大多无法克服锂化前后巨大的体积膨胀、电极材料粉末化和电极阻抗大等缺点。金属-有机骨架衍生金属氧化物及其复合材料因具有低而平的充放电电位平台、高容量和稳定的循环性能等优点,被广泛应用于锂离子电池。本文将从单金属氧化物、双金属氧化物、双组分金属氧化物复合材料和金属氧化物/碳复合材料四个模块进行综述,总结其合成方法、形貌与电化学性能之间的关系,并展望其未来发展的机遇与挑战。

As the secondary battery with the highest specific energy, lithium ion battery is widely used in portable electronic devices, new energy vehicles and large-scale energy storage power stations. Currently, commercial lithium-ion batteries are facing some technical bottlenecks, such as low energy density and short service life. There are many reports about the anode materials of lithium ion batteries, but most of them cannot overcome the shortcomings such as the huge volume expansion before and after lithium, the pulverization of electrode materials, and the large electrode impedance. However, metal oxides derived from metal-organic frameworks(MOFs) and composites are widely used in lithium ion batteries due to their low level charge-discharge potential platform, high capacity and stable cycle performance. Therefore, in this paper, metal oxides derived from MOFs and composites are divided into four modules: mono-metal oxides, bi-metal oxides, bi-component metal oxide composites and metal oxide/carbon composites. The relationships between their synthesis methods, morphologies and electrochemical properties are summarized, and the opportunities and challenges for their future development are forecast.

()
表1 以MOFs为模板制备的金属氧化物及其复合材料应用于锂离子电池
Table 1 Metal oxides and composite materials prepared from MOFs applied in lithium ion batteries
MOFs Sample Voltage range
(V)
RCa)
(mAh·g-1/cycles)
CDb)
(mA·g-1)
DCc)/CCd)
(mAh·g-1)
CEe) ref
ZIF-67 Co3O4 0.01~3.0 1335/100 100 1735/1083 96% 31
MOF-71 Co3O4 0.001~3.0 913/60 200 1286.1/879.5 97% 32
{Ni3(HCOO)6·DMF} n NiO 0.01~3.0 760/100 200 1149/850 ~100% 33
Cu-BTC CuO 0.01~3.0 1085/100 100 1334.7/836.1 99% 34
Mn-MOF-74 Mn3O4 0.01~3.0 890.7/400 200 1078.9/625.1 ~100% 35
Mn-MOF-74 δ-MnO2 0.01~3.0 991.5/400 200 -/- 99.4% 35
MIL-88-Fe α-Fe2O3 0.01~3.0 911/50 200 1372/940 97% 36
MIL-53(Fe)-2 Fe2O3-2 0.005~3.0 1176/200 100 1456/1048 ~100% 37
Zn-Co-ZIFs ZnxCo3- x O4 0.01~3.0 990/50 100 1272/969 76.2% 38
Co/Ni-MOF-74 Ni0.3Co2.7O4 0.01~3.0 1410/200 100 1737/1189 - 39
Co/Ni-MOF-74 NiCo2O4 0.01~3.0 1157/200 100 1693/1057 - 39
Co[Fe(CN)6]0.667 CoFe2O4 0.01~3.0 1115/200 1000 1352/1190 85.3% 40
NMOFs NiFe2O4 0.01~3.0 1071/200 1000 1245/1152 - 41
ZF-MOFs ZnFe2O4/ZnO 0.01~3.0 537/500 500 1156/839 ~100% 42
Ni-BTC CuO@NiO 0.005~3.0 1061/200 100 1218/856 ~100% 43
Co3[Fe(CN)6]2@Ni3[Co(CN)6]2 Fe2O3@NiCo2O4 0.01~3.0 1079.6/100 100 1311.4/902.7 96% 44
[Cu3(btc)2)] n CuO/Cu2O 0.01~3.0 740/250 100 727/513 - 45
MIL-101(Cr3+) Cr2O3@TiO2 0.05~3.0 510/500 500 1138/- - 46
IRMOF-1 ZnO QDs@C 0.002~3.0 1200/50 75 2300/- ~100% 47
Mn-doped MIL-53(Fe) MnO-Fe3O4@C 0.01~3.0 1297.5/200 200 1281.4/938.6 96.5% 48
ABO3-type MOF Fe3O4@C 0.01~3.0 1041/50 100 1714/1333 96%~99% 49
Co(2,3-chedc)(DABCO)0.5 CoO-NCNTs 0.01~3.0 450/300 500 1156/945 ~100% 50
Ni@ZIF-8 Ni@ZnO/CNF 0.01~3.0 1051/100 100 1547/1100 ~99% 27
Co-Ti-MOF Ti-CoO@C 0.01~3.0 1108/150 200 1749/830.7 86.6% 51
Zn-Mn-BTC Zn x MnO@C 0.01~3.0 1050/200 100 1565.9/954.6 99% 52
ZIF-8 C-ZnCo2O4-ZnO 0~3.0 1318/150 200 1311/898 ~100% 53
Fe/Mn-MOF-74 Fe-Mn-O/C 0~3.0 1294/200 100 1333/837 98.5% 54
表2 各种MOFs及其衍生物负极材料与不同正极组合成全电池的性能对比
Table 2 Full cell performance comparison of various nanostructured anode materials with different cathodes
图1 三维逐层MnO x 分级介孔微长方体的制备示意图[35]
Fig.1 Schematic of the fabrication processes of the 3D layer-by-layer MnO x hierarchically mesoporous micro-cuboids[35]. Copyright 2018,ACS
图2 由Mn-MOF-74模板在室温下合成δ-MnO2材料(A~C)在不同放大倍数的SEM图像,(D) TEM图像,(E) HR-TEM图片,(F) SAED图像[35]
Fig.2 (A~C) SEM images at various magnifications,(D) TEM images,(E) HR-TEM images, and (F) SAED pattern of δ-MnO2 materials by Mn-MOF-74 templating at room temperature[35]. Copyright 2018,ACS
图3 Zn x Co3- x O4空心十二面体作为电极材料的电化学性能:(a) 在电流密度为100 mA·g-1时充放电曲线,(b) 在电流密度为100 mA·g-1时放电循环性能曲线,(c) 在1 ~ 10 C不同倍率时的倍率曲线[38]
Fig.3 Electrochemical properties of the porous ZnxCo3- x O4 hollow polyhedra as electrodes in LiBs:(a) charge-discharge voltage profiles at a current density of 100 mA·g-1,(b) discharge capacities versus cycle number at a current density of 100 mA·g-1, and(c) rate capability at various current rates between 1 and 10 C[38]. Copyright 2014,ACS
图4 一步微波辅助合成用于锂存储的双金属有机骨架及其衍生介孔Co-Ni-O纳米棒的示意图[39]
Fig.4 Schematic illustration showing the one-step microwave-assisted synthesis of a bimetal organic framework and its derived mesoporous Co-Ni-O nanorod for lithium storage application[39]. Copyright 2015,Wiley
图5 多层CuO@NiO微球的电化学性能:(a) 伏安循环图,(b) 第一次循环放电(锂嵌入)和充电(锂萃取)曲线,(c) 电流为 0.1 Ah·g-1时的循环性能曲线,(d)第一、第三和第200次循环后的奈奎斯特曲线,(e) 200循环后阳极TEM图像[43]
Fig.5 Electrochemical performances of multilayer CuO@NiO spheres:(a) cycle voltammogram profile,(b) first cycle discharge(lithium insertion) and charge(lithium extraction) curve,(c) cycling performance at a current of 0.1 Ah·g-1, (d) Nyquist plots for the first, third and 200 cycles, (e) TEM image of the anode after 200 cycles[43].Copyright 2015, ACS
图6 层级MnO掺杂Fe3O4@C复合纳米球的制备原理图[48]
Fig.6 Schematic illustration for the fabrication of hierarchical MnO-doped Fe3O4@C composite nanospheres[48]. Copyright 2018, ACS
图7 (a,b) Fe-Mn-O/C微球SEM图像、(c,d) TEM图像、(e,f) HRTEM图像和(g)元素映射图像[54]
Fig.7 (a,b) SEM images,(c,d) TEM images,(e,f) HRTEM images, and (g) elemental mapping images of Fe-Mn-O/C microspheres[54]. Copyright 2019,RSC
图8 AZT CNCs材料的详细合成示意[29]
Fig.8 Schematic illustration of the detailed formation process of the AZT CNCs[29]. Copyright 2018, Wiley
图9 a) AZT-0、AZT-30、AZT-60在2.0 A·g-1的高电流密度下的超长循环性能;b) AZT-0、 c) AZT-30、 d) AZT-60在10、50、100、250和500次充放电循环后扫描速率为0.1 mV·s-1的CV曲线[29]
Fig.9 a) Ultralong cycling performance of AZT-0, AZT-30, and AZT-60 at a high current density of 2.0 A·g-1. CV curves of b) AZT-0, c) AZT-30, and d) AZT-60 at a scan rate of 0.1 mV·s-1 after 10, 50, 100, 250, and 500 charge/discharge cycles[29]. Copyright 2018, Wiley
[1]
Cui L F, Huang L H, Ji M, Wang Y G, Shi H C, Zuo Y H, Kang S F . J. Power Sources, 2016,333:118.
[2]
Zhang K X, Guo W H, Liang Z B, Zou R Q . Sci. China Chem., 2019,62:417.
[3]
Wu Z Z, Xie J, Xu Z J, Zhang S Q, Zhang Q C . J. Mater. Chem. A, 2019,7:4259. http://xlink.rsc.org/?DOI=C8TA11994E

doi: 10.1039/C8TA11994E     URL    
[4]
Zhong M, Kong L J, Li N, Liu Y Y, Zhu J, Bu X H . Coordin. Chem. Rev., 2019,388:172.
[5]
Li Y, Xu Y X, Yang W P, Shen W X, Xue H G, Pang H . Small, 2018,14:e1704435. https://www.ncbi.nlm.nih.gov/pubmed/29750438

doi: 10.1002/smll.201704435     URL     pmid: 29750438
[6]
Reddy M V, Subba Rao G V, Chowdari B V . Chem. Rev., 2013,113:5364. https://www.ncbi.nlm.nih.gov/pubmed/23548181

doi: 10.1021/cr3001884     URL     pmid: 23548181
[7]
Shi W H, Xu X L, Zhang L, Liu W X, Cao X H . Funct. Mater. Lett., 2018,11:1830006.
[8]
Jiang J, Li Y Y, Liu J P, Huang X T, Yuan C Z, Lou X W . Adv. Mater., 2012,24:5166. https://www.ncbi.nlm.nih.gov/pubmed/22912066

doi: 10.1002/adma.201202146     URL     pmid: 22912066
[9]
Lux L, Williams K, Ma S . CrystEngComm, 2015,17:10. http://xlink.rsc.org/?DOI=C4CE01499E

doi: 10.1039/C4CE01499E     URL    
[10]
Jiang Y, Yue J L, Guo Q B, Xia Q Y, Zhou C, Feng T, Xu J, Xia H . Small, 2018,14:e1704296. https://www.ncbi.nlm.nih.gov/pubmed/29655282

doi: 10.1002/smll.201704296     URL     pmid: 29655282
[11]
李振杰(Li Z J), 钟杜(Du Z), 张洁(Zhang J), 陈金伟(Chen J W), 王刚(Wang G), 王瑞林(Wang R L) . 化学进展 (Progress in Chemistry), 2019,31:201.
[12]
赵云(Zhao Y), 亢玉琼(Kang Y Q), 金玉红(Jin Y H), 王莉(Wang L), 田光宇(Tian G Y), 何向明(He X M) . 化学进展 (Progress in Chemistry), 2019,31:613.
[13]
Sundriyal S, Kaur H, Bhardwaj S K, Mishra S, Kim K H, Deep A . Coordin. Chem. Rev., 2018,369:15.
[14]
Xia W, Mahmood A, Zou R Q, Xu Q . Energy Environ. Sci., 2015,8:1837.
[15]
Jeong E, Lee W R, Ryu D W, Kim Y, Phang W J, Koh E K, Hong C S . Chem. Commun., 2013,49:2329. https://www.ncbi.nlm.nih.gov/pubmed/23403976

doi: 10.1039/c3cc00093a     URL     pmid: 23403976
[16]
Foster M E, Azoulay J D, Wong B M, Allendorf M D . Chem. Sci., 2014,5:2081.
[17]
Ramaswamy P, Wong N E, Shimizu G K . Chem. Soc. Rev., 2014,43:5913. https://www.ncbi.nlm.nih.gov/pubmed/24733639

doi: 10.1039/c4cs00093e     URL     pmid: 24733639
[18]
Zhang X D, Li H X, Hou F L, Yang Y, Dong H, Liu N, Wang Y X, Cui L F . Appl. Surf. Sci., 2017,411:27.
[19]
Zhang X D, Yang Y, Lv X T, Wang Y X, Cui L F . Catalysts, 2017,7:382.
[20]
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P N, Cynober L, Gil S, Ferey G, Couvreur P, Gref R . Nat. Mater., 2010,9:172. https://www.ncbi.nlm.nih.gov/pubmed/20010827

doi: 10.1038/nmat2608     URL     pmid: 20010827
[21]
Yaghi O M, Li H L . J. Am. Chem. Soc., 1995,117:10401.
[22]
白蕾(Bai L), 王艳凤(Wang Y F), 霍淑慧(Huo S H), 卢小泉(Lu X Q) . 化学进展 (Progress in Chemistry), 2018,31:191.
[23]
付艳艳(Fu Y Y), 严秀平(Yan X P) . 化学进展 (Progress in Chemistry), 2012,25:221.
[24]
Hu L, Chen Q W . Nanoscale, 2014,6:1236. https://www.ncbi.nlm.nih.gov/pubmed/24356788

doi: 10.1039/c3nr05192g     URL     pmid: 24356788
[25]
Xia H c, Zhang J A, Yang Z, Guo S Y, Guo S S, Xu Q . Nanomicro. Lett., 2017,9:43. https://www.ncbi.nlm.nih.gov/pubmed/30393738

doi: 10.1007/s40820-017-0144-6     URL     pmid: 30393738
[26]
Song Y H, Li X, Sun L L, Wang L . RSC Adv., 2015,5:7267.
[27]
Joshi B, Samuel E, Il Kim Y, Kim M W, Jo H S, Swihart M T, Yoon W Y, Yoon S S . Chem. Eng. J., 2018,351:127. https://linkinghub.elsevier.com/retrieve/pii/S1385894718309124

doi: 10.1016/j.cej.2018.05.098     URL    
[28]
Cui L F, Ji M, Mao L H, Kang S F, Wang Y G, Shi H C . J. Electrochem. Soc., 2016,163:A2017.
[29]
Liu Z B, Ji S M, Xu X J, Hu R Z, Liu J W, Liu J . Chem. Eur. J., 2018,24:582.
[30]
Cui Y J, Yue Y F, Qian G D, Chen B L . Chem. Rev., 2011,112:1126. https://www.ncbi.nlm.nih.gov/pubmed/21688849

doi: 10.1021/cr200101d     URL     pmid: 21688849
[31]
Shao J, Wan Z M, Liu H M, Zheng H Y, Gao T, Shen M, Qu Q T, Zheng H H . J. Mater. Chem. A, 2014,2:12194.
[32]
Li C, Chen T Q, Xu W J, Lou X B, Pan L K, Chen Q, Hu B W . J. Mater. Chem. A, 2015,3:5585.
[33]
Xu J M, Tang H B, Xu T T, Wu D, Shi Z F, Tian Y T, Li X J . Ionics, 2017,23:3273. http://link.springer.com/10.1007/s11581-017-2160-4

doi: 10.1007/s11581-017-2160-4     URL    
[34]
Hu X S, Li C, Lou X B, Yang Q, Hu B W . J. Mater. Chem. A, 2017,5:12828. http://xlink.rsc.org/?DOI=C7TA02953E

doi: 10.1039/C7TA02953E     URL    
[35]
Hu X, Lou X, Li C, Yang Q, Chen Q, Hu B W . ACS Appl. Mater. Inter., 2018,10:14684. https://www.ncbi.nlm.nih.gov/pubmed/29637762

doi: 10.1021/acsami.8b00953     URL     pmid: 29637762
[36]
Xu X D, Cao R G, Jeong S, Cho J . Nano Lett., 2012,12:4988. https://www.ncbi.nlm.nih.gov/pubmed/22881989

doi: 10.1021/nl302618s     URL     pmid: 22881989
[37]
Guo W X, Sun W W, Lv L P, Kong S F, Wang Y . ACS Nano, 2017,11:4198. https://www.ncbi.nlm.nih.gov/pubmed/28334522

doi: 10.1021/acsnano.7b01152     URL     pmid: 28334522
[38]
Wu R B, Qian X K, Zhou K, Wei J, Lou J, Ajayan P M . ACS Nano, 2014,8:6297. https://www.ncbi.nlm.nih.gov/pubmed/24833068

doi: 10.1021/nn501783n     URL     pmid: 24833068
[39]
Li H, Liang M, Sun W W, Wang Y . Adv. Funct. Mater., 2016,26:1098. http://doi.wiley.com/10.1002/adfm.v26.7

doi: 10.1002/adfm.v26.7     URL    
[40]
Guo H, Li T T, Chen W W, Liu L X, Yang X J, Wang Y P, Guo Y C . Nanoscale, 2014,6:15168. https://www.ncbi.nlm.nih.gov/pubmed/25374151

doi: 10.1039/c4nr04422c     URL     pmid: 25374151
[41]
Guo H, Li T T, Chen W W, Liu L X, Qiao J L, Zhang J J . Sci. Rep., 2015,5:13310. https://www.ncbi.nlm.nih.gov/pubmed/26347981

doi: 10.1038/srep13310     URL     pmid: 26347981
[42]
Cao H, Zhu S Q, Yang C, Bao R Q, Tong L N, Hou L R, Zhang X G, Yuan C Z . Nanotechnology, 2016,27:465402. https://www.ncbi.nlm.nih.gov/pubmed/27749279

doi: 10.1088/0957-4484/27/46/465402     URL     pmid: 27749279
[43]
Guo W X, Sun W W, Wang Y . ACS Nano, 2015,9 11462. https://www.ncbi.nlm.nih.gov/pubmed/26442790

doi: 10.1021/acsnano.5b05610     URL     pmid: 26442790
[44]
Huang G, Zhang L L, Zhang F F, Wang L M . Nanoscale, 2014,6:5509. https://www.ncbi.nlm.nih.gov/pubmed/24730026

doi: 10.1039/c3nr06041a     URL     pmid: 24730026
[45]
Hu L, Huang Y M, Zhang F P, Chen Q W . Nanoscale, 2013,5:4186. https://www.ncbi.nlm.nih.gov/pubmed/23584557

doi: 10.1039/c3nr00623a     URL     pmid: 23584557
[46]
Wang B X, Wang Z Q, Cui Y J, Yang Y, Wang Z Y, Chen B L, Qian G D . Micro. Meso. Mater., 2015,203:86. https://linkinghub.elsevier.com/retrieve/pii/S1387181114006064

doi: 10.1016/j.micromeso.2014.10.026     URL    
[47]
Yang S J, Nam S H, Kim T, Im J H, Jung H, Kang J H, Wi S, Park B, Park C R . J. Am. Chem. Soc., 2013,135:7394. https://www.ncbi.nlm.nih.gov/pubmed/23647071

doi: 10.1021/ja311550t     URL     pmid: 23647071
[48]
He Z S, Wang K, Zhu S S, Huang L A, Chen M M, Guo J F, Pei S E, Shao H B, Wang J M . ACS Appl. Mater. Interfaces, 2018,10:10974. https://www.ncbi.nlm.nih.gov/pubmed/29537815

doi: 10.1021/acsami.8b01358     URL     pmid: 29537815
[49]
Yang L, Tian Y, Ge P, Zhao G G, Pu T C, Yang Y C, Zou G Q, Hou H S, Huang L, Ji X B . ChemElectroChem, 2018,5:3426.
[50]
Pang Y C, Chen S, Xiao C H, Ma S D, Ding S J . J. Mater. Chem. A, 2019,7:4126.
[51]
Li J K, Wang D, Zhou J S, Hou L, Gao F M . ChemElectroChem, 2019,6:917. http://doi.wiley.com/10.1002/celc.v6.3

doi: 10.1002/celc.v6.3     URL    
[52]
Wang D, Zhou W W, Zhang R, Huang X X, Zeng J J, Mao Y F, Ding C Y, Zhang J, Liu J P, Wen G W , J. Mater. Chem. A, 2018,6:2974.
[53]
Gan Q M, Zhao K M, Liu S Q, He Z . J. Mater. Sci., 2017,52:7768. http://link.springer.com/10.1007/s10853-017-1043-4

doi: 10.1007/s10853-017-1043-4     URL    
[54]
Sun W W, Chen S, Wang Y . Dalton Trans., 2019,48:2019. https://www.ncbi.nlm.nih.gov/pubmed/30667432

doi: 10.1039/c8dt04716b     URL     pmid: 30667432
[55]
Wei T, Zhang M, Wu P, Tang Y J, Li S L, Shen F C, Wang X L, Zhou X P, Lan Y Q . Nano Energy, 2017,34:205.
[56]
Xie X C, Huang K J, Wu X . J. Mater. Chem. A, 2018,6:6754. http://xlink.rsc.org/?DOI=C8TA00612A

doi: 10.1039/C8TA00612A     URL    
[57]
Balach J, Linnemann J, Jaumann T, Giebeler L . J. Mater. Chem. A, 2018,6:23127.
[58]
Zhong Y J, Xu X M, Liu Y, Wang W, Shao Z P . Polyhedron, 2018,155:464.
[59]
Xia X H, Zhang Y Q, Chao D L, Guan C, Zhang Y J, Li L, Ge X, Bacho I M, Tu J, Fan H J . Nanoscale, 2014,6:5008. https://www.ncbi.nlm.nih.gov/pubmed/24696018

doi: 10.1039/c4nr00024b     URL     pmid: 24696018
[60]
Pan Y, Zeng W J, Li L, Zhang Y Z, Dong Y N, Cao D X, Wang G L, Lucht B L, Ye K, Cheng K . Nanomicro. Lett., 2017,9:20. https://www.ncbi.nlm.nih.gov/pubmed/30460316

doi: 10.1007/s40820-016-0122-4     URL     pmid: 30460316
[61]
Xie Z Q, Xu W W, Cui X D, Wang Y . ChemSusChem, 2017,10:1645. https://www.ncbi.nlm.nih.gov/pubmed/28150903

doi: 10.1002/cssc.201601855     URL     pmid: 28150903
[62]
Yuan C Z, Wu H B, Xie Y, Lou X W . Angew. Chem. Int. Ed. Engl., 2014,53:1488. https://www.ncbi.nlm.nih.gov/pubmed/24382683

doi: 10.1002/anie.201303971     URL     pmid: 24382683
[63]
Wu S R, Liu J B, Wang H, Yan H , Int. J. Energy Res., 2019,43:697.
[64]
张慧(Zhang H), 周雅静(Zhou Y J), 宋肖锴(Song X K) . 化学进展 (Progress in Chemistry), 2015,27:174.
[65]
Liu X W, Sun T J, Hu J L, Wang S D . J. Mater. Chem. A, 2016,4:3584.
[66]
Fan H H, Zhou L, Li H H . 2D Materials, 2019,6:045022.
[67]
Shen L S, Song H W, Wang C X . Electrochimica Acta, 2017,235:595.
[68]
Xia Y Wang B B, Wang G . ChemElectroChem, 2016,3:299.
[69]
Zhou X Y, Yu Y, W Y J . ChemElectroChem. 2019,6:2056 https://onlinelibrary.wiley.com/toc/21960216/6/7

doi: 10.1002/celc.v6.7     URL    
[70]
Wang X X, Xue H J, Na Z L . J. Power Sources, 2018,396:659.
[71]
Hao W J, Chen S M, Cai Y J . J. Mater. Chem. A, 2014,2:13801.
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[3] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[7] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[8] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[9] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[10] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[11] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[12] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[13] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[14] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[15] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.