English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1653-1668 DOI: 10.7536/PC190327 前一篇   后一篇

• •

智能响应型水凝胶药物控释体系及其应用

蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺**(), 马晶军   

  1. 河北农业大学理工学院 沧州 061100
  • 收稿日期:2019-03-25 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 许国贺
  • 基金资助:
    河北省高等学校青年拔尖人才计划项目(BJ201702); 河北农业大学引进博士专项(ZD2016027); 河北省大学生创新创业训练计划项目(201810086063); 河北农业大学渤海校区师生协同创新项目(2018bssxt11)

Intelligent-Responsive Hydrogels-Based Controlled Drug Release Systems and Its Applications

Zixuan Cai, Bin Zhang, Liyang Jiang, Yunyi Li, Guohe Xu**(), Jingjun Ma   

  1. College of Science and Engineering, Agricultural University of Hebei, Cangzhou 061100, China
  • Received:2019-03-25 Online:2019-12-15 Published:2019-10-15
  • Contact: Guohe Xu
  • About author:
  • Supported by:
    Young Tip-top Talents Plan of Universities and Colleges in Hebei Province of China(BJ201702); Specific Foundation for Doctor in Hebei Agriculture University of China(ZD2016027); Undergraduate Innovation and Entrepreneurship Training Program Project of Hebei Province(201810086063); Collaborative Innovation Projects between Teachers and Students of Bohai Campus of Hebei Agricultural University(2018bssxt11)

药物控释体系可改善药物分子在机体内的释放、吸收、代谢和排泄过程,显著提高药物利用率并减弱药物的毒副作用。智能响应型水凝胶凭借其刺激响应性、亲水性和无毒性在药物控释方面得到了广泛的关注。本文介绍了智能响应型水凝胶药物控释体系的概念、机理和应用,详细归纳了智能响应型水凝胶药物控释体系的研究进展。按照刺激源不同将智能响应型水凝胶药物控释体系分为pH响应型、温度响应型、光响应型、生物分子(如葡萄糖、酶)响应型、外场(如电场、磁场)响应型、压力响应型、氧化还原响应型及多重响应型水凝胶药物控释体系。进一步介绍了智能响应型水凝胶药物控释体系在治疗癌症、急性肾损伤、眼病、糖尿病等疾病及抗菌、防止伤口感染等方面的应用。最后,基于目前智能响应型水凝胶药物控释体系存在的一些问题(如生物相容性差、存在突释或滞释现象、不可降解等)对其发展做出了展望。

Controlled drug release systems can ameliorate the release, absorption, metabolism and excretion of drug molecules in the body, significantly improve drug utilization and reduce the side effects of drugs. Intelligent-responsive hydrogels have been extensively studied for controlled drug release carriers due to their responsiveness, hydrophilicity, good biocompatibility and non-toxicity. In this paper, the research progress of the intelligent-responsive hydrogels-based controlled drug release systems is summarized in detail, including the conception, mechanism and applications. According to the kinds of external stimuli, the intelligent-responsive hydrogels-based controlled drug release systems can be classified into pH-responsive, temperature-responsive, light-responsive, glucose-responsive, enzyme-responsive, electric field-responsive, magnetic field-responsive, pressure-responsive, redox-responsive and multiple-responsive hydrogels-based controlled drug release systems. The applications of the intelligent-responsive hydrogels-based controlled drug release systems in treating diseases, such as cancer, acute kidney injury, eye diseases, diabetes and its complications, and antibiotic treatments for preventing wound infection are further briefly described. Then, the problems of the intelligent-responsive hydrogels-based controlled drug release systems researches, such as poor biocompatibility, burst release or stagnant release, and non-degradability, are analyzed. Finally, the future development of the intelligent-responsive hydrogel-based controlled drug release systems is prospected.

()
图1 智能响应型水凝胶药物控释体系溶胀释药机理
Fig. 1 Mechanism of intelligent-responsive hydrogels-based controlled drug release systems through swelling
图2 智能响应型水凝胶药物控释体系收缩释药机理
Fig. 2 Mechanism of intelligent-responsive hydrogels-based controlled drug release systems through shrinking
图3 智能响应型水凝胶药物控释体系降解释药机理[32]
Fig. 3 Mechanism of intelligent-responsive hydrogels-based controlled drug release systems through degradation[32]
图4 阴离子型pH响应型水凝胶药物控释体系释药机理[40]
Fig. 4 Mechanism of anionic pH-responsive hydrogels-based controlled drug release systems[40]
图5 负热敏型水凝胶药物控释体系释药机理
Fig. 5 Mechanism of negative thermosensitive hydrogels-based controlled drug release systems
图6 (a) PEG/PPG/PCL三元共聚物结构及示意图;(b) PEG/PPG/PCL热敏型水凝胶药物控释体系示意图[58]
Fig. 6 (a) PEG/PPG/PCL terpolymer structure and schematic;(b) Schematic diagram of PEG/PPG/PCL thermosensitive hydrogels-based controlled drug release systems[58]
图7 可见光触发释放布洛芬[71]
Fig. 7 The release of ibuprofen driven by visible light[71]
图8 基于β-环糊精-偶氮苯水凝胶的紫外光响应型药物控释体系[72]
Fig. 8 UV-responsive hydrogels-based controlled drug release systems based on β-cyclodextrin-azobenzene[72]
图9 基于PDANPs/4-arm-PEG-SH水凝胶的近红外光响应型药物控释体系[73]
Fig. 9 NIR-responsive hydrogels-based controlled drug release systems based on PDANPs/ 4-arm-PEG-SH[73]
图10 GOD催化葡萄糖转化为葡萄糖酸[14]
Fig. 10 Converting glucose into gluconic acid catalyzed by GOD[14]
图11 (a) MMP-9触发两亲肽可注射水凝胶结构转变释药示意图;(b) 酶响应型可注射水凝胶对癌细胞的杀灭作用示意图[77]
Fig. 11 (a) Schematic diagram of MMP-9 triggering amphiphilic peptide injectable hydrogel structure conversion release;(b) Schematic diagram of the killing effect of enzyme-responsive injectable hydrogel on cancer cells[77]
图12 磁场响应型水凝胶药物控释体系
Fig. 12 Magnetic field-responsive hydrogels-based controlled drug release systems
图13 基于Al-CD的压力响应型药物控释体系[91]
Fig. 13 Pressure-responsive hydrogels-based controlled drug release systems based on Al-CD[91]
图14 基于HRP传递的硫醇聚合物的交互链接[93]
Fig. 14 The scheme of the HRP-mediated cross-linking of the thiolated polymer[93]
图15 基于TKNs水凝胶的氧化还原响应型药物控释体系[94]
Fig. 15 Redox-responsive hydrogels-based controlled drug release systems based on TKNs[94]
[1]
Sohail M F, Rehman M, Sarwar H S, Naveed S, Salman O, Bukhari N I, Hussain I, Webster T J, Shahnaz G . Int. J. Nanomed., 2018,(13):3145.
[2]
Kalantzi L E, Karavas E, Koutris E X, Bikiaris D N . Recent Pat. Drug Deliv. Formul., 2009,3(1):49. https://www.ncbi.nlm.nih.gov/pubmed/19149729

doi: 10.2174/187221109787158337     URL     pmid: 19149729
[3]
Kang J, Hwang J, Seo J, Kim H, Shin U S . Mat. Sci. Eng. C-Mater., 2018,91:247.
[4]
Davis M E, Chen Z G, Shin D M . Nat. Rev. Drug Discov., 2008,7(9):771. https://www.ncbi.nlm.nih.gov/pubmed/18758474

doi: 10.1038/nrd2614     URL     pmid: 18758474
[5]
Cho K, Wang X, Nie S, Chen Z, Shin D M . Clin. Cancer Res., 2008,14(5):1310. https://www.ncbi.nlm.nih.gov/pubmed/18316549

doi: 10.1158/1078-0432.CCR-07-1441     URL     pmid: 18316549
[6]
Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X, Cheng Z, Lin J . Sci. Rep., 2015,5:7851. https://www.ncbi.nlm.nih.gov/pubmed/25597762

doi: 10.1038/srep07851     URL     pmid: 25597762
[7]
Reimer N, Reinsch H, Inge A K, Stock N . Inorg. Chem., 2015,54(2):492. https://www.ncbi.nlm.nih.gov/pubmed/25539449

doi: 10.1021/ic502242j     URL     pmid: 25539449
[8]
Alexis F, Pridgen E, Molnar L K, Farokhzad O C . Mol. Pharm., 2008,5(4):505. https://www.ncbi.nlm.nih.gov/pubmed/18672949

doi: 10.1021/mp800051m     URL     pmid: 18672949
[9]
Yang Y Q, Zheng L S, Guo X D, Qian Y, Zhang L J . Biomacromolecules, 2011,12(1):116. https://www.ncbi.nlm.nih.gov/pubmed/21121600

doi: 10.1021/bm101058w     URL     pmid: 21121600
[10]
Aluigi A, Ballestri M, Guerrini A, Sotgiu G, Ferroni C, Corticelli F, Gariboldi M B, Monti E, Varchi G . Mat. Sci. Eng. C-Mater., 2018,90:476.
[11]
Sivakumaran D, Maitland D, Hoare T . Biomacromolecules, 2011,12(11):4112. https://www.ncbi.nlm.nih.gov/pubmed/22007750

doi: 10.1021/bm201170h     URL     pmid: 22007750
[12]
Cheng L Y, Sun X M, Hu C M, Jin R, Sun B S, Shi Y M, Zhang L, Cui W G, Zhang Y G . Acta. Biomater., 2013,9(12):9461. https://www.ncbi.nlm.nih.gov/pubmed/23938200

doi: 10.1016/j.actbio.2013.07.040     URL     pmid: 23938200
[13]
Javanbakht S, Nazari N, Rakhshaei R, Namazi H . Carbohyd. Polym., 2018,195:453. https://www.ncbi.nlm.nih.gov/pubmed/29804999

doi: 10.1016/j.carbpol.2018.04.103     URL     pmid: 29804999
[14]
Qiu Y, Park K . Adv. Drug Deliver. Rev., 2012,64S:49.
[15]
Pareek A, Maheshwari S, Cherlo S, Thavva R, Runkana V . Int. J. Pharm., 2017,532(1):502. https://www.ncbi.nlm.nih.gov/pubmed/28882487

doi: 10.1016/j.ijpharm.2017.09.001     URL     pmid: 28882487
[16]
Berger J, Reist M, Mayer J M, Felt O, Gurny R . Eur. J. Pharm. Biopharm., 2004,57(1):35. https://www.ncbi.nlm.nih.gov/pubmed/14729079

doi: 10.1016/s0939-6411(03)00160-7     URL     pmid: 14729079
[17]
Liu R, Dai L, Si C, Zeng Z . Carbohyd. Polym., 2018,195:63. https://www.ncbi.nlm.nih.gov/pubmed/29805020

doi: 10.1016/j.carbpol.2018.04.085     URL     pmid: 29805020
[18]
Thanusha A V, Dinda A K, Koul V, . Mat. Sci. Eng. C-Mater., 2018,89:378.
[19]
Cheng Y H, Ko Y C, Chang Y F, Huang S H, Liu C J L . Exp. Eye Res., 2019,179:179. https://www.ncbi.nlm.nih.gov/pubmed/30471279

doi: 10.1016/j.exer.2018.11.017     URL     pmid: 30471279
[20]
Soppimath K S, Aminabhavi T M, Kulkarni A R, Rudzinski W E . J. Control. Release, 2001,70(1/2):1. https://www.ncbi.nlm.nih.gov/pubmed/11166403

doi: 10.1016/s0168-3659(00)00339-4     URL     pmid: 11166403
[21]
May M H, Lahooti S, Babensee J E T I . J. Control. Release, 2000,65(1/2):173. https://www.ncbi.nlm.nih.gov/pubmed/10699279

doi: 10.1016/s0168-3659(99)00234-5     URL     pmid: 10699279
[22]
Jin S, Li D, Yang P, Guo J, Lu J Q, Wang C C . Colloids. Surface A, 2015,484:47.
[23]
Huang G, Gao J, Hu Z B, John J V S, Ponder B C, Moro D. J . Control. Release, 2004,94(2/3):303. https://www.ncbi.nlm.nih.gov/pubmed/14744482

doi: 10.1016/j.jconrel.2003.10.007     URL     pmid: 14744482
[24]
Baniani D D, Bagheri R, Solouk A . Carbohyd. Polym., 2017,174:633. https://www.ncbi.nlm.nih.gov/pubmed/28821114

doi: 10.1016/j.carbpol.2017.06.095     URL     pmid: 28821114
[25]
Zhang Y, Zhu W, Wang B B, Ding J D . J. Control. Release, 2005,105(3):260. https://www.ncbi.nlm.nih.gov/pubmed/15913826

doi: 10.1016/j.jconrel.2005.04.001     URL     pmid: 15913826
[26]
Ankareddi I, Brazel C S . Int. J. Pharm., 2007,336(2):241. https://www.ncbi.nlm.nih.gov/pubmed/17234371

doi: 10.1016/j.ijpharm.2006.11.065     URL     pmid: 17234371
[27]
Lehto J, Vaaramaa K, Vesterinen E, Tenhu H . J. Appl. Polym. Sci., 1998,68(3):355.
[28]
Schmedlen K H, Masters K S, West J L . Biomater., 2002,23(22):4325. https://www.ncbi.nlm.nih.gov/pubmed/12219822

doi: 10.1016/s0142-9612(02)00177-1     URL     pmid: 12219822
[29]
Babaladimath G, Badalamoole V . Polym. Int., 2018,67(8):983.
[30]
Chan A W, Neufeld R J . Biomaterials, 2010,31(34):9040. https://www.ncbi.nlm.nih.gov/pubmed/20739057

doi: 10.1016/j.biomaterials.2010.07.111     URL     pmid: 20739057
[31]
Peppas N A, Bures P, Leobandung W, Ichikawa H . Eur. J. Pharm. Biopharm., 2000,50(1):27. https://www.ncbi.nlm.nih.gov/pubmed/10840191

doi: 10.1016/s0939-6411(00)00090-4     URL     pmid: 10840191
[32]
Hu J J, Quan Y C, Lai Y P, Zheng Z, Hu Z Q, Wang X Y, Dai T J, Zhang Q, Cheng Y Y . J. Control. Release, 2017,247:145. https://www.ncbi.nlm.nih.gov/pubmed/28077265

doi: 10.1016/j.jconrel.2017.01.003     URL     pmid: 28077265
[33]
Garg T, Singh S, Goyal A K . Crit. Rev. Ther. Drug, 2013,30(5):369. https://www.ncbi.nlm.nih.gov/pubmed/24099326

doi: 10.1615/critrevtherdrugcarriersyst.2013007259     URL     pmid: 24099326
[34]
Li Z, He G D, Hua J C, Wu M Q, Guo W, Gong J X, Zhang J F, Qiao C S . RSC Adv., 2017,7(18):11085.
[35]
Mahkam M, Poorgholy N, Vakhshouri L . Macromol. Res., 2009,17(9):709.
[36]
Javanbakht S, Nazari N, Rakhshaei R, Namazi H . Carbohyd. Polym., 2018,195:453. https://www.ncbi.nlm.nih.gov/pubmed/29804999

doi: 10.1016/j.carbpol.2018.04.103     URL     pmid: 29804999
[37]
Glajch J L, Kirkland J J, Kohler J . J. Chromatogr., 1987,384:81. https://www.ncbi.nlm.nih.gov/pubmed/3818859

doi: 10.1016/s0021-9673(01)94661-8     URL     pmid: 3818859
[38]
高春梅(Gao C M), 柳明珠(Liu M Z), 吕少瑜(Lu S Y), 陈晨(Chen C), 黄银娟(Huang Y J), 陈远谋(Chen Y M) . 化学进展 (Prog. Chem.), 2013,25(6):1012.
[39]
Liu C H, Chen Y Q, Chen J G . Carbohyd. Polym., 2010,79(3):500. https://linkinghub.elsevier.com/retrieve/pii/S0144861709004603

doi: 10.1016/j.carbpol.2009.08.024     URL    
[40]
Zhang L H, Ma Y H, Zhao C W, Zhu X, Chenab R C, Yang W T . J. Mater. Chem. B, 2015,3(39):7673. https://www.ncbi.nlm.nih.gov/pubmed/32264577

doi: 10.1039/c5tb01149c     URL     pmid: 32264577
[41]
Zhang B, Yan Y Y, Shen Q J, Ma D, Huang L H, Cai X, Tan S Z . Mat. Sci. Eng. C-Mater., 2017,79:185.
[42]
Jiao Z P, Zhang B, Li C Y, Kuang W C, Zhang J X, Xiong Y Q, Tan S Z, Cai X, Huang LH . Nanotechnol. Rev., 2018,7(4):291.
[43]
Shohraty F, Moghadam P N, Fareghi A R, Movagharnezhad N, Khalafy J . Adv. Polym. Tech., 2018,37(1):1.
[44]
El-Mahrouk G M, Aboul-Einien M H, Makhlouf A I . Aaps Pharmscitech, 2016,17(6):1285. https://www.ncbi.nlm.nih.gov/pubmed/26689404

doi: 10.1208/s12249-015-0467-x     URL     pmid: 26689404
[45]
Lu C C, Li B Q, Liu N, Wu G L, Gao H, Ma J B . RSC Adv., 2014,4(92):50301.
[46]
Panda J J, Mishra A, Basu A, Chauhan V S . Biomacromolecules, 2008,9(8):2244. https://www.ncbi.nlm.nih.gov/pubmed/18624454

doi: 10.1021/bm800404z     URL     pmid: 18624454
[47]
Strong L E, West J L . Wires. Nanomed. Nanobi., 2011,3(3):307.
[48]
Nelson A, Cosgrove T . Langmuir, 2004,20(24):10382. https://www.ncbi.nlm.nih.gov/pubmed/15544363

doi: 10.1021/la049323p     URL     pmid: 15544363
[49]
Nelson A, Cosgrove T . Langmuir, 2004,20(6):2298. https://www.ncbi.nlm.nih.gov/pubmed/15835687

doi: 10.1021/la035268t     URL     pmid: 15835687
[50]
Leeuwenburgh S C G, Jansen J A, Mikos A G . J. Biomat. Sci.-Polym. E., 2007,18(12):1547. https://www.ncbi.nlm.nih.gov/pubmed/17988519

URL     pmid: 17988519
[51]
Zhang Y, Ding J, Sun D, Sun H, Zhuang X, Chang F, Wang J, Chen X, . Mat. Sci. Eng. C-Mater., 2015,49:262.
[52]
Bastiancich C, Danhier P, Preat V, Danhier F . J. Control. Release, 2016,243:29. https://www.ncbi.nlm.nih.gov/pubmed/27693428

doi: 10.1016/j.jconrel.2016.09.034     URL     pmid: 27693428
[53]
Yu L, Ding J . Chem. Soc. Rev., 2008,37(8):1473. https://www.ncbi.nlm.nih.gov/pubmed/18648673

doi: 10.1039/b713009k     URL     pmid: 18648673
[54]
Dicker K T, Gurski L A, Pradhan-Bhatt S, Witt R L, Farach-Carson M C, Jia X . Acta Biomater., 2014,10(4):1558. https://www.ncbi.nlm.nih.gov/pubmed/24361428

doi: 10.1016/j.actbio.2013.12.019     URL     pmid: 24361428
[55]
Tanjim M, Rahman M A, Rahman M M, Minami H, Hoque S M, Sharafat M K, Gafur M A, Ahmad H . Soft Matter, 2018,14(26):5469. https://www.ncbi.nlm.nih.gov/pubmed/29923579

doi: 10.1039/c8sm00560e     URL     pmid: 29923579
[56]
Sun H, Chen J, Han X, Liu H L . C Mat. Sci. Eng. C-Mater., 2018,82:284. https://www.ncbi.nlm.nih.gov/pubmed/29025659

doi: 10.1016/j.msec.2017.08.067     URL     pmid: 29025659
[57]
Zhang J T, Huang S W, Cheng S X, Zhuo R X . J. Polym. Sci. Pol. Chem., 2004,42(5):1249.
[58]
Loh X J, Peh P, Liao S, Sng C, Li J . J. Control. Release, 2010,143(2):175. https://www.ncbi.nlm.nih.gov/pubmed/20064568

doi: 10.1016/j.jconrel.2009.12.030     URL     pmid: 20064568
[59]
Figueroa-Pizano M D, Velaz I, Penas F J, Zavala-Rivera P, Rosas-Durazo A J, Maldonado-Arce A D, Martinez-Barbosa M E . Carbohyd. Polym., 2018,195:476. https://www.ncbi.nlm.nih.gov/pubmed/29805002

doi: 10.1016/j.carbpol.2018.05.004     URL     pmid: 29805002
[60]
Indulekha S, Arunkumar P, Bahadur D, Srivastava R . Mat. Sci. Eng. C-Mater., 2016,62:113.
[61]
van Valenberg F, Strauss-Ayali D, Agmon-Gerstein Y, Friedman A, Arentsen H C, Schaafsma H E, Witjes J A, Oosterwijk E . Ther. Adv. Urol., 2018,10(7):213. https://www.ncbi.nlm.nih.gov/pubmed/30034540

doi: 10.1177/1756287218762064     URL     pmid: 30034540
[62]
Liang H F, Hong M H, Ho R M, Chung C K, Lin Y H, Chen C H, Sung H W . Biomacromolecules, 2004,5(5):1917. https://www.ncbi.nlm.nih.gov/pubmed/15360306

doi: 10.1021/bm049813w     URL     pmid: 15360306
[63]
Ruel-Gariepy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, Leroux J C . Eur. J. Pharm. Biopharm., 2004,57(1):53. https://www.ncbi.nlm.nih.gov/pubmed/14729080

doi: 10.1016/s0939-6411(03)00095-x     URL     pmid: 14729080
[64]
Burakowska E, Zimmerman S C, Haag R . Small, 2009,5(19):2199. https://www.ncbi.nlm.nih.gov/pubmed/19572327

doi: 10.1002/smll.200900465     URL     pmid: 19572327
[65]
Rai P, Mallidi S, Zheng X, Rahmanzadeh R, Mir Y, Elrington S, Khurshid A, Hasan T . Adv. Drug Deliver. Rev., 2010,62(11):1094. https://www.ncbi.nlm.nih.gov/pubmed/20858520

doi: 10.1016/j.addr.2010.09.002     URL     pmid: 20858520
[66]
Katz J S, Burdick J A . Macromol. Biosci., 2010,10(4):339. https://www.ncbi.nlm.nih.gov/pubmed/20014197

doi: 10.1002/mabi.200900297     URL     pmid: 20014197
[67]
Ji W, Qin M G, Feng C L . Macromol. Chem. Phys., 2018,219(2):1.
[68]
Yang A F, Dong X, Liang J, Zhang Y, Yang W Z, Liu T J, Yang J, Kong D L, Lv F . Soft Matter, 2018,14(22):4495. https://www.ncbi.nlm.nih.gov/pubmed/29808187

doi: 10.1039/c8sm00626a     URL     pmid: 29808187
[69]
Alvarez-Lorenzo C, Bromberg L, Concheiro A . Photochem. Photobiol., 2009,85(4):848. https://www.ncbi.nlm.nih.gov/pubmed/19222790

doi: 10.1111/j.1751-1097.2008.00530.x     URL     pmid: 19222790
[70]
Chiang C Y, Chu C C . Carbohyd. Polym., 2015,119:18. https://www.ncbi.nlm.nih.gov/pubmed/25563940

doi: 10.1016/j.carbpol.2014.11.043     URL     pmid: 25563940
[71]
Hardy J G, Larraneta E, Donnelly R F, McGoldrick N, Migalska K, McCrudden M T C, Irwin N J, Donnelly L, McCoy C P . Mol. Pharm., 2016,13(3):907. https://www.ncbi.nlm.nih.gov/pubmed/26795883

doi: 10.1021/acs.molpharmaceut.5b00807     URL     pmid: 26795883
[72]
Nehls E M, Rosales A M, Anseth K S . J. Mater. Chem. B, 2016,4(6):1035. https://www.ncbi.nlm.nih.gov/pubmed/27127630

doi: 10.1039/C5TB02004B     URL     pmid: 27127630
[73]
Wang X, Wang C P, Wang X Y, Wang Y T, Zhang Q, Cheng Y Y . Chem. Mater., 2017,29(3):1370.
[74]
Zou X, Zhao X W, Ye L . RSC Adv., 2015,5(116):96230. https://www.ncbi.nlm.nih.gov/pubmed/27019702

doi: 10.1039/c5ra20359g     URL     pmid: 27019702
[75]
Matsumoto A, Yoshida R, Kataoka K . Biomacromolecules, 2004,5(3):1038. https://www.ncbi.nlm.nih.gov/pubmed/15132698

doi: 10.1021/bm0345413     URL     pmid: 15132698
[76]
Bai J K, Sheng C L, Zhang Y, Wang J X . PROG. Prog. Biochem. Biophys., 2016,43(11):1048.
[77]
Kalafatovic D, Nobis M, Son J Y, Anderson K I, Ulijn R V . Biomaterials, 2016,98:192. https://www.ncbi.nlm.nih.gov/pubmed/27192421

doi: 10.1016/j.biomaterials.2016.04.039     URL     pmid: 27192421
[78]
Wang Y, Luo Y Y, Zhao Q, Wang Z J, Xu Z J, Jia X R . ACS Appl. Mater. Inter., 2016,8(31):19899. https://www.ncbi.nlm.nih.gov/pubmed/27420576

doi: 10.1021/acsami.6b05567     URL     pmid: 27420576
[79]
Im J S, Yun J, Lim Y M, Kim H I, Lee Y S . Acta Biomater., 2010,6(1):102. https://www.ncbi.nlm.nih.gov/pubmed/19531386

doi: 10.1016/j.actbio.2009.06.017     URL     pmid: 19531386
[80]
Garland M J, Singh T R R, Woolfson A D, Donnelly R F . Int. J. Pharm., 2011,406(1/2):91. https://www.ncbi.nlm.nih.gov/pubmed/21236323

doi: 10.1016/j.ijpharm.2011.01.002     URL     pmid: 21236323
[81]
Liu Y, Servant A, Guy O J, Al-Jamal K T, Williams P R, Hawkins K M, Kostarelos K . Sensor. Actuat. B-Chem., 2012,175(SI):100.
[82]
Shi X N, Zheng Y D, Wang C, Yue L N, Qiao K, Wang G J, Wang L N, Quan H Y . RSC Adv., 2015,5(52):41820.
[83]
Paradee N, Sirivat A . Mol. Pharm., 2016,13(1):155. https://www.ncbi.nlm.nih.gov/pubmed/26561875

doi: 10.1021/acs.molpharmaceut.5b00592     URL     pmid: 26561875
[84]
Juntanon K, Niamlang S, Rujiravanit R, Sirivat A . Int. J. Pharm., 2008,356(1/2):1. https://www.ncbi.nlm.nih.gov/pubmed/18242901

doi: 10.1016/j.ijpharm.2007.12.023     URL     pmid: 18242901
[85]
Niamlang S, Sirivat A . Int. J. Pharm., 2009,371(1/2):126. https://www.ncbi.nlm.nih.gov/pubmed/19162150

doi: 10.1016/j.ijpharm.2008.12.032     URL     pmid: 19162150
[86]
Bajpai A K, Shukla S K, Bhanu S, Kankane S . Prog. Polym. Sci., 2008,33(11):1088.
[87]
Wang M S, Yin Y D . J. Am. Chem. Soc., 2016,138(20):6315. https://www.ncbi.nlm.nih.gov/pubmed/27115174

doi: 10.1021/jacs.6b02346     URL     pmid: 27115174
[88]
Hawkins A M, Bottom C E, Liang Z, Puleo D A, Hilt J Z . Adv. Healthc. Mater., 2012,1(1):96. https://www.ncbi.nlm.nih.gov/pubmed/23184692

doi: 10.1002/adhm.201100013     URL     pmid: 23184692
[89]
Ji W, Liu G F, Xu M X, Feng C L . Macromol. Chem. Phys., 2015,216(19):1945.
[90]
Wilde L, Bock M, Glockl G, Garbacz G, Weitschies W . Int. J. Pharm., 2014,461(1/2):296. https://www.ncbi.nlm.nih.gov/pubmed/24333906

doi: 10.1016/j.ijpharm.2013.11.062     URL     pmid: 24333906
[91]
Hosseinifar T, Sheybani S, Abdouss M, Najafabadi S, Ardestani M S . J. Biomed. Mater. Res. A, 2018,106(2):349. https://www.ncbi.nlm.nih.gov/pubmed/28940736

doi: 10.1002/jbm.a.36242     URL     pmid: 28940736
[92]
Yang F, Wang J, Cao L Y, Chen R, Tang L J, Liu C S . J. Mater. Chem. B, 2014,2(3):295. https://www.ncbi.nlm.nih.gov/pubmed/32261508

doi: 10.1039/c3tb21103g     URL     pmid: 32261508
[93]
Moriyama K, Minamihata K, Wakabayashi R, Goto M, Kamiya N . Chem. Commum., 2014,50(44):5895. https://www.ncbi.nlm.nih.gov/pubmed/24761434

doi: 10.1039/c3cc49766f     URL     pmid: 24761434
[94]
Chen D Q, Zhang G Q, Li R M, Guan M R, Wang X Y, Zou T J, Zhang Y, Wang C R, Shu C Y, Hong H, Wan L J . J. Am. Chem. Soc., 2018,140(24):7373. https://www.ncbi.nlm.nih.gov/pubmed/29799737

doi: 10.1021/jacs.7b12025     URL     pmid: 29799737
[95]
Hooshyar Z, Bardajee G R . J. Iran. Chem. Soc., 2017,14(3):541.
[96]
Peng J R, Qi T T, Liao J F, Chu B Y, Yang Q, Li W T, Qu Y, Luo F, Qian Z Y . Biomaterials, 2013,34(34):8726. https://www.ncbi.nlm.nih.gov/pubmed/23948167

doi: 10.1016/j.biomaterials.2013.07.092     URL     pmid: 23948167
[97]
Chen Y, Song G C, Yu J R, Wang Y, Zhu J, Hu Z M . J. Mech. Behav. Biomed., 2018,82:61. https://www.ncbi.nlm.nih.gov/pubmed/29571114

doi: 10.1016/j.jmbbm.2018.03.002     URL     pmid: 29571114
[98]
Mahdavinia G R, Rahmani Z, Karami S, Pourjavadi A . J. Biomat. Sci.-Polym. E., 2014,25(17):1891.
[99]
Wang H, Yi J, Mukherjee S, Banerjee P, Zhou S . Nanoscale, 2014,6(21):13001. https://www.ncbi.nlm.nih.gov/pubmed/25243783

doi: 10.1039/c4nr03748k     URL     pmid: 25243783
[100]
Eskandari S, Guerin T, Toth I, Stephenson R J . Adv. Drug Deliver. Rev., 2017,110:169.
[101]
Weng W, Ho I, Pang C, Pang S, Pan T, Leung W . Biosens. Bioelectron., 2018,116:51. https://www.ncbi.nlm.nih.gov/pubmed/29859397

doi: 10.1016/j.bios.2018.05.035     URL     pmid: 29859397
[102]
Yang L, Lv Z, Xia W, Zhang W, Xin Y, Yuan H, Chen Y, Hu X, Lv Y, Xu Q, Weng X, Ni C . Clin. Transl. Oncol., 2018,20(7):912. https://www.ncbi.nlm.nih.gov/pubmed/29243075

doi: 10.1007/s12094-017-1806-z     URL     pmid: 29243075
[103]
Zhou M D, Hao S J, Williams A J, Harouaka R A, Schrand B, Rawal S, Ao Z, Brenneman R, Gilboa E, Lu B, Wang S W, Zhu J Y, Datar R, Cote R, Tai Y C, Zheng S Y . Sci. Rep., 2015,5:1.
[104]
Ghosh J, Das J, Manna P, Sil P C . Biomaterials, 2011,32(21):4857. https://www.ncbi.nlm.nih.gov/pubmed/21486680

doi: 10.1016/j.biomaterials.2011.03.048     URL     pmid: 21486680
[105]
Lee A, Voo Z X, Chin W, Ono R J, Yang C, Gao S J, Hedrick J L, Yang Y Y . ACS Appl. Mater. Inter., 2018,10(16):13274. https://www.ncbi.nlm.nih.gov/pubmed/29595244

doi: 10.1021/acsami.7b14319     URL     pmid: 29595244
[106]
Capanema N S V, Mansur A A P, Carvalho S M, Carvalho I C, Chagas P, de Oliveira L C A Mansur H S . Carbohyd. Polym., 2018,195:401. https://www.ncbi.nlm.nih.gov/pubmed/29804993

doi: 10.1016/j.carbpol.2018.04.105     URL     pmid: 29804993
[107]
Pan A N, Wang Z Y, Chen B L, Dai W B, Zhang H, He B, Wang X Q, Wang Y G, Zhang Q . Drug Deliv., 2018,25(1):1495. https://www.ncbi.nlm.nih.gov/pubmed/29943651

doi: 10.1080/10717544.2018.1474971     URL     pmid: 29943651
[108]
Zhao M, Zhou Y, Liu S, Li L, Chen Y, Cheng J, Lu Y, Liu J . Drug. Deliv., 2018,25(1):546. https://www.ncbi.nlm.nih.gov/pubmed/29451033

doi: 10.1080/10717544.2018.1440445     URL     pmid: 29451033
[109]
Huang J, Ren J, Chen G, Li Z, Liu Y, Wang G, Wu X . Mat. Sci. Eng. C-Mater., 2018,89:213.
[110]
Gupta H, Velpandian T, Jain S . J. Drug Target., 2010,18(7):499. https://www.ncbi.nlm.nih.gov/pubmed/20055752

doi: 10.3109/10611860903508788     URL     pmid: 20055752
[111]
Prasanna A, Tsai H C, Hsiue G H . React. Funct. Polym., 2018,124:40.
[112]
Wong C Y, Al-Salami H, Dass C R . Int. J. Pharm., 2018,537(1/2):223. https://www.ncbi.nlm.nih.gov/pubmed/29288095

doi: 10.1016/j.ijpharm.2017.12.036     URL     pmid: 29288095
[113]
Schneider E L, Hearn B R, Pfaff S J, Reid R, Parkes D G, Vrang N, Ashley G W, Santi D V . ACS Chem. Biol., 2017,12(8):2107. https://www.ncbi.nlm.nih.gov/pubmed/28605180

doi: 10.1021/acschembio.7b00218     URL     pmid: 28605180
[114]
Wang P X, Zhuo X Z, Chu W, Tang X . Int. J. Pharm., 2017,528(1/2):62. https://www.ncbi.nlm.nih.gov/pubmed/28579543

doi: 10.1016/j.ijpharm.2017.05.069     URL     pmid: 28579543
[115]
Zhao F L, Wu D, Yao D, Guo R W, Wang W W, Dong A J, Kong D L, Zhang J H . Acta Biomater., 2017,64:334. https://www.ncbi.nlm.nih.gov/pubmed/28974477

doi: 10.1016/j.actbio.2017.09.044     URL     pmid: 28974477
[116]
Bajpai S K, Swarnkar M P . J. Macromol. Sci. A, 2017,54(3):186.
[117]
Peng H, Ning X, Wei G, Wang S, Dai G, Ju A . Carbohyd. Polym., 2018,195:349. https://www.ncbi.nlm.nih.gov/pubmed/29804986

doi: 10.1016/j.carbpol.2018.04.119     URL     pmid: 29804986
[118]
Zhao L L, Niu L J, Liang H Z, Tan H, Liu C Z, Zhu F Y . ACS Appl. Mater. Inter., 2017,9(43):37563. https://www.ncbi.nlm.nih.gov/pubmed/28994281

doi: 10.1021/acsami.7b09395     URL     pmid: 28994281
[119]
Xiao Y, Gong T, Jiang Y, Wang Y, Wen Z T, Zhou S, Bao C, Xu X . Polymer, 2016,82:1. https://www.ncbi.nlm.nih.gov/pubmed/26744546

doi: 10.1016/j.polymer.2015.11.016     URL     pmid: 26744546
[120]
Alvarez-Rivera F, Concheiro A, Alvarez-Lorenzo C . Eur. J. Pharm. Biopharm., 2018,122:126. https://www.ncbi.nlm.nih.gov/pubmed/29079419

doi: 10.1016/j.ejpb.2017.10.016     URL     pmid: 29079419
[121]
Chau D, Tint N L, Collighan R J, Griffin M, Dua H S, Shakesheff K M, Rose F . Brit. J. Ophthamol., 2010,94(5):648. https://www.ncbi.nlm.nih.gov/pubmed/20447968

doi: 10.1136/bjo.2009.163642     URL     pmid: 20447968
[122]
De Giglio E, Cafagna D, Giangregorio M M, Domingos M, Mattioli-Belmonte M, Cometa S . J. Bioact. Compat. Pol., 2011,26(4):420.
[123]
Menzies D J, Nelson A, Shen H, McLean K M, Forsythe J S, Gengenbach T, Fong C, Muir B W . J. R. Soc. Interface, 2012,9(70):1008. https://www.ncbi.nlm.nih.gov/pubmed/21957120

doi: 10.1098/rsif.2011.0509     URL     pmid: 21957120
[124]
Lu T, Qiao Y, Liu X . Interface Focus, 2012,2(3):325. https://www.ncbi.nlm.nih.gov/pubmed/23741609

doi: 10.1098/rsfs.2012.0003     URL     pmid: 23741609
[125]
Wang X, Liu L H, Ramstrom O, Yan M D . Exp. Biol. Med., 2009,234(10):1128. https://www.ncbi.nlm.nih.gov/pubmed/19596820

doi: 10.3181/0904-MR-134     URL     pmid: 19596820
[126]
Afferrante L, Carbone G . J. R. Soc. Interface, 2012,9(77):3359. https://www.ncbi.nlm.nih.gov/pubmed/22977100

doi: 10.1098/rsif.2012.0452     URL     pmid: 22977100
[127]
Niu Y, Qi L, Zhang F, Zhao Y . Biosens. Bioelectr., 2018,112:162.
[128]
Patel M, Kaneko T, Matsumura K . J. Mater. Chem. B, 2017,5(19):3488. https://www.ncbi.nlm.nih.gov/pubmed/32264285

doi: 10.1039/c7tb00701a     URL     pmid: 32264285
[129]
Hu J J, Chen Y H, Li Y Q, Zhou Z J, Cheng Y Y . Biomaterials, 2017,112:133. https://www.ncbi.nlm.nih.gov/pubmed/27760397

doi: 10.1016/j.biomaterials.2016.10.015     URL     pmid: 27760397
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[4] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[5] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[6] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[7] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[8] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[9] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[10] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[11] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[12] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.
[13] 黎朝, 於麟, 郑震, 王新灵*. 具有规整结构和高强度的水凝胶的功能化[J]. 化学进展, 2017, 29(7): 706-719.
[14] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[15] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.