English
新闻公告
More
化学进展 2019, Vol. 31 Issue (12): 1637-1652 DOI: 10.7536/PC1904105 前一篇   后一篇

• •

质子交换膜燃料电池膜电极耐久性的提升

叶跃坤, 池滨, 江世杰, 廖世军**()   

  1. 华南理工大学化学与化工学院 广州 510641
  • 收稿日期:2019-01-07 出版日期:2019-12-15 发布日期:2019-10-15
  • 通讯作者: 廖世军
  • 基金资助:
    国家重点研发计划项目(2017YFB0102900); 国家重点研发计划项目(2016YFB0101201); 国家自然科学基金项目(21476088); 国家自然科学基金项目(21776105); 广东省自然科学基金项目(2015B010106012); 广州市科技创新委员会(201504281614372); 广州市科技创新委员会(2016GJ006)

Enhancing the Durability of Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells

Yuekun Ye, Bin Chi, Shijie Jiang, Shijun Liao**()   

  1. School of Chemistry and Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2019-01-07 Online:2019-12-15 Published:2019-10-15
  • Contact: Shijun Liao
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2017YFB0102900); National Key Research and Development Program of China(2016YFB0101201); National Natural Science Foundation of China(21476088); National Natural Science Foundation of China(21776105); Guangdong Provincial Department of Science and Technology(2015B010106012); Guangzhou Science Technology and Innovation Committee(201504281614372); Guangzhou Science Technology and Innovation Committee(2016GJ006)

质子交换膜燃料电池由于具有能量转换效率高、操作温度低、环境友好等优点而备受人们关注。随着2014年丰田发布燃料电池电动汽车Mirai,带来了新一轮燃料电池及燃料电池汽车的产业化热潮。然而,提升质子交换膜燃料电池的寿命,开发新一代长寿命燃料电池膜电极及燃料电池仍然是本领域的挑战性课题。膜电极(MEA)是质子交换膜燃料电池最核心的部件,其耐久性直接决定着燃料电池的寿命。MEA主要由质子交换膜、催化剂层、气体扩散层三部分组成。本文从质子交换膜、催化剂及载体、气体扩散层三个方面介绍了近年来国内外在提升燃料电池膜电极的寿命(耐久性)方面所做的工作,并对未来的相关研究和发展做了述评及展望。

Proton exchange membrane fuel cell(PEMFC) has attracted huge attention recently due to its high energy conversion efficiency, low operating temperature and environmental benign. With the launch of the Mirai fuel cell electric vehicle by Toyota in 2014, a new wave of industrialization of fuel cells and fuel cell vehicles has been brought about. However, enhancing the durability of PEMFC and developing a new generation of membrane electrode assembly(MEA) and fuel cells are still challenging topics in the field. The MEA is the core component of PEMFC, and its durability directly determines the life of the fuel cell. The MEA is mainly composed of a proton exchange membrane, anode and cathode catalyst layers and gas diffusion layers on both sides. In last decade, great efforts have been paid to improving the durability of MEAs/PEMFCs from three aspects, membrane, catalyst layer and gas diffusion layer. In this paper, we introduce these research works systematically, and a review and prospect for the research and development of this topic in the future is also made.

()
图1 自由基攻击Nafion离聚物结构机理汇总[7]
Fig. 1 Summary of the mechanisms of radical attack on the Nafion polymer structure[7]
图2 负载在碳载体上的铂颗粒老化机制[57]
Fig. 2 Degradation mechanisms for platinum particles on a carbon support in fuel cells[57]
[1]
Tasic G S, Miljanic S S, Kaninski M P M, Saponjic D P, Nikolic V M . Electrochem. Commun., 2009,11:2097.
[2]
Khorasany R M H, Kjeang E, Wang G G, Rajapakse R K N D . J. Power Sources, 2015,279:55.
[3]
Xiao Y, Cho C . Energies, 2014,7:6401.
[4]
Khorasany R M H, Alavijeh A S, Kjeang E, Wang G G, Rajapakse R K N D . J. Power Sources, 2015,274:1208.
[5]
Lin R, Xiong F, Tang W C, Techer L, Zhang J M, Ma J X . J. Power Sources, 2014,260:150.
[6]
Kim N I, Seo Y, Kim K B, Lee N, Lee J H, Song I, Choi H, Park J Y . J. Power Sources, 2014,253:90.
[7]
Zaton M, Roziere J, Jones D J . Sustainable Energy & Fuels, 2017,1:409.
[8]
Shouwen S, Dursch T J, Borup R L, Weber A Z, Kusoglu A . ECS Transactions, 2015,69:1017.
[9]
Shi S, Dursch T J, Blake C, Mukundan R, Borup R L, Weber A Z, Kusoglu A . Journal of Polymer Science Part B-Polymer Physics, 2016,54:570. http://doi.wiley.com/10.1002/polb.v54.5

doi: 10.1002/polb.v54.5     URL    
[10]
Nandjou E, Poirot-Crouvezier J P, Chandesris M, Blachot J F, Bonnaud C, Bultel Y . J. Power Sources, 2016,326:182.
[11]
Casalongue H S, Kaya S, Viswanathan V, Miller D J, Friebel D, Hansen H A, Norskov J K, Nilsson A, Ogasawara H . Nature Communications, 2013,4:2817.
[12]
Klose C, Breitwieser M, Vierrath S, Klingele M, Cho H, Buchler A, Kerres J, Thiele S . J. Power Sources, 2017,361:237.
[13]
Shi W, Baker L A . RSC Advances, 2015,5:99284.
[14]
Department of Energy. Fuel Cells Section(3.4) of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan. [2017-05-10]. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf. https://www.energy.gov/sites/prod/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf
[15]
Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z . Electrochim. Acta, 2006,51:5746.
[16]
Kusoglu A, Weber A Z . Chem. Rev., 2017,117:987. https://www.ncbi.nlm.nih.gov/pubmed/28112903

doi: 10.1021/acs.chemrev.6b00159     URL     pmid: 28112903
[17]
Hongsirikarn K, Goodwin J G, Greenway S, Creager S . J. Power Sources, 2010,195:7213.
[18]
Chen F L, Su Y G, Soong C Y, Yan W M, Chu H S . J. Electroanal. Chem., 2004,566:85.
[19]
Mikkola M S, Rockward T, Uribe F A, Pivovar B S . Fuel Cells, 2007,7:153.
[20]
Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, Liu Z S, Wang H, Shen J . J. Power Sources, 2007,165:739.
[21]
Shi S, Weber A Z, Kusoglu A . Electrochim. Acta, 2016,220:517. https://linkinghub.elsevier.com/retrieve/pii/S0013468616322010

doi: 10.1016/j.electacta.2016.10.096     URL    
[22]
Saito M, Hayamizu K, Okada T . J. Phys. Chem. B, 2005,109:3112. https://www.ncbi.nlm.nih.gov/pubmed/16851330

doi: 10.1021/jp045624w     URL     pmid: 16851330
[23]
Banas C J, Bonville L, Pasaogullari U . J. Electrochem. Soc., 2017,164:F1100.
[24]
Qi J, Wang X, Pasaogullari U, Bonville L, Molter T . J. Electrochem. Soc., 2013,160:F916.
[25]
Dubau L, Castanheira L, Maillard F, Chatenet M, Lottin O, Maranzana G, Dillet J, Lamibrac A, Perrin J C, Moukheiber E, Elkaddouri A, De Moor G, Bas C, Flandin L, Caque N . Wiley Interdisciplinary Reviews-Energy and Environment, 2014,3:540.
[26]
Bas C, Alberola N D, Flandin L . Journal of Membrane Science, 2010,363:67.
[27]
Cho H S, Das M, Wang H, Dinh H N, Van Zee J W . J. Electrochem. Soc., 2015,162:F427.
[28]
Alberti G, Narducci R, Di Vona M L, Giancola S . Fuel Cells, 2013,13:42.
[29]
Zhang W, Wycisk R, Kish D L, Pintauro P N . J. Electrochem. Soc., 2014,161:F770.
[30]
Subianto S, Pica M, Casciola M, Cojocaru P, Merlo L, Hards G, Jones D J . J. Power Sources, 2013,233:216. https://linkinghub.elsevier.com/retrieve/pii/S0378775313000712

doi: 10.1016/j.jpowsour.2012.12.121     URL    
[31]
D'urso C, Oldani C, Baglio V, Merlo L, Arico A S . J. Power Sources, 2014,272:753.
[32]
Yin C, Li J, Zhou Y, Zhan H, Fang P, He C . ACS Appl. Mater. Interfaces, 2018,10:14026. https://www.ncbi.nlm.nih.gov/pubmed/29620850

doi: 10.1021/acsami.8b01513     URL     pmid: 29620850
[33]
Qiu X, Dong T, Ueda M, Zhang X, Wang L . Journal of Membrane Science, 2017,524:663.
[34]
Breitwieser M, Klose C, Klingele M, Hartmann A, Erben J, Cho H, Kerres J, Zengerle R, Thiele S . J. Power Sources, 2017,337:137.
[35]
Li H Y, Liu Y L . Journal of Materials Chemistry A, 2014,2:3783.
[36]
Sood R, Cavaliere S, Jones D J, Roziere J . Nano Energy, 2016,26:729.
[37]
Shahgaldi S, Alaefour I, Li X . Applied Energy, 2018,217:295.
[38]
Miyake J, Taki R, Mochizuki T, Shimizu R, Akiyama R, Uchida M, Miyatake K . Science Advances, 2017, 3:eaao0476.
[39]
Rodgers M P, Bonville L J, Kunz H R, Slattery D K, Fenton J M . Chem. Rev., 2012,112:6075. https://www.ncbi.nlm.nih.gov/pubmed/23061417

doi: 10.1021/cr200424d     URL     pmid: 23061417
[40]
Curtin D E, Lousenberg R D, Henry T J, Tangeman P C, Tisack M E . J. Power Sources, 2004,131:41.
[41]
Coms F D . ECS Transactions, 2008,16(2):235. https://www.ncbi.nlm.nih.gov/pubmed/13286319

doi: 10.1210/jcem-16-2-235     URL     pmid: 13286319
[42]
Baker A M, Williams S T D, Mukundan R, Spernjak D, Advani S G, Prasad A K, Borup R L . Journal of Materials Chemistry A, 2017,5:15073.
[43]
Motz A R, Kuo M C, Horan J L, Yadav R, Seifert S, Pandey T P, Galioto S, Yang Y, Dale N V, Hamrock S J, Herring A M . Energy & Environmental Science, 2018,11:1499.
[44]
Gubler L, Dockheer S M, Koppenol W H . J. Electrochem. Soc., 2011,158:B755.
[45]
Lim C, Alavijeh A S, Lauritzen M, Kolodziej J, Knights S, Kjeang E . Ecs Electrochemistry Letters, 2015,4:F29.
[46]
Stewart S M, Spernjak D, Borup R, Datye A, Garzon F . Ecs Electrochemistry Letters, 2014,3:F19.
[47]
Schlick S, Danilczuk M, Drews A R, Kukreja R S . J. Phys. Chem. C, 2016,120:6885.
[48]
Baker A M, Mukundan R, Spernjak D, Advani S G, Prasad A K, Borup R L . Polymer Electrolyte Fuel Cells 16. 2016,707.
[49]
Baker A M, Mukundan R, Spernjak D, Judge E J, Advani S G, Prasad A K, Borup R L . J. Electrochem. Soc., 2016,163:F1023.
[50]
Banham D, Ye S, Knights S, Stewart S M, Wilson M, Garzon F . J. Power Sources, 2015,281:238.
[51]
Cheng T T H, Wessel S, Knights S . J. Electrochem. Soc., 2013,160:F27.
[52]
Zaton M, Roziere J, Jones D J . Journal of Materials Chemistry A, 2017,5:5390. https://www.ncbi.nlm.nih.gov/pubmed/32264078

doi: 10.1039/c7tb00929a     URL     pmid: 32264078
[53]
Breitwieser M, Klose C, Hartmann A, Buechler A, Klingele M, Vierrath S, Zengerle R, Thiele S . Advanced Energy Materials, 2017,351:145.
[54]
Rhoden S L N H Linkous C A, Mohajeri N, Diaz D J, Brooker P, Slattery D K, Fenton J M . J. Electrochem. Soc., 2010,157:B1095.
[55]
Hasani-Sadrabadi M M, Dashtimoghadam E, Majedi F S, Vandersarl J J, Bertsch A, Renaud P, Jacob K I . Nano Energy, 2016,23:114.
[56]
Cherevko S, Kulyk N, Mayrhofer K J J. Nano Energy, 2016,29:275.
[57]
Meier J C, Galeano C, Katsounaros I, Witte J, Bongard H J, Topalov A A, Baldizzone C, Mezzavilla S, Schueth F, Mayrhofer K J J. Beilstein Journal of Nanotechnology, 2014,5:44.
[58]
Bi W, Fuller T F . J. Electrochem. Soc., 2008,155:B215.
[59]
Rodgers M P, Bonville L J, Mukundan R, Borup R, Ahluwalia R, Beattie P, Brooker R P, Mohajeri N, Kunz H R, Slattery D K, Fenton J M . ECS Transactions, 2013,58:129.
[60]
Borup R L, Davey J R, Garzon F H, Wood D L, Inbody M A . J. Power Sources, 2006,163:76.
[61]
Wang M J, Zhao T, Luo W, Mao Z X, Chen S G, Ding W, Deng Y H, Li W, Li J, Wei Z D . AlChE J., 2018,64:2881.
[62]
Yano H, Watanabe M, Iiyama A, Uchida H . Nano Energy, 2016,29:323.
[63]
Ferreira P J, La O G J, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H A . J. Electrochem. Soc., 2005,152:A2256.
[64]
Darling R M, Meyers J P . J. Electrochem. Soc., 2003,150:A1523.
[65]
Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath J E, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K I, Iwashita N . Chem. Rev., 2007,107:3904. https://www.ncbi.nlm.nih.gov/pubmed/17850115

doi: 10.1021/cr050182l     URL     pmid: 17850115
[66]
Li L, Hu L, Li J, Wei Z . Nano Research, 2015,8:418. https://www.ncbi.nlm.nih.gov/pubmed/24107610

doi: 10.1186/1556-276X-8-418     URL     pmid: 24107610
[67]
Cheng N, Banis M N, Liu J, Riese A, Li X, Li R, Ye S, Knights S, Sun X L . Adv. Mater., 2015,27:277. https://www.ncbi.nlm.nih.gov/pubmed/25405600

doi: 10.1002/adma.201404314     URL     pmid: 25405600
[68]
Song Z, Wang B, Cheng N, Yang L, Banham D, Li R, Ye S, Sun X L . Journal of Materials Chemistry A, 2017,5:9760.
[69]
Nie Y, Chen S, Ding W, Xie X, Zhang Y, Wei Z . Chem. Commun., 2014,50:15431. https://www.ncbi.nlm.nih.gov/pubmed/25351928

doi: 10.1039/c4cc06781a     URL     pmid: 25351928
[70]
Lee H, Sung Y E, Choi I, Lim T, Kwon O J . J. Power Sources, 2017,362:228.
[71]
Takenaka S, Matsumori H, Matsune H, Kishida M . Applied Catalysis A-General, 2011,409:248.
[72]
Takenaka S, Goto M, Masuda Y, Emura S, Kishida M . Int. J. Hydrogen Energy, 2018,43:7473.
[73]
Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin H L, Snyder J D, Li D, Herron J A, Mavrikakis M, Chi M, More K L, Li Y, Markovic N M, Somorjai G A, Yang P, Stamenkovic V R . Science, 2014,343:1339. https://www.ncbi.nlm.nih.gov/pubmed/24578531

doi: 10.1126/science.1249061     URL     pmid: 24578531
[74]
Cao M, Wu D, Cao R . Chemcatchem, 2014,6:26.
[75]
Jung W, Xie T, Kim T, Ganesan P, Popov B N . Electrochim. Acta, 2015,167:1.
[76]
Dorjgotov A, Jeon Y, Hwang J, Ulziidelger B, Kim H S, Han B, Shul Y G . Electrochim. Acta, 2017,228:389.
[77]
Sakthivel M, Radev I, Peinecke V, Drillet J F . J. Electrochem. Soc., 2015,162:F901.
[78]
Lim J, Shin H, Kim M, Lee H, Lee K S, Kwon Y, Song D, Oh S, Kim H, Cho E . Nano Lett., 2018,18:2450. https://www.ncbi.nlm.nih.gov/pubmed/29578723

doi: 10.1021/acs.nanolett.8b00028     URL     pmid: 29578723
[79]
Choi J, Jang J H, Roh C W, Yang S, Kim J, Lim J, Yoo S J, Lee H . Applied Catalysis B-Environmental, 2018,225:530.
[80]
Xiong Y, Yang Y, Joress H, Padgett E, Gupta U, Yarlagadda V, Agyeman-Budu D N, Huang X, Moylan T E, Zeng R, Kongkanand A, Escobedo F A, Brock J D, Disalvo F J, Muller D A, Abruna H D . Proc. Natl. Acad. Sci. U.S.A., 2019,116:1974. https://www.ncbi.nlm.nih.gov/pubmed/30670659

doi: 10.1073/pnas.1815643116     URL     pmid: 30670659
[81]
Yang C, Zhou M, Zhang M, Gao L . Electrochim. Acta, 2016,188:529.
[82]
Du L, Shao Y, Sun J, Yin G, Liu J, Wang Y . Nano Energy, 2016,29:314.
[83]
Yu K, Groom D J, Wang X, Yang Z, Gummalla M, Ball S C, Myers D J, Ferreira P J. Chem. Mater., 2014,26:5540.
[84]
Meier J C, Galeano C, Katsounaros I, Topalov A A, Kostka A, Schueth F, Mayrhofer K J J. ACS Catalysis, 2012,2:832. https://www.ncbi.nlm.nih.gov/pubmed/30688451

doi: 10.1021/acs.jcim.8b00763     URL     pmid: 30688451
[85]
谢小红(Xie X H), 魏子栋(Wei Z D) . 电化学 (Journal of Electrochemistry), 2015,21:221.
[86]
Lamibrac A, Maranzana G, Lottin O, Dillet J, Mainka J, Didierjean S, Thomas A, Moyne C . J. Power Sources, 2011,196:9451.
[87]
Castanheira L, Dubau L, Maillard F . Electrocatalysis, 2014,5:125. http://link.springer.com/10.1007/s12678-013-0173-y

doi: 10.1007/s12678-013-0173-y     URL    
[88]
Durst J, Lamibrac A, Charlot F, Dillet J, Castanheira L F, Maranzana G, Dubau L, Maillard F, Chatenet M, Lottin O . Applied Catalysis B-Environmental, 2013,138:416. a72f2af9-aef6-44a0-bf19-68bf3f1470b9http://dx.doi.org/10.1016/j.apcatb.2013.03.021

doi: 10.1016/j.apcatb.2013.03.021     URL    
[89]
Macauley N, Papadias D D, Fairweather J, Spernjak D, Langlois D, Ahluwalia R, More K L, Mukundan R, Borup R L . J. Electrochem. Soc., 2018,165:F3148.
[90]
Jia F, Guo L, Liu H . Energy Convers. Manage., 2017,139:175.
[91]
Yang Z, Berber M R, Nakashima N . Electrochim. Acta, 2015,170:1.
[92]
Park J C, Park S H, Chung M W, Choi C H, Kho B K, Woo S I . J. Power Sources, 2015,286:166.
[93]
Yang Z, Moriguchi I, Nakashima N . ACS Appl. Mater. Interfaces, 2015,7:9800. https://www.ncbi.nlm.nih.gov/pubmed/25902007

doi: 10.1021/acsami.5b01724     URL     pmid: 25902007
[94]
Li Y, Li Y, Zhu E, McLouth T, Chiu C Y, Huang X, Huang Y . J. Am. Chem. Soc., 2012,134:12326. https://www.ncbi.nlm.nih.gov/pubmed/22783832

doi: 10.1021/ja3031449     URL     pmid: 22783832
[95]
Jung W S, Popov B N . Carbon, 2017,122:746.
[96]
Mirzaei F, Parnian M J, Rowshanzamir S . Energy, 2017,138:696.
[97]
Tamaki T, Wang H, Oka N, Honma I, Yoon S H, Yamaguchi T . Int. J. Hydrogen Energy, 2018,43:6406.
[98]
Jung W S . Journal Of Energy Chemistry, 2018,27:326.
[99]
Sneed B T, Cullen D A, Reeves K S, Dyck O E, Langlois D A, Mukundan R, Borup R L, More K L . ACS Appl. Mater. Interfaces, 2017,9:29839. https://www.ncbi.nlm.nih.gov/pubmed/28809471

doi: 10.1021/acsami.7b09716     URL     pmid: 28809471
[100]
Shao Y, Cheng Y, Duan W, Wang W, Lin Y, Wang Y, Liu J . ACS Catalysis, 2015,5:7288.
[101]
Wang Y J, Fang B, Li H, Bi X T, Wang H . Prog. Mater Sci., 2016,82:445.
[102]
Puthusseri D, Ramaprabhu S . Int. J. Hydrogen Energy, 2016,41:13163.
[103]
Takabatake Y, Noda Z, Lyth S M, Hayashi A, Sasaki K . Int. J. Hydrogen Energy, 2014,39:5074.
[104]
Cognard G, Ozouf G, Beauger C, Berthome G, Riassetto D, Dubau L, Chattot R, Chatenet M, Maillard F . Applied Catalysis B-Environmental, 2017,201:381.
[105]
Cavaliere S, Jimenez-Morales I, Ercolano G, Savych I, Jones D, Roziere J . Chemelectrochem, 2015,2:1966.
[106]
Senoo Y, Taniguchi K, Kakinuma K, Uchida M, Uchida H, Deki S, Watanabe M . Electrochem. Commun., 2015,51:37.
[107]
Savych I, Subianto S, Nabil Y, Cavaliere S, Jones D, Roziere J . PCCP, 2015,17:16970. https://www.ncbi.nlm.nih.gov/pubmed/26061638

doi: 10.1039/c5cp01542a     URL     pmid: 26061638
[108]
Mohanta P K, Gloekler C, Arenas A O, Joerissen L . Int. J. Hydrogen Energy, 2017,42:27950.
[109]
Ozouf G, Cognard G, Maillard F, Chatenet M, Guetaz L, Heitzmann M, Jacques P A, Beauger C . J. Electrochem. Soc., 2018,165:F3036.
[110]
Kim M, Kwon C, Eom K, Kim J, Cho E . Scientific Reports, 2017,7:44411. https://www.ncbi.nlm.nih.gov/pubmed/28290503

doi: 10.1038/srep44411     URL     pmid: 28290503
[111]
Hsieh B J, Tsai M C, Pan C J, Su W N, Rick J, Lee J F, Yang Y W, Hwang B J . Npg Asia Materials, 2017,9.
[112]
Parrondo J, Han T, Niangar E, Wang C, Dale N, Adjemian K, Ramani V . Proc. Natl. Acad. Sci. U.S. A., 2014,111:45.
[113]
Li X, Liu Y, Ma S, Ye J, Zhang X, Wang G, Qiu Y . J. Alloys Compd., 2015,649:939.
[114]
Esfahani R a M, Vankova S K, Videla A H a M, Specchia S . Applied Catalysis B -Environmental, 2017,201:419.
[115]
Dhanasekaran P, Williams S R, Kalpana D, Bhat S D . RSC Advances, 2018,8:472.
[116]
Wood D L Iii, Borup R L . J. Electrochem. Soc., 2010,157:B1251.
[117]
Schmittinger W, Vahidi A . J. Power Sources, 2008,180:1.
[118]
Hiramitsu Y, Sato H, Hosomi H, Aoki Y, Harada T, Sakiyama Y, Nakagawa Y, Kobayashi K, Hori M . J. Power Sources, 2010,195:435.
[119]
Bosomoiu M, Tsotridis G, Bednarek T . J. Power Sources, 2015,285:568.
[120]
Antonacci P, Chevalier S, Lee J, Yip R, Ge N, Bazylak A . Int. J. Hydrogen Energy, 2015,40:16494.
[121]
Owejan J P, Trabold T A, Mench M M . Int. J. Heat Mass Transfer, 2014,71:585.
[122]
Nitta I, Hottinen T, Himanen O, Mikkola M . J. Power Sources, 2007,171:26.
[123]
Park J, Oh H, Ha T, Lee Y I, Min K . Applied Energy, 2015,155:866.
[124]
Sadeghi E, Djilali N, Bahrami M . J. Power Sources, 2010,195:8104.
[125]
Lai Y H, Rapaport P A, Ji C, Kumar V . J. Power Sources, 2008,184:120.
[126]
Bazylak A . Int. J. Hydrogen Energy, 2009,34:3845. https://linkinghub.elsevier.com/retrieve/pii/S0360319909002973

doi: 10.1016/j.ijhydene.2009.02.084     URL    
[127]
Radhakrishnan V, Haridoss P . Int. J.Hydrogen Energy, 2010,35:11107.
[128]
Lee C, Merida W . J. Power Sources, 2007,164:141.
[129]
Lee S Y, Kim H J, Cho E, Lee K S, Lim T H, Hwang I C, Jang J H . Int. J. Hydrogen Energy, 2010,35:12888.
[130]
Chun J H, Jo D H, Kim S G, Park S H, Lee C H, Kim S H . Renewable Energy, 2012,48:35.
[131]
Latorrata S, Stampino P G, Cristiani C, Dotelli G . Int. J. Hydrogen Energy, 2015,40:14596.
[132]
Fairweather J, Li B, Mukundan R, Fenton J, Borup R . ECS Transactions, 2010,33(1):433.
[133]
Cho J, Ha T, Park J, Kim H S, Min K, Lee E, Jyoung J Y . Int. J. Hydrogen Energy, 2011,36:6090.
[134]
Ha T, Cho J, Park J, Min K, Kim H S, Lee E, Jyoung J Y . Int. J. Hydrogen Energy, 2011,36:12427.
[135]
Yu S, Li X, Li J, Liu S, Lu W, Shao Z, Yi B . Energy Convers. Manage., 2013,76:301.
[136]
George M G, Liu H, Muirhead D, Banerjee R, Ge N, Shrestha P, Lee J, Chevalier S, Hinebaugh J, Messerschmidt M, Zeis R, Scholta J, Bazylak A . J. Electrochem. Soc., 2017,164:F714.
[137]
Debe M K . Nature, 2012,486:43. https://www.ncbi.nlm.nih.gov/pubmed/22678278

doi: 10.1038/nature11115     URL     pmid: 22678278
[138]
Aoki T, Matsunaga A, Ogami Y, Maekawa A, Mitsushima S, Ota K I, Nishikawa H . J. Power Sources, 2010,195:2182. https://linkinghub.elsevier.com/retrieve/pii/S0378775309019259

doi: 10.1016/j.jpowsour.2009.10.074     URL    
[139]
Poornesh K K, Cho C D, Lee G B, Tak Y S . J. Power Sources, 2010,195:2718.
[140]
Lapicque F, Belhadj M, Bonnet C, Pauchet J, Thomas Y . J. Power Sources, 2016,336:40.
[141]
Choi H, Kim O H, Kim M, Choe H, Cho Y H, Sung Y E . ACS Appl. Interfaces, 2014,6:7665.
[142]
Hao J, Yu S, Jiang Y, Li X, Shao Z, Yi B . J. Electroanal. Chem., 2015,756:201.
[143]
Lobato J, Zamora H, Canizares P, Plaza J, Andres Rodrigo M . J. Power Sources, 2015,288:288.
[144]
Latorrata S, Stampino P G, Cristiani C, Dotelli G . Energies, 2017,10:2063.
[145]
Bottino A, Capannelli G, Comite A, Costa C, Ong A L . Int. J. Hydrogen Energy, 2015,40:14690.
[146]
Morgan J M, Datta R . J. Power Sources, 2014,251:269. https://linkinghub.elsevier.com/retrieve/pii/S0378775313015966

doi: 10.1016/j.jpowsour.2013.09.090     URL    
[147]
Kitahara T, Nakajima H, Inamoto M, Shinto K . J. Power Sources, 2014,248:1256. https://linkinghub.elsevier.com/retrieve/pii/S0378775313017321

doi: 10.1016/j.jpowsour.2013.10.066     URL    
[1] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[2] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[3] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[4] 黄振宇, 涂正凯. 质子交换膜燃料电池电流密度分布特性和研究展望[J]. 化学进展, 2020, 32(7): 943-949.
[5] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[6] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[7] 邵建文, 杨付超, 郭志光. 仿生超疏油材料在苛刻工况条件下的应用[J]. 化学进展, 2018, 30(12): 2003-2011.
[8] 屈孟男*, 侯琳刚, 何金梅*, 马雪瑞, 袁明娟, 刘向荣. 功能化超疏水材料的研究与发展[J]. 化学进展, 2016, 28(12): 1774-1787.
[9] 王诚, 王树博, 张剑波, 李建秋, 王建龙, 欧阳明高. 车用燃料电池耐久性研究[J]. 化学进展, 2015, 27(4): 424-435.
[10] 刘锋, 王诚, 张剑波, 兰爱东, 李建秋, 欧阳明高. 质子交换膜燃料电池有序化膜电极[J]. 化学进展, 2014, 26(11): 1763-1771.
[11] 陈旭, 何大平, 木士春. 掺氮石墨烯研究[J]. 化学进展, 2013, 25(08): 1292-1301.
[12] 汪嘉澍, 潘国顺, 郭丹. 质子交换膜燃料电池膜电极组催化层结构[J]. 化学进展, 2012, (10): 1906-1914.
[13] 周永宁, 傅正文. 纳米薄膜锂离子电池电极材料[J]. 化学进展, 2011, 23(0203): 336-348.
[14] 王新东, 谢晓峰, 王萌, 刘桂成, 苗睿瑛, 王一拓, 阎群. 直接甲醇燃料电池关键材料与技术[J]. 化学进展, 2011, 23(0203): 509-519.
[15] 林原, 王尚华, 付年庆, 张敬波, 周晓文, 肖绪瑞. 柔性染料敏化太阳电池的制备和性能研究[J]. 化学进展, 2011, 23(0203): 548-556.