English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1283-1292 DOI: 10.7536/PC190219 前一篇   后一篇

• •

MXene及其复合材料在钠/钾离子电池中的应用

李佳慧1,2, 张晶1,2, 芮秉龙1,2, 林丽1,2, 常立民1,2,**(), 聂平1,2,**()   

  1. 1. 吉林师范大学环境友好材料制备与应用教育部重点实验室 长春 130103
    2. 吉林师范大学化学学院 四平 136000
  • 收稿日期:2019-02-21 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 常立民, 聂平
  • 基金资助:
    国家重点研发计划(No.SQ2017YFGH001474); 国家自然科学基金项目(No.51802111); 国家自然科学基金项目(No.51778268); 吉林省自然科学基金项目(No.20180101192JC); 吉林省“十三五”科学技术项目以及吉林师范大学科研项目(No.JJKH20190997KJ)

Application of MXene and Its Composites in Sodium/Potassium Ion Batteries

Jiahui Li1,2, Jing Zhang1,2, Binglong Rui1,2, Li Lin1,2, Limin Chang1,2,**(), Ping Nie1,2,**()   

  1. 1. Key Laboratory of Preparation and Applications of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China
    2. College of Chemistry, Jilin Normal University, Siping 136000, China
  • Received:2019-02-21 Online:2019-09-15 Published:2019-07-02
  • Contact: Limin Chang, Ping Nie
  • About author:
    ** E-mail: (Limin Chang)
  • Supported by:
    The National Key R&D Program of China(No.SQ2017YFGH001474); The National Natural Science Foundation of China(No.51802111); The National Natural Science Foundation of China(No.51778268); The Natural Science Foundation of Jilin Province(No.20180101192JC); The Funding of Research Program of Jilin Normal University(No.JJKH20190997KJ)

MXene作为一种新型的二维层状结构材料而备受关注, MXene具有高电子传导率、较大的比面积、较好的机械性能以及独特的层状结构, 已广泛应用于储能、催化、吸附等领域。近年来, MXene及其复合材料应用于二次电池领域引起了人们的广泛关注。氧化物、硫化物等材料具有高容量, 但存在电导率低、反应过程中体积膨胀、循环稳定性差等问题, 构建与MXene的复合材料既能提高容量又可以增强材料的电子导电率, 有效缓解反应过程中体积膨胀, 实现最佳的电化学性能。本文主要对MXene及其复合材料在钠离子电池和钾离子电池中的最新研究进展进行总结, 简要介绍了钠离子电池、钾离子电池和MXene的研究背景, 重点介绍了MXene复合材料在钠离子电池中的应用研究, 主要按照硫化物、氧化物、碳材料进行分类, 对其合成方法与电化学性能进行综述, 同时总结了MXene复合材料在钾离子电池中的研究进展。最后本文对MXene及其复合材料的发展及其应用前景进行了总结与展望。

MXene has attracted considerable attention as a new type of two-dimensional layered structural materials owing to its high electron conductivity, large specific area, excellent mechanical properties and unique layered structure, which make it promising for application in energy storage, catalysis and adsorption. MXene and its composites have recently aroused intense interest for rechargeable batteries. Transition metal sulfides and oxides have the merits of high capacity, however suffering from issues of low conductivity, relatively large volume expansion and poor capacity retention during cycling. Combining MXene with these materials can not only increase the specific capacity, but also enhance electronic conductivity and solve the volume change during electrochemical cycling, finally achieving superior electrochemical properties. This review covers the key technological developments and latest progress of MXene composites in sodium ion batteries and potassium ion batteries. Starting from a brief introduction of the background of sodium ion batteries, potassium ion batteries and MXene, we mainly focus on research progress on synthesis and application in sodium ion batteries, including sulfides, oxides, and carbonaceous materials. The study on potassium ion batteries is still in its infancy. Current status of MXene and its composite in potassium ion batteries have also been summarized, also current challenges and future perspectives in the application of MXene materials are discussed.

()
图1 2013~2018年Web of Science上检索主题词为“MXene”和“batteries”的论文数量(检索时间:2019年1月)
Fig. 1 The number of published papers from Web of Science(Search time:Jan. 2019) with topics “MXene” and “batteries” from 2013 to 2018
图2 MAX相剥离过程和MXenes制备的示意图[17]
Fig. 2 Schematic for the exfoliation process of MAX phases and formation of MXenes[17].Copyright 2012, American Chemical Society
图3 (a)MAX的结构和相应的MXenes示意图[18];(b)HF处理后的Ti3AlC2(Ti3C2Tx)的扫描电子显微镜图像[17]
Fig. 3 (a) Structure of MAX phases and the corresponding MXenes[18];(b) SEM image for Ti3AlC2 after HF treatment(Ti3C2Tx)[17].Copyright 2014, Wiley-VCH; Copyright 2012, American Chemical Society
图4 (a)使用MOH制备M’-c-Ti3C2Tx(M+=Li +, Na +, K+, TBA+)的工艺示意图;(b)Na-c-Ti3C2Tx的扫描电子显微镜图像, 插图显示更高放大倍率的图像;(c)高分辨透射电子显微镜图像显示堆叠的层[49]
Fig. 4 (a) Schematic of fabrication process for M’-c-Ti3C2Tx(M+=Li +, Na +, K+, TBA+)by flocculation using MOH;(b) SEM image of Na-c-Ti3C2Tx flocculated networks. Inset shows a higher magnification image;(c) HRTEM image showing stacked layers[49]. Copyright 2018, The Royal Society of Chemistry
图5 (a)真空抽滤制备MXene/SnS2复合材料的示意图;(b)MXene/SnS2-5∶1的扫描电子显微镜图像;(c, d)CoS/MXene的高分辨率透射电子显微镜图像;(e)CoS/MXene复合材料合成工艺示意图;(f)MXene/SnS2 10∶1, MXene/SnS2 5∶1, MXene/SnS2 2∶1和MXene的循环性能;(g)不同电流密度下CoS/MXene的倍率性能[43, 44]
Fig. 5 (a) Schematic illustration of the preparation of MXene/SnS2 composite by vacuum-assisted filtration;(b) SEM image of the MXene/SnS2-5∶1;(c, d) HRTEM images of CoS/MXene;(e) The synthesis process of CoS/MXene composite;(f) Cycling performance of MXene/SnS2 10∶1, MXene/SnS2 5∶1, MXene/SnS2 2∶1 and MXene;(g) Rate performance of CoS/MXene at various current densities[43, 44].Copyright 2018, Elsevier; Copyright 2019, Elsevier
图6 (a, b)CoNiO2/Ti3C2Tx的透射电子显微镜图像;(c)CoNiO2/Ti3C2Tx的循环性能;(d)CoNiO2/Ti3C2Tx的电荷转移机制[63]
Fig. 6 (a, b) TEM images of CoNiO2/Ti3C2Tx;(c) Cycling performance of CoNiO2/Ti3C2Tx composite;(d) Charge-transfer mechanism of CoNiO2/Ti3C2Tx composite[63]. Copyright 2018, Elsevier
图7 (a)制备钛酸钠或钛酸钾纳米带的示意图;(b, c)钛酸钾的扫描电子显微镜图像(b: 插图是钛酸钾粉末);(d)钛酸钾的高分辨透射电子显微镜图像(插图是相应的SAED);(e)在0.1 mV·s-1 钛酸钾的循环伏安曲线;(f)钛酸钾在各种电流密度下(20~300 mA·g-1)的充放电曲线[80]
Fig. 7 (a) Schematic of the fabrication of M-NTO or M-KTO nanoribbons;(b, c) SEM images of M-KTO(The inset is the photograph of M-KTO powder);(d) HRTEM image of M-KTO(The inset is the corresponding SAED patterns);(e) CV of M-KTO measured at 0.1 mV·s-1;(f) Galvanostatic charge and discharge curves of M-KTO cycled at different current densities[80]. Copyright 2017, American Chemical Society
[1]
Xie X, Wang S, Kretschme K, Wang G . J. Colloid Interface Sci., 2017, 499:17. https://www.ncbi.nlm.nih.gov/pubmed/28363101

doi: 10.1016/j.jcis.2017.03.077     URL     pmid: 28363101
[2]
Chaudhari N K, Jin H, Kim B, San Baek D, Joo S H, Lee K . J. Mater. Chem A, 2017, 5:24564.
[3]
Xiong D, Li X, Bai Z, Lu S . Small, 2018, 14:1703419.
[4]
聂平(Nie P), 徐桂银(Xu G Y), 蒋江民(Jiang J M), 王江(Wang J), 付瑞瑞(Fu R R), 方姗(Fang S), 窦辉(Dou H), 张校刚(Zhang X G) . 储能科学与技术(Energy Storage Science and Technology), 2017, 6:889.
[5]
Nie P, Liu X, Fu R, Wu Y, Jiang J, Dou H, Zhang X . ACS Energy Lett., 2017, 2:1279.
[6]
Nie P, Le Z, Chen G, Liu D, Liu X, Wu H B, Xu P, Li X, Liu F, Chang L, Zhang X, Lu Y . Small, 2018, 14:1800635.
[7]
Nie P, Xu G Y, Jiang J M, Dou H, Wu Y T, Zhang Y D, Wang J, Shi M Y, Fu R R, Zhang X G . Small Methods, 2018, 2:1700272.
[8]
Nie P, Yuan J, Wang J, Le Z, Xu G, Hao L, Pang G, Wu Y, Dou H, Yan X, Zhang X . ACS Appl. Mater. Interfaces, 2017, 9:20306. https://www.ncbi.nlm.nih.gov/pubmed/28570041

doi: 10.1021/acsami.7b05178     URL     pmid: 28570041
[9]
Wang Q, Xu J, Zhang W, Mao M, Wei Z, Wang L, Cui C, Zhu Y, Ma J . J. Mater. Chem.A, 2018, 6:8815.
[10]
Liu Y, Liu X, Wang T, Fan L Z, Jiao L . Sustainable Energy Fuels, 2017, 1:986.
[11]
Kubota K, Dahbi M, Hosaka T, Kumakura S, Komaba S . Chem. Rec., 2018, 18:459. https://www.ncbi.nlm.nih.gov/pubmed/29442429

doi: 10.1002/tcr.201700057     URL     pmid: 29442429
[12]
Wang N, Chu C, Xu X, Du Y, Yang J, Bai Z, Dou S . Adv. Energy Mater., 2018, 8:1801888.
[13]
Cao W, Zhang E, Wang J, Liu Z, Ge J, Yu X, Yang H, Lu B . Electrochim. Acta, 2019, 293:364.
[14]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004, 306:666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896     URL     pmid: 15499015
[15]
Zhang Y, Zhang N, Ge C . Mater., 2018, 11:2281.
[16]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W . Adv. Mater., 2011, 23:4248. https://www.ncbi.nlm.nih.gov/pubmed/21861270

doi: 10.1002/adma.201102306     URL     pmid: 21861270
[17]
Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W . ACS Nano, 2012, 6:1322. https://www.ncbi.nlm.nih.gov/pubmed/22279971

doi: 10.1021/nn204153h     URL     pmid: 22279971
[18]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y . Adv. Mater., 2014, 26:992. https://www.ncbi.nlm.nih.gov/pubmed/24357390

doi: 10.1002/adma.201304138     URL     pmid: 24357390
[19]
Naguib M, Come J, Dyatkin B, Presser V, Taberna P L, Simon P, Barsoum M W, Gogotsi Y . Electrochem. Commun., 2012, 16:61.
[20]
Pang J, Mendes R G, Bachmatiuk A, Zhao L, Ta H Q, Gemming T, Liu H, Liu Z, Rummeli M H . Chem. Soc. Rev., 2019, 48:72. https://www.ncbi.nlm.nih.gov/pubmed/30387794

doi: 10.1039/c8cs00324f     URL     pmid: 30387794
[21]
姚送送(Yao S S), 李诺(Li N), 叶红齐(Ye H Q), 韩凯(Han K) . 化学进展(Progress in Chemistry), 2018, 30:932.
[22]
Mashtalir O, Naguib M, Mochalin V N, Dall’Agnese Y, Heon M, Barsoum M W, Gogotsi Y, . Nat. Commun., 2013, 4:1716. https://www.ncbi.nlm.nih.gov/pubmed/23591883

doi: 10.1038/ncomms2664     URL     pmid: 23591883
[23]
张建峰(Zhang J F), 曹惠杨(Cao H Y), 王红兵(Wang H B) . 无机材料学报(Journal of Inorganic Materials), 2017, 32:561.
[24]
Anasori B, Lukatskaya M R, Gogotsi Y . Nat. Rev. Mater., 2017, 2:16098.
[25]
Tang X, Guo X, Wu W, Wang G . Adv. Energy Mater., 2018, 8:1801897.
[26]
Okubo M, Sugahara A, Kajiyama S, Yamada A . Acc. Chem. Res., 2018, 51:591. https://www.ncbi.nlm.nih.gov/pubmed/29469564

doi: 10.1021/acs.accounts.7b00481     URL     pmid: 29469564
[27]
Zhang X, Zhang Z, Zhou Z . J. Energy Chem., 2018, 27:73. https://linkinghub.elsevier.com/retrieve/pii/S2095495617306551

doi: 10.1016/j.jechem.2017.08.004     URL    
[28]
Zhao J, Zhang L, Xie X Y, Li X, Ma Y, Liu Q, Fang W H, Shi X, Cui G, Sun X . J. Mater. Chem. A, 2018, 6:24031.
[29]
Wang Y, Wang J, Han G, Du C, Deng Q, Gao Y, Yin G, Song Y . Ceram. Int., 2019, 45:2411.
[30]
Zhu K, Zhang H, Ye K, Zhao W, Yan J, Cheng K, Wang G, Yang B, Cao D . ChemElectroChem, 2017, 4:3018.
[31]
Kurra N, Alhabeb M, Maleski K, Wang C H, Alshareef H N, Gogotsi Y . ACS Energy Lett., 2018, 3:2094.
[32]
Zhang C, Nicolosi V . Energy Storage Materials, 2019, 16:102.
[33]
Sun S, Liao C, Hafez A M, Zhu H, Wu S . Chem. Eng. J., 2018, 338:27.
[34]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W . Chem. Mater., 2014, 26:2374. https://www.ncbi.nlm.nih.gov/pubmed/24741204

doi: 10.1021/cm500641a     URL     pmid: 24741204
[35]
Xuan J, Wang Z, Chen Y, Liang D, Cheng L, Yang X, Liu Z, Ma R, Sasaki T, Geng F . Angew. Chem. Int. Ed., 2016, 55:14569. https://www.ncbi.nlm.nih.gov/pubmed/27774723

doi: 10.1002/anie.201606643     URL     pmid: 27774723
[36]
Li G, Tan L, Zhang Y, Wu B, Li L . Langmuir, 2017, 33:9000. https://www.ncbi.nlm.nih.gov/pubmed/28805394

doi: 10.1021/acs.langmuir.7b01339     URL     pmid: 28805394
[37]
Barsoum M W . Prog. Solid State Chem., 2000, 28:201.
[38]
Xie Y, Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y, Yu X, Nam K W, Yang X Q, Kolesnikov A I, Kent P R C . J. Am. Chem. Soc., 2014, 136:6385. https://www.ncbi.nlm.nih.gov/pubmed/24678996

doi: 10.1021/ja501520b     URL     pmid: 24678996
[39]
Kajiyama S, Szabova L, Sodeyama K, Iinuma H, Morita R, Gotoh K, Tateyama Y, Okubo M, Yamada A . ACS Nano, 2016, 10:3334. https://www.ncbi.nlm.nih.gov/pubmed/26891421

doi: 10.1021/acsnano.5b06958     URL     pmid: 26891421
[40]
Osti N C, Naguib M, Ostadhossein A, Xie Y, Kent P R C, Dyatkin B, Rother G, Heller W T, van Duin A C T, Gogotsi Y, Mamontov E . ACS Appl. Mater. Interfaces, 2016, 8:8859. https://www.ncbi.nlm.nih.gov/pubmed/27010763

doi: 10.1021/acsami.6b01490     URL     pmid: 27010763
[41]
Er D, Li J, Naguib M, Gogotsi Y . ACS Appl. Mater. Interfaces, 2014, 6:11173. https://www.ncbi.nlm.nih.gov/pubmed/24979179

doi: 10.1021/am501144q     URL     pmid: 24979179
[42]
Eames C, Islam M S . J. Am. Chem. Soc., 2014, 136:16270. https://www.ncbi.nlm.nih.gov/pubmed/25310601

doi: 10.1021/ja508154e     URL     pmid: 25310601
[43]
Zhang Y, Zhan R, Xu Q, Liu H, Tao M, Luo Y, Bao S, Li C, Xu M . Chem. Eng. J., 2019, 357:220.
[44]
Wu Y, Nie P, Wu L, Dou H, Zhang X . Chem. Eng. J., 2018, 334:932.
[45]
Wu Y, Nie P, Jiang J, Ding B, Dou H, Zhang X . ChemElectroChem, 2017, 4:1560.
[46]
Li X, Wang C, Cao Y, Wang G . Chem. - Asian J., 2018, 13:2742. https://www.ncbi.nlm.nih.gov/pubmed/30047591

doi: 10.1002/asia.201800543     URL     pmid: 30047591
[47]
Yang E, Ji H, Kim J, Kim H, Jung Y . Phys. Chem. Chem. Phys., 2015, 17:5000. https://www.ncbi.nlm.nih.gov/pubmed/25591787

doi: 10.1039/c4cp05140h     URL     pmid: 25591787
[48]
Wu Y, Nie P, Wang J, Dou H . ACS Appl. Mater. Interfaces, 2017, 9:39610. https://www.ncbi.nlm.nih.gov/pubmed/29039906

doi: 10.1021/acsami.7b12155     URL     pmid: 29039906
[49]
Zhao D, Clites M, Ying G, Kota S, Wang J, Natu V, Wang X, Pomerantseva E, Cao M, Barsoum M W . Chem. Commun., 2018, 54:4533. https://www.ncbi.nlm.nih.gov/pubmed/29663005

doi: 10.1039/c8cc00649k     URL     pmid: 29663005
[50]
Lv G, Wang J, Shi Z, Fan L . Mater. Lett., 2018, 219:45.
[51]
Zhao M Q, Xie X, Ren C E, Makaryan T, Anasori B, Wang G, Gogotsi Y . Adv. Mater., 2017, 29:1702410.
[52]
Wang M, Huang Y, Zhu Y, Wu X, Zhang N, Zhang H . J. Alloys Compd., 2019, 774:601.
[53]
Li X, Zhao Y, Ya Q, Guan L . Electrochim. Acta, 2018, 270:1.
[54]
Zhang Y, Guo B, Hu L, Xu Q, Li Y, Liu D, Xu M . J. Alloys Compd., 2018, 732:448.
[55]
Xie X, Makaryan T, Zhao M, Van Aken K L, Gogotsi Y, Wang G, . Adv. Energy Mater., 2016, 6:1502161.
[56]
Wu X, Wang Z, Yu M, Xiu L, Qiu J . Adv. Mater., 2017, 29:1607017.
[57]
Du G, Tao M, Gao W, Zhan Y, Zhan R, Bao S J, Xu M . Inorg. Chem. Front., 2019, 6:117.
[58]
Wang Z, Cheng Y, Li Q, Chang L, Wang L . J. Power Sources, 2018, 389:214.
[59]
Guo X, Xie X, Choi S, Zhao Y, Liu H, Wang C, Chang S, Wang G . J. Mater. Chem. A, 2017, 5:12445. http://xlink.rsc.org/?DOI=C7TA02689G

doi: 10.1039/C7TA02689G     URL    
[60]
Wang J Z, Zhou J P, Guo Z Q, Lei Y X, Hassan Q U . Cryst. Res. Technol., 2018, 53:1700153.
[61]
Huang J, Meng R, Zu L, Wang Z, Feng N, Yang Z, Yu Y, Yang J . Nano Energy, 2018, 46:20.
[62]
Chang L, Wang K, Zhu S, Huang L, He Z, Chen M, Shao H, Wang J . Mater. Res. Bull., 2017, 96:379.
[63]
Tao M, Zhang Y, Zhan R, Guo B, Xu Q, Xu M . Mater. Lett., 2018, 230:173.
[64]
聂平(Nie P), 申来法(Shen L F), 陈琳(Chen L), 苏晓飞(Su X F), 张校刚(Zhang X G), 李洪森(Li H S) . 物理化学学报(Acta Physico-Chimica Sinica), 2011, 27:2123.
[65]
Hong M, Su Y, Zhou C, Yao L, Hu J, Yang Z, Zhang L, Zhou Z, Hu N, Zhang Y . J. Alloys Compd., 2019, 770:116.
[66]
Mohan R, Paulose R . J. Electron. Mater., 2018, 47:6878.
[67]
Ren C E, Zhao M Q, Makaryan T, Halim J, Boota M, Kota S, Anasori B, Barsoum M W, Gogotsi Y . ChemElectroChem, 2016, 3:689.
[68]
Xie X, Zhao M Q, Anasori B, Maleski K, Ren C E, Li J, Byles B W, Pomerantseva E, Wang G, Gogotsi Y . Nano Energy, 2016, 26:513.
[69]
Ren Y, Zhu J, Wang L, Liu H, Liu Y, Wu W, Wang F . Mater. Lett., 2018, 214:84.
[70]
Zhang T, Jiang X, Li G, Yao Q, Lee J Y . ChemNanoMat, 2018, 4:56.
[71]
Jun B M, Kim S, Heo J, Park C M, Her N, Jang M, Huang Y, Han J, Yoon Y . Nano Res., 2019, 12:471.
[72]
Pramudita J C, Sehrawat D, Goonetilleke D, Sharma N . Adv. Energy Mater., 2017, 7:1602911.
[73]
Kim H, Kim J C, Bianchini M, Seo D H, Rodriguez-Garcia J, Ceder G . Adv. Energy Mater., 2018, 8:1702384.
[74]
张鼎(Zhang D), 燕永旺(Yan Y W), 史文静(Shi W J), 赵小敏(Zhao X M), 刘世斌(Liu S B), 王晓敏(Wang X M) . 化工进展(Chemical Industry and Engineering Progress), 2018, 37(10):3772.
[75]
李文挺(Li W T), 安胜利(An S L), 邱新平(Qiu X P) . 储能科学与技术(Energy Storage Science and Technology), 2018, 7(3):365.
[76]
刘梦云(Liu M Y), 谷天天(Gu T T), 周敏(Zhou M), 王康丽(Wang K L), 程时杰(Chen S J), 蒋凯(Jiang K) . 储能科学与技术(Energy Storage Science and Technology), 2018, 7(6):1171.
[77]
Lian P, Dong Y, Wu Z S, Zheng S, Wang X, Sen W, Sun C, Qin J, Shi X, Bao X . Nano Energy, 2017, 40:1.
[78]
Liu Y, Li Y, Li F, Liu Y, Yuan X, Zhang L, Guo S . Electrochim. Acta, 2019, 295:599.
[79]
Zeng C, Xie F, Yang X, Jaroniec M, Zhang L, Qiao S Z . Angew. Chem., Int. Ed., 2018, 57:8540. https://www.ncbi.nlm.nih.gov/pubmed/29722102

doi: 10.1002/anie.201803511     URL     pmid: 29722102
[80]
Dong Y, Wu Z S, Zheng S, Wang X, Qin J, Wang S, Shi X, Bao X . ACS Nano, 2017, 11:4792. https://www.ncbi.nlm.nih.gov/pubmed/28460161

doi: 10.1021/acsnano.7b01165     URL     pmid: 28460161
[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[11] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[12] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[15] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.