English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1303-1313 DOI: 10.7536/PC190137 前一篇   后一篇

• •

直接以碳化钙为炔源合成有机化合物

付如刚1,**(), 李政2, 高磊2   

  1. 1. 河西学院化学化工学院 甘肃省河西走廊特色资源利用重点实验室 张掖 734000
    2. 西北师范大学化学化工学院 兰州 730070
  • 收稿日期:2019-01-28 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 付如刚
  • 基金资助:
    甘肃省河西走廊特色资源利用重点实验室(No.XZ1802)

Direct Synthesis of Organic Compounds Using Calcium Carbide as the Acetylene Source

Rugang Fu1,**(), Zheng Li2, Lei Gao2   

  1. 1. Key Laboratory of Hexi Corridor Resources Utilization of Gansu, College of Chemistry and Chemical Engineering, Hexi University, Zhangye 734000, China
    2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2019-01-28 Online:2019-09-15 Published:2019-07-02
  • Contact: Rugang Fu
  • About author:
    ** E-mail:
  • Supported by:
    The Key laboratory of Hexi Corridor Resources Utilization of Gansu(No.XZ1802)

以往利用碳化钙作为原料制备有机化学品时, 首先须将碳化钙转化成乙炔气体, 再由乙炔气体进一步制备有机化合物, 而乙炔气体易燃易爆, 反应条件苛刻, 应用受到一定限制。碳化钙可以由可再生的生物炭在较低的温度下快速制备, 是一种绿色经济的化工原料。因此, 直接利用碳化钙作为绿色炔源代替乙炔气体、乙炔试剂制备各种重要有机化学品将是一条简洁的绿色化学途径。本文综述了直接以碳化钙为炔源合成有机化合物的反应类型、反应机理以及研究现状, 展望了碳化钙作为固体炔源构建有机化合物的发展趋势。

Traditionally, calcium carbide is a widely used raw material in organic synthesis. It is always first converted into acetylene gas and subsequently used to prepare organic compounds. Acetylene gas is inflammable and explosive, posing the problem of storage and transportation. In addition, directly using acetylene gas as precursor needs harsh reaction conditions and complicated operation, which greatly limits its further application. Recently, it is shown that calcium carbide could be quickly prepared from renewable biochar at relatively low temperature. Such progress allows calcium carbide as a green and economical raw material. Therefore, the direct use of calcium carbide as a green acetylene source instead of acetylene gas and acetylene reagent to prepare various important organic chemicals will be a simple and green way. In this review, the major progress to date, as well as related reaction types and reaction mechanism towards the application of calcium carbide for specific organic reaction and synthesis have been summarized. The trend of using calcium carbide as a solid acetylene source to construct organic compounds is also prospected.

()
图1 碳化钙的传统生产路线图
Fig. 1 Traditional production route of calcium carbide
图2 碳化钙的绿色生产路线图
Fig. 2 Green production route of calcium carbide
图式1 乙炔的代表性反应
Scheme. 1 The representative reaction of acetylene
图3 由碳化钙生产的有机化学品
Fig. 3 Organic chemicals produced from calcium carbide
图式2 碳化钙作为除水剂的羟醛缩合/酯化反应[20, 21]
Scheme. 2 Use of calcium carbide in Aldol condensation/esterification reaction as dehydrant[20, 21]
图式3 碳化钙和苯甲醇的反应[22]
Scheme. 3 Reaction of calcium carbide with benzyl alcohol[22]
图式4 碳化钙和苯甲醇的反应机理[22]
Scheme. 4 Reaction mechanism of calcium carbide with benzyl alcohol[22]
图式5 碳化钙与天然醇的反应[23]
Scheme. 5 Reaction of calcium carbide with natural alcohols[23]
图式6 碳化钙与环氧化物/芳醚的反应[24]
Scheme. 6 Reaction of calcium carbide with epoxides/aromatic ethers[24]
图式7 氟介导碳化钙与醇/酚的反应[25]
Scheme. 7 Reaction of fluorine mediated calcium carbide with alcohols/phenols[25]
图式8 醇和酚在CaC2/KF体系的反应机理[25]
Scheme. 8 Reaction mechanism of alcohols/phenols in CaC2/KF system[25]
图式9 碳化钙和硫醇物质的反应[26]
Scheme. 9 Reaction of calcium carbide with thiols[26]
图式10 碳化钙和硫醇的反应机理[26]
Scheme. 10 Reaction mechanism of calcium carbide with thiols[26]
图式11 碳化钙和二硫化物的反应[27]
Scheme. 11 Reaction of calcium carbide with disulfides[27]
图式12 碳化钙与吲哚/苯酚的反应[28]
Scheme. 12 Reaction of calcium carbide with indole/phenol[28]
图式13 碳化钙和丙酮的反应[29]
Scheme. 13 Reaction of calcium carbide and acetone[29]
图式14 碳化钙与醛/酮的反应[30]
Scheme. 14 Reaction of calcium carbide with aldehydes/ketones[30]
图式15 氟辅助碳化钙与醛/酮的反应[31]
Scheme. 15 Reaction of fluorine assisted calcium carbide with aldehydes/ketones[31]
图式16 氟辅助碳化钙与环己酮的反应机理[31]
Scheme. 16 Reaction mechanism of fluorine assisted calcium carbide with cyclohexanone[31]
图式17 碳化钙与苯甲醛的反应[32]
Scheme. 17 Reaction of calcium carbide with benzaldehydes[32]
图式18 碳化钙与环酮的反应[33]
Scheme. 18 Reaction of calcium carbide with cycloketones[33]
图式19 碳化钙与肟的反应[34]
Scheme. 19 Reaction of calcium carbide with oximes[34]
图式20 碳化钙与肟的反应机理[34]
Scheme. 20 Reaction mechanism of calcium carbide with oximes[34]
图式21 碳化钙与肟的成环反应[35]
Scheme. 21 Cyclization of calcium carbide with oximes[35]
图式22 碳化钙与腙的成环反应[36]
Scheme. 22 Cyclization of calcium carbide with hydrazone[36]
图式23 碳化钙与水杨醛腙/邻羟基苯乙酮对甲苯磺酰腙的成环反应[37]
Scheme. 23 Cyclization of calcium carbide with salicylaldehyde p-tosylhydrazones/2-hydroxyacetopheneones[37]
图式24 碳化钙与水杨醛腙的反应机理[37]
Scheme. 24 Reaction mechanism of calcium carbide with Salicylaldehyde p-Tosylhydrazones[37]
图式25 碳化钙与叔胺的反应[45]
Scheme. 25 Reaction of calcium carbide with tertiary amines[45]
图式26 碳化钙与叔胺的反应机理[45]
Scheme. 26 Reaction mechanism of calcium carbide with tertiary amines[45]
图式27 碳化钙与叠氮化合物的反应[46]
Scheme. 27 Reaction of calcium carbide with azides[46]
图式28 碳化钙与芳基硼酸的反应[47]
Scheme. 28 Reaction of calcium carbide with aryl boric acids[47]
图式29 碳化钙与叠氮化合物的反应[48]
Scheme. 29 Reaction of calcium carbide with azides[48]
图式30 碳化钙与醛和胺的反应[49]
Scheme. 30 Reaction of calcium carbide with aldehydes and amines[49]
图式31 碳化钙与芳香醛和胺的反应[50]
Scheme. 31 Reaction of calcium carbide with aromatic aldehydes and amines[50]
图式32 碳化钙与脂肪醛和仲胺的反应[51]
Scheme. 32 Reaction of calcium carbide with aliphatic aldehydes and secondary amines[51]
图式33 碳化钙与脂肪醛和仲胺的反应机理[51]
Scheme. 33 Reaction mechanism of calcium carbide with aliphatic aldehydes and secondary amines[51]
图式34 碳化钙与异喹啉和炔基酯的反应[52]
Scheme. 34 Reaction of calcium carbide with isoquinolines and alkyl esters[52]
图式35 碳化钙与异喹啉和炔基酯的反应机理[52]
Scheme. 35 Reaction mechanism of calcium carbide with isoquinoline and alkynyl ester[52]
图式36 碳化钙与亚铁氰化钾和芳基碘代物的反应[53]
Scheme. 36 Reaction of calcium carbide with potassium ferrocyanide and aryl iodides[53]
图式37 碳化钙与三烷基锡卤化物的反应[54]
Scheme. 37 Reaction of calcium carbide with alkyl tin halides[54]
图式38 碳化钙与溴苯的反应[55]
Scheme. 38 Reaction of calcium carbide with bromine benzene[55]
图式39 碳化钙与溴苯的反应机理[55]
Scheme. 39 Reaction mechanism of calcium carbide with bromine benzene[55]
图式40 碳化钙与碘苯的反应[56]
Scheme. 40 Reaction of calcium carbide with iodine benzene[56]
图式41 碳化钙与二碘苯的反应[57]
Scheme. 41 The reaction of calcium carbide with benzene diiodobenzenes[57]
图式42 碳化钙与卤代苯的反应[58]
Scheme. 42 The reaction of calcium carbide with benzene halides[58]
图式43 碳化钙与芳基苯的反应管示意图[58]
Scheme. 43 Diagram of the reaction tube of calcium carbide with aryl benzene[58]
图式44 碳化钙与芳基硼酸/芳基硼酸酯的反应[59]
Scheme. 44 Reaction of calcium carbide with aryl boric acids/aryl borate esters[59]
图式45 碳化钙与芳基硼酸的反应机理[59]
Scheme. 45 The mechanism for the reaction of calcium carbide with aryl boric acids[59]
[1]
Trotus I T, Zimmermann T, Schüth F . Chem. Rev., 2014, 114:1761. https://www.ncbi.nlm.nih.gov/pubmed/24228942

doi: 10.1021/cr400357r     URL     pmid: 24228942
[2]
Li G, Liu Q, Liu Z, Zhang Z, Li C, Wu W . Angew. Chem. Int. Ed., 2010, 49:8480. https://www.ncbi.nlm.nih.gov/pubmed/20836115

doi: 10.1002/anie.201004169     URL     pmid: 20836115
[3]
辛采芬(Xin C F), 钱新荣(Qian X R) . 化学进展(Progress in Chemistry), 1994, 6(1):62.
[4]
Davy E . Report of the 6th Meeting of the British Association for the Advancement of Science, 1836. 5.
[5]
Kutscheroff M. Ber. Dtsch. Chem. Ges., 1881, 14:1540.
[6]
Wakatsuki Y, Yamazaki H . Tetrahedron Lett., 1973, 14:3383.
[7]
Myers A G, Tanaka D, Mannion M R . J. Am. Chem. Soc., 2002, 124:11250. https://www.ncbi.nlm.nih.gov/pubmed/12236722

doi: 10.1021/ja027523m     URL     pmid: 12236722
[8]
Nicolaou K C, Bulger P G . Sarlah D. Angew. Chem. Int. Ed., 2005, 44:4442. https://www.ncbi.nlm.nih.gov/pubmed/15991198

doi: 10.1002/anie.200500368     URL     pmid: 15991198
[9]
Hein J E, Fokin V V . Chem. Soc. Rev., 2010, 39:1302. http://xlink.rsc.org/?DOI=b904091a

doi: 10.1039/b904091a     URL    
[10]
Zeng X . Chem. Rev., 2013, 113:6864. https://www.ncbi.nlm.nih.gov/pubmed/23659649

doi: 10.1021/cr400082n     URL     pmid: 23659649
[11]
Willis M C . Chem. Rev. 2010, 110:725. https://www.ncbi.nlm.nih.gov/pubmed/19873977

doi: 10.1021/cr900096x     URL     pmid: 19873977
[12]
Gilmore K, Alabugin I V . Chem. Rev., 2011, 111:6513. https://www.ncbi.nlm.nih.gov/pubmed/21861478

doi: 10.1021/cr200164y     URL     pmid: 21861478
[13]
Fürstner A . Angew. Chem. Int. Ed., 2013, 125:2860. http://doi.wiley.com/10.1002/ange.201204513

doi: 10.1002/ange.201204513     URL    
[14]
Salvio R, Moliterno M, Bella M, Asian J . Org. Chem., 2014, 3:340.
[15]
Shiotsuki M, Sanda F, Masuda T . Polym. Chem., 2011, 2:1044.
[16]
Oremland R S, Voytek M A . Astrobiology, 2008, 8:45. https://www.ncbi.nlm.nih.gov/pubmed/18199006

doi: 10.1089/ast.2007.0183     URL     pmid: 18199006
[17]
Bruscaa S, Lanzafameb R, Marino Cugno Garranob A, Messinab M, Lanzafameb R . Energy Procedia, 2014, 45:889.
[18]
姜春明(Jiang C M), 姜巍巍(Jiang W W), 李奇(Li Q), 黄贤滨(Huang X B), 李俊杰(Li J J) . 中国安全科学学报(China Safety Science Journal), 2006, 16(12):110.
[19]
Davidson C . J. Am. Chem. Soc., 1918, 40:397.
[20]
Sands R D . Org. Prep. Proced. Int., 1974, 6:153.
[21]
Oppenauer R V . Monatsh. Chem. Verw. Teile Anderer Wiss., 1966, 97:62.
[22]
Matake R, Adachi Y, Matsubara H . Green Chem., 2016, 18:2614. http://xlink.rsc.org/?DOI=C5GC02977E

doi: 10.1039/C5GC02977E     URL    
[23]
Teong S P, Chua A Y H, Deng S, Li X, Zhang Y . Green Chem., 2017, 19:1659. https://www.ncbi.nlm.nih.gov/pubmed/24135372

doi: 10.1016/j.bbmt.2013.10.007     URL     pmid: 24135372
[24]
Teong S P, Lim J, Zhang Y . ChemSusChem, 2017, 10:3198. https://www.ncbi.nlm.nih.gov/pubmed/28730737

doi: 10.1002/cssc.201701153     URL     pmid: 28730737
[25]
Werner G, Rodygin K S, Kostin A A, Gordeev E G, Kashin A S, Ananikov V P . Green Chem., 2017, 19:3032. http://xlink.rsc.org/?DOI=C7GC00724H

doi: 10.1039/C7GC00724H     URL    
[26]
Rodygin K S, Ananikov V P . Green Chem., 2016, 18:482. https://www.ncbi.nlm.nih.gov/pubmed/29396003

doi: 10.1016/S1473-3099(18)30062-8     URL     pmid: 29396003
[27]
Rodygin K S, Gyrdymova Y V, Zarubaev V V . Mendeleev Commun., 2017, 27:476.
[28]
Rattanangkool E, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S . Eur. J. Org. Chem., 2016, 2016:4347.
[29]
Ray F E, Sawicki E, Borum O H . J. Am. Chem. Soc., 1952, 74:1247.
[30]
Sum Y N, Yu D Y, Zhang Y G . Green Chem., 2013, 15:2718.
[31]
Hosseini A, Seidel D, Miska A, Schreiner P R . Org. Lett., 2015, 17:2808. https://www.ncbi.nlm.nih.gov/pubmed/25997788

doi: 10.1021/acs.orglett.5b01219     URL     pmid: 25997788
[32]
Li Z, He L, Fu R, Song G, Song W, Xie D, Yang J . Tetrahedron, 2016, 72:4321.
[33]
Yu Y, Chen Y, Huang W, Wu W, Jiang H . J. Org. Chem., 2017, 82:9479. https://www.ncbi.nlm.nih.gov/pubmed/28831796

doi: 10.1021/acs.joc.7b01496     URL     pmid: 28831796
[34]
Kaewchangwat N, Sukato R, Vchirawongkwin V, Vilaivan T, Sukwattanasinitt M, Wacharasindhu S . Green Chem., 2015, 17:460.
[35]
Ledovskaya M S, Rodygin K S, Ananikov V P . Org. Chem. Front., 2018, 5:226.
[36]
Yu Y, Huang W, Chen Y, Gao B, Wu W, Jiang H . Green Chem., 2016, 18:6445.
[37]
Fu R, Li Z . Org. Lett., 2018, 20:2342. https://www.ncbi.nlm.nih.gov/pubmed/29633847

doi: 10.1021/acs.orglett.8b00676     URL     pmid: 29633847
[38]
Xiao Q, Xia Y, Li H, Zhang Y, Wang J . Angew. Chem. Int. Ed., 2011, 50:1114. https://www.ncbi.nlm.nih.gov/pubmed/21268207

doi: 10.1002/anie.201005741     URL     pmid: 21268207
[39]
Ye F, Wang C, Ma X, Hossain M L, Xia Y, Zhang Y, Wang J . J. Org. Chem., 2015, 80:647. https://www.ncbi.nlm.nih.gov/pubmed/25469937

doi: 10.1021/jo502316q     URL     pmid: 25469937
[40]
Hossain M L, Ye F, Zhang Y, Wang J . J. Org. Chem., 2013, 78:1236. https://www.ncbi.nlm.nih.gov/pubmed/23301614

doi: 10.1021/jo3024686     URL     pmid: 23301614
[41]
Suárez A, Fu G C . Angew. Chem. Int. Ed., 2004, 116:3664.
[42]
Gabriele B, Mancuso R, Salerno G . J. Org. Chem., 2008, 73:7336. https://www.ncbi.nlm.nih.gov/pubmed/18729323

doi: 10.1021/jo801444n     URL     pmid: 18729323
[43]
Thirupathi N, Hari Babu M, Dwivedi V, Kant R, Sridhar Reddy M . Org. Lett., 2014, 16:2908. https://www.ncbi.nlm.nih.gov/pubmed/24819584

doi: 10.1021/ol501048x     URL     pmid: 24819584
[44]
Wongsa N, Sommart U, Ritthiwigrom T, Yazici A, Kanokmedhakul S, Kanokmedhakul K, Willis A C, Pyne S G . J. Org. Chem., 2013, 78:1138. https://www.ncbi.nlm.nih.gov/pubmed/23289721

doi: 10.1021/jo302554v     URL     pmid: 23289721
[45]
Teong S P, Yu D, Sum Y N, Zhang Y . Green Chem., 2016, 18:3499.
[46]
Jiang Y, Kuang C, Yang Q . Synlett., 2009, 19:3163.
[47]
Jiang Y, Kuang C . Helv. Chem. Acta, 2012, 95:448.
[48]
Gonda Z, Lrincz K, Novák Z . Tetrahedron Lett., 2010, 51:6275. https://linkinghub.elsevier.com/retrieve/pii/S004040391001693X

doi: 10.1016/j.tetlet.2010.09.097     URL    
[49]
Lin Z, Yu D, Sum Y N, Zhang Y . ChemSusChem, 2012, 5:625. https://www.ncbi.nlm.nih.gov/pubmed/22378645

doi: 10.1002/cssc.201100649     URL     pmid: 22378645
[50]
Yu D, Sum Y N, Ean A C C, Chin M P, Zhang Y, . Angew. Chem. Int. Ed., 2013, 52:5125. https://www.ncbi.nlm.nih.gov/pubmed/23576293

doi: 10.1002/anie.201301019     URL     pmid: 23576293
[51]
Fu R, Li Z . J. Chem. Res., 2017, 41:341.
[52]
Samzadeh-Kermani A . Synlett., 2017, 28:2126.
[53]
Song G, Li Z . Eur. J. Org. Chem., 2018, 2018:1326.
[54]
Cochran J, C , Lemieux R P, Giacobbe R, Roitstein A . Synth. React. Inorg. Met. Chem., 1990, 20:251.
[55]
Zhang W, Wu H, Liu Z, Zhong P, Zhang L, Huang X, Cheng J . Chem. Commun., 2006, 46:4826. https://www.ncbi.nlm.nih.gov/pubmed/17345742

doi: 10.1039/b607809e     URL     pmid: 17345742
[56]
Chuentragool P, Vongnam K, Rashatasakhon P, Sukwattanasinitt M, Wacharasindhu S . Tetrahedron, 2011, 67:8177.
[57]
Thavornsin N, Sukwattanasinitt M, Wacharasindhu S . Polym. Chem., 2014, 5:48.
[58]
Matake R, Niwa Y, Matsubara H . Org. Lett., 2015, 17:2354. https://www.ncbi.nlm.nih.gov/pubmed/25950272

doi: 10.1021/acs.orglett.5b00827     URL     pmid: 25950272
[59]
Fu R, Li Z . Eur. J. Org. Chem., 2017, 2017:6648.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 王娜娜, 王官武. 机械研磨条件下凝聚态有机合成探究[J]. 化学进展, 2020, 32(8): 1076-1085.
[3] 缪谦, 杨代月. 从含有八元环的稠环芳烃到具有负曲率的碳纳米结构:进展与展望[J]. 化学进展, 2020, 32(11): 1835-1845.
[4] 邹怀波, 汪华华, 梅光泉, 刘海洋, 张启光. 铁咔咯配合物在有机合成中的催化应用[J]. 化学进展, 2015, 27(6): 666-674.
[5] 徐艺凇, 张凤香, 厉嘉云, 白赢, 肖文军, 彭家建. 聚乙二醇功能化离子液体的制备及其在有机反应中的应用[J]. 化学进展, 2015, 27(10): 1400-1412.
[6] 沈海民, 武宏科, 史鸿鑫, 纪红兵, 余武斌. 非均相环糊精在水相有机合成反应中的应用[J]. 化学进展, 2015, 27(1): 70-78.
[7] 王爱玲, 郑学良, 赵壮志, 李长平, 郑学仿. 深共融溶剂在有机合成中的应用[J]. 化学进展, 2014, 26(05): 784-795.
[8] 徐立宁, 张军涛, 陶成, 曹小平. 烯氯化合物及其合成进展[J]. 化学进展, 2013, 25(11): 1876-1887.
[9] 侯晨, 朱浩, 李亦婧, 李彦锋*. 固定化脯氨酸及其衍生物用于催化不对称有机合成[J]. 化学进展, 2012, (9): 1729-1741.
[10] 王志会*, 王晓. 氮杂吲哚合成[J]. 化学进展, 2012, (10): 1974-1982.
[11] 沈金海, 程国林, 崔秀灵*. 基于钯催化C-H键活化的多米诺反应[J]. 化学进展, 2012, 24(07): 1324-1336.
[12] 包春燕*, 贾慧娟, 刘涛, 汪奕, 彭伟, 朱麟勇. 双分子层膜人工离子通道的合成[J]. 化学进展, 2012, 24(07): 1337-1345.
[13] 刘艳红, 周林成, 惠新平, 赵光辉, 李彦锋. 超顺磁性纳米催化剂在有机合成中的应用[J]. 化学进展, 2012, 24(0203): 327-337.
[14] 刘利 王东. “水上” (“on water”) 有机反应*[J]. 化学进展, 2010, 22(07): 1233-1241.
[15] 王连鸳 徐文浩 杨基础. 超临界甲醇在化学反应中的应用[J]. 化学进展, 2010, 22(05): 796-802.