English
新闻公告
More
化学进展 2019, Vol. 31 Issue (9): 1221-1237 DOI: 10.7536/PC190134 前一篇   后一篇

• •

P3HT/非富勒烯受体异质结有机太阳电池

沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏**()   

  1. 江西理工大学冶金与化学工程学院 赣州 341000
  • 收稿日期:2019-01-27 出版日期:2019-09-15 发布日期:2019-07-02
  • 通讯作者: 刘诗咏
  • 基金资助:
    国家自然科学基金项目(No.21374075)

P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells

Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu**()   

  1. School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received:2019-01-27 Online:2019-09-15 Published:2019-07-02
  • Contact: Shiyong Liu
  • About author:
  • Supported by:
    The National Natural Science Foundation of China(No.21374075)

非富勒烯受体材料在分子设计、光吸收及能级等多方面具有极其丰富的可调控性, 使得基于非富勒烯电子受体的本体异质结有机太阳电池(BHJ OSC) 近年得以迅速发展。P3HT聚合物作为被广泛研究的第二代有机半导体材料, 其价格便宜、具有较好的结晶性以及优异的载流子传输性能, 是经典的电子给体材料。本文综述了近年来以P3HT聚合物为给体、非富勒烯类有机化合物为电子受体的有机太阳电池研究进展, 探讨了P3HT/非富勒烯受体BHJ OSC中, 影响器件效率提升的关键因素, 以及电子受体优化设计方面的相应要求。对基于P3HT/非富勒烯受体 BHJ OSC器件的研究前景进行了展望。

The non-fullerene electron acceptors with broad tunability in molecular structures, light absorption and energy levels used in organic solar cells have been rapidly developed in recent years. P3HT, a representative electron donor in the second-generation organic semiconductor material, has been widely studied for bulk heterojunction organic solar cells(BHJ OSCs). P3HT is a classic electron donor material with low price, good crystallinity and excellent electron mobility. Herein, the progress of P3HT/non-fullerene BHJ OSC in recent years is reviewed. The requirements for the molecular design of non-fullerene acceptors for P3HT are discussed. The key factors for the performance improvement of P3HT/non-fullerene BHJ OSC have also been reviewed. Finally, we prospect the remaining challenges and promising future directions for the P3HT/non-fullerene BHJ OSCs.

()
图1 有机太阳能电池的平面异质结结构(a)、本体异质结正型结构(b)及本体异质结结构反型结构(c)示意图。ETL-电子传输层;HTL-空穴传输层[8, 9]
Fig. 1 The bilayer heterojunction(a), conventional bulk heterojunction(b) and inverse bulk heterojunction(c) for OSC devices. ETL: electron transfer layer, HTL: hole transfer layer[8, 9]
图2 富勒烯衍生物电子受体PC60BM、IC60BA及电子给体P3HT的结构式
Fig. 2 Structurs of fullerene-based electron acceptor PC60BM, IC60BA and P3HT
图3 P3HT、PC60BM、PC70BM、IC70BA[14]和IC60BA[15]的能带以及理想受体LUMO
Fig. 3 Bandgap of P3HT, PC60BM, PC70BM, IC70BA[14] and IC60BA[15] and the ideal LUMO for acceptor for P3HT
图4 基于P3HT/PDI衍生物非富勒烯受体的BHJ OSCs
Fig. 4 The PDI derivative non-fullerene acceptor for P3HT-based OSCs
图5 基于P3HT/NDI衍生物非富勒烯受体的BHJ OSCs
Fig. 5 The NDI derivative non-fullerene acceptor for P3HT based OSCs
图6 基于P3HT/DPP衍生物非富勒烯受体的BHJ OSCs
Fig. 6 The DPP derivative non-fullerene acceptor for P3HT based OSCs
图7 基于P3HT/BT衍生物非富勒烯受体的BHJ OSCs
Fig. 7 The BT derivative non-fullerene acceptor for P3HT based OSCs
图8 基于P3HT OSCs的其他非富勒烯受体
Fig. 8 Other electron-deficient non-fullerene acceptor for P3HT based OSCs
表1 PDI衍生物受体材料与P3HT的BHJ OSC器件性能
Table 1 Performances of P3HT/PDI derivatives BHJ OSC
表2 NDI衍生物受体材料与P3HT的BHJ OSC器件性能
Table 2 Performances of P3HT/NDI derivatives BHJ OSC
表3 DPP衍生物受体材料与P3HT的BHJ OSC器件性能
Table 3 The performances of P3HT/DPP derivatives BHJ OSC
表4 BT衍生物受体材料与P3HT的BHJ OSC器件性能
Table 4 The performances of P3HT/BT derivatives BHJ OSC
表5 其他受体材料与P3HT的BHJ OSC器件性能
Table 5 Performance of P3HT /other non-fullerene BHJ OSCs
表6 基于P3HT的各类受体在OPV器件中的最高光伏性能
Table 6 The best performance of P3HT/varied acceptors OSCs
[1]
李永舫(Li Y F), 何有军(He Y J), 周袆(Zou W) . 聚合物太阳能电池材料和器件(Materials and Devices for Polymer Solar Cells). 北京: 化学工业出版社( Beijing: Chemical Industry Press), 2013. 2.
[2]
Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P . Joule, 2019, 3:1.
[3]
Tang C W . Applied Physics Letters, 1986, 48:183.
[4]
Tang W, Hai J, Dai Y, Huang Z, LU B, Yuan F, Tang J, Zhang F . Sol. Energy Mater. Cells, 2010, 94:1963.
[5]
Mishra A, Buerle P . Angew. Chem. Int. Ed., 2012, 51:2020.
[6]
Lunt R R, Giebink N C, Belak A A, Benziger J B, Forrest S R . J. Appl. Phys., 2009, 105:053711.
[7]
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J . Science, 1995, 270:1789.
[8]
谢祥(Xie X), 吕文珍(Lu W Z), 陈润锋(Chen R F), 黄维(Huang W) . 化学进展(Progress in Chemistry), 2016, 28(11):1591.
[9]
高玉荣(Gao Y R), 马廷丽(Ma T L) . 化学进展(Progress in Chemistry), 2011, 23(5):991.
[10]
康建喜(Kang J X), 王世荣(Wang S R), 孙孟娜(Sun M N), 刘红丽(Liu H L), 李祥高(Li Y G) . 化学进展(Progress in Chemistry), 2017, 29(4):400.
[11]
Kuwabara T, Nakayama T, Uozumi K, Yamaguchi T, Takahashi K . Sol. Energy Mater. Sol. Cells, 2008, 92:1476.
[12]
Sariciftci N S, Smilowitz L, Heeger A J, Wudl F . Science, 1992, 258:1474. https://www.ncbi.nlm.nih.gov/pubmed/17755110

doi: 10.1126/science.258.5087.1474     URL     pmid: 17755110
[13]
Sariciftci N S, Braun D, Zhang C, Heeger A J, Stucky G, Wudl F . Appl. Phys. Lett., 1993, 62:585. http://aip.scitation.org/doi/10.1063/1.108863

doi: 10.1063/1.108863     URL    
[14]
He Y J, Zhao G J, Peng B, Li Y F . Adv. Funct. Mater., 2010, 20:3383.
[15]
Cheng F, Fang C J, Fan X, Huang H H, Zheng Q, Qin P L, Lei H W, Li Y F . Sol. Energy Mater. Sol. Cells, 2013, 110:63.
[16]
Heeger A J . Chem. Soc. Rev., 2010, 39:2354.
[17]
何有军(He Y J), 李永舫(Li Y F) . 化学进展(Progress in Chemistry), 2009, 21(11):2303.
[18]
Dang M T, Hirsch L, Wantz G . Adv. Mater., 2011, 23:3597. https://www.ncbi.nlm.nih.gov/pubmed/21936074

doi: 10.1002/adma.201100792     URL     pmid: 21936074
[19]
Cheng P, Li G, Zhan X W, Yang Y . Nat. Photonics, 2018, 12:131. https://doi.org/10.1038/s41566-018-0104-9

doi: 10.1038/s41566-018-0104-9     URL    
[20]
Lin Y Z, Zhan X W . Mater. Horiz., 2014, 1:470. 9b5b4ac1-24a2-4b5f-b49b-d2b34005a59chttp://dx.doi.org/10.1039/c4mh00042k

doi: 10.1039/c4mh00042k     URL    
[21]
Hou J H, Inganäs O, Friend R H, Gao F . Nature Mater., 2018, 17:119.
[22]
Lin Y, Wang J, Zhang Z G, Bai H, Li Y, Zhu D, Zhan X . Adv. Mater., 2015, 27:1170. https://www.ncbi.nlm.nih.gov/pubmed/25580826

doi: 10.1002/adma.201404317     URL     pmid: 25580826
[23]
Yan C Q, Barlow S, Wang Z H, Yan H, Jen A K Y, Marder S R, Zhan X W, . Nature Rev. Mater., 2018, 3:18003.
[24]
Ahmed E, Ren G Q, Kim F S, Hollenbeck E C, Jenekhe S A . Chem. Mater., 2011, 23:4563.
[25]
Ren G Q, Ahmed E, Samson A, Jenekhe S A . Adv. Energy Mater., 2011, 1:946.
[26]
Fernando R, Mao Z H, Muller E, Ruan F, Sauvé G . J. Phys. Chem. C, 2014, 118:3433.
[27]
Hwang Y J, Ren G Q, Murari N M, Jenekhe S A . Macromolecules, 2012, 45:9056. https://pubs.acs.org/doi/10.1021/ma3020239

doi: 10.1021/ma3020239     URL    
[28]
Wang X F, Lv L, Gu W X, Wang X L, Dong T, Yang Z, Cao H, Huang H . Dyes and Pigments, 2017, 140:141.
[29]
许頔(Xu D), 沈沪江(Shen H J), 袁慧慧(Yuan H H), 王炜(Wang W), 解俊杰(Xie J J) . 化学进展(Progress in Chemistry), 2018, 30(2/3):252.
[30]
Lin Y Z, Zhao F, He Q, Huo L J, Wu Y, Parker T C, Ma W, Sun Y M, Wang C R, Zhu D B, Heeger A J, Marder S R, Zhan X W . J. Am. Chem. Soc., 2016, 138:4955. https://www.ncbi.nlm.nih.gov/pubmed/27015115

doi: 10.1021/jacs.6b02004     URL     pmid: 27015115
[31]
Lin Y Z, He Q, Zhao F W, Huo L J, Mai J Q, Lu X H, Su C J, Li T F, Wang J Y, Zhu J S, Sun Y M, Wang C R, Zhan X W . J. Am. Chem. Soc., 2016, 138:2973. https://www.ncbi.nlm.nih.gov/pubmed/26909887

doi: 10.1021/jacs.6b00853     URL     pmid: 26909887
[32]
Dai S X, Zhao F W, Zhang Q Q, Lau T K, Li T F, Liu K, Ling Q D, Wang C R, Lu X H, You W, Zhan X W . J. Am. Chem. Soc., 2017, 139:1336. https://www.ncbi.nlm.nih.gov/pubmed/28059503

doi: 10.1021/jacs.6b12755     URL     pmid: 28059503
[33]
Wang J Y, Zhang J X, Xiao Y Q, Xiao T, Zhu R Y, Yan C Q, Fu Y Q, Lu G H, Lu X H, Marder S R, Zhan X W . J. Am. Chem. Soc., 2018, 140:9140. https://www.ncbi.nlm.nih.gov/pubmed/29968472

doi: 10.1021/jacs.8b04027     URL     pmid: 29968472
[34]
Zhao F W, Dai S X, Wu Y, Zhang Q Q, Wang J Y, Jiang L, Ling Q D, Wei Z X, Ma W, You W, Wang C R, Zhan X W . Adv. Mater., 2017, 29:1700144.
[35]
Li S S, Ye L, Zhao W C, Yan H P, Yang B, Liu D L, Li W N, Ade H, Hou J H . J. Am. Chem. Soc., 2018, 140:7159. https://www.ncbi.nlm.nih.gov/pubmed/29737160

doi: 10.1021/jacs.8b02695     URL     pmid: 29737160
[36]
Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S . Science, 2018, 361:1094. https://www.ncbi.nlm.nih.gov/pubmed/30093603

doi: 10.1126/science.aat2612     URL     pmid: 30093603
[37]
Zhan X W, Tan Z A, Domercq B, An Z S, Zhang X, Barlow S, Li Y F, Zhu D B, Kippelen B, Marder S R . J. Am. Chem. Soc., 2007, 129:7246. https://www.ncbi.nlm.nih.gov/pubmed/17508752

doi: 10.1021/ja071760d     URL     pmid: 17508752
[38]
霍利军(Huo L J), 韩敏芳(Han M F), 李永舫(Li Y F) . 化学进展(Progress in Chemistry), 2007, 19(11):1762.
[39]
Zhan X, Facchetti A, Barlow S, Marks T J, Ratner M A, Wasielewski M R, Maeder S R . Adv. Mater., 2011, 23:268. https://www.ncbi.nlm.nih.gov/pubmed/21154741

doi: 10.1002/adma.201001402     URL     pmid: 21154741
[40]
Wurthner F, Stolte M . Chemical Communications, 2011, 47:5109. be46b199-2ea3-4099-9fbc-68cb1a2f0991http://dx.doi.org/10.1039/c1cc10321k

doi: 10.1039/c1cc10321k     URL    
[41]
Shin W S, Jeong H H, Kim M K, Jin S H, Kim M R, Lee J K, Leec J W, Gal Y S . J. Mater. Chem., 2006, 16:384.
[42]
Kamm V, Battagliarin G, Howard I A, Pisula W, Mavrinskiy A, Li C, Müllen K, Laquai F . Adv. Energy Mater., 2011, 1:297. http://doi.wiley.com/10.1002/aenm.201000006

doi: 10.1002/aenm.201000006     URL    
[43]
Howard I A, Laquai F, Keivanidis P E, Friend R H, Greenham N C . J. Phys. Chem. C, 2009, 113:21225. https://pubs.acs.org/doi/10.1021/jp907633g

doi: 10.1021/jp907633g     URL    
[44]
Zhang X L, Jiang B, Zhang X, Tang A L, Huang J H . J. Phys. Chem. C, 2014, 118:24212.
[45]
Sharma G D., Roy M S, Mikroyannidis J A, Justin K R, Thomas K R J Org . Electron., 2012, 13:3118.
[46]
Liu X, Cai P, Chen D C, Chen J W, Su S J, Cao Y . Sci. China: Chem., 2014, 57:973. http://link.springer.com/10.1007/s11426-014-5129-4

doi: 10.1007/s11426-014-5129-4     URL    
[47]
Lu Z H, Zhang X, Zhan C L, Jiang B, Zhang X L, Chen L L, Yao J N . Phys. Chem. Chem. Phys., 2013, 15:11375. https://www.ncbi.nlm.nih.gov/pubmed/23739661

doi: 10.1039/c3cp51475g     URL     pmid: 23739661
[48]
Zhang X, Yao J N, Zhan C L . Chem. Commun., 2015, 51:1058. https://www.ncbi.nlm.nih.gov/pubmed/25435375

doi: 10.1039/c4cc08457h     URL     pmid: 25435375
[49]
Jiang B, Zhang X, Zhan C L, Lu Z H, Huang J H, Ding X L, He S G, Yao J N . Polym. Chem., 2013, 4:4631. http://xlink.rsc.org/?DOI=c3py00457k

doi: 10.1039/c3py00457k     URL    
[50]
Lin Y Z, Wang J Y, Dai S X, Li Y F, Zhu D B, Zhan X W . Adv. Energy Mater., 2014, 4:1400420.
[51]
Zhang Y D, Wang H L, Xiao Y, Wang L G, Shi D Q, Cheng C H . ACS Appl. Mater. Interfaces, 2013, 5:11093. https://www.ncbi.nlm.nih.gov/pubmed/24127885

doi: 10.1021/am4033185     URL     pmid: 24127885
[52]
Li M G, Wang L, Liu J G, Zhou K, Yu X H, Xing R B, Geng Y H . Han Y C. Phys. Chem. Chem. Phys., 2014, 16:4528.
[53]
Jung I H, Lo W Y, Jang J, Chen W, Zhao D L, Landry E S, Lu L Y, Talapin D V, Yu L P . Chem. Mater., 2014, 26:3450. https://www.ncbi.nlm.nih.gov/pubmed/4654038

doi: 10.3891/acta.chem.scand.26-3450     URL     pmid: 4654038
[54]
Dai S X, Cheng P, Lin Y Z, Wang Y F, Ma L C, Ling Q D, Zhan X W . Polym. Chem., 2015, 6:5254. http://xlink.rsc.org/?DOI=C5PY00665A

doi: 10.1039/C5PY00665A     URL    
[55]
Liu S Y, Wu C H, Li C Z, Liu S Q, Wei K H, Chen H Z, Jen A K Y . Adv. Sci., 2015, 2:1500014. https://www.ncbi.nlm.nih.gov/pubmed/27980932

doi: 10.1002/advs.201500014     URL     pmid: 27980932
[56]
Farnum D G, Mehta G, Moore G G I . Siegal F P. Tetrahedron Lett., 1974, 29:2549.
[57]
Liu H, Zhang X F, Cheng J Z, Zhong A G, Wen H R, Liu S Y . Molecules, 2019, 24:1760. https://www.mdpi.com/1420-3049/24/9/1760

doi: 10.3390/molecules24091760     URL    
[58]
Lee J, Han A R, Yu H, Shin T J, Yang C, Oh J H . J. Am. Chem. Soc., 2013, 135:9540. https://www.ncbi.nlm.nih.gov/pubmed/23711152

doi: 10.1021/ja403949g     URL     pmid: 23711152
[59]
Sonar P, Ng G M, Lin T T, Dodabalapur A, Chen Z K . J. Mater. Chem., 2010, 20:3626. http://xlink.rsc.org/?DOI=b924404b

doi: 10.1039/b924404b     URL    
[60]
Karsten B P, Bijleveld J C, Janssen R A J . Macromol. Rapid Commun., 2010, 31:1554. https://www.ncbi.nlm.nih.gov/pubmed/21567566

doi: 10.1002/marc.201000133     URL     pmid: 21567566
[61]
Adhikari T, Nunzi J M, Lebel O . Org. Electron., 2017, 48:230.
[62]
Josse P, Dalinot C, Jiang Y, Sylvie D S, Roncali J, Blanchard P, Cabanetos C . J. Mater. Chem. A, 2016, 4:250.
[63]
Lin Y Z, Li Y F, Zhan X W . Adv. Energy Mater., 2013, 3:724.
[64]
Bai H T, Cheng P, Wang Y F, Ma L C, Li Y F, Zhu D B, Zhan X W . J. Mater. Chem. A, 2014, 2:778.
[65]
Yang Y, Zhang G, Yu C, He C, Wang J G, Chen X, Yao, Yao J J, Liu Z T, Zhang D Q . Chem. Commun., 2014, 50:9939. https://www.ncbi.nlm.nih.gov/pubmed/25033097

doi: 10.1039/c4cc04384g     URL     pmid: 25033097
[66]
Raynor A M, Gupta A, Patil H, Bilicc A, Bhosale S V . RSC Adv., 2014, 4:57635.
[67]
Patil H, Gupta A, Bilic A, Bhosale S V, Bhosale S V . Tetrahedron Lett., 2016, 55:4430.
[68]
Patil H, Zu W X, Gupta A, Chellappan V, Bilic A, Sonar P, Rananaware A, Bhosale S V, Bhosale S V . Phys. Chem. Chem. Phys., 2014, 16:23837.
[69]
Shi H Q, Fu W F, Shi M M, Ling J, Chen H Z . J. Mater. Chem. A, 2015, 3:1902.
[70]
Li S X, Yan J L, Li C Z, Liu F, Shi M M, Chen H Z, Russell T P . J. Mater. Chem. A, 2016, 4:3777.
[71]
Lin Y Z, Cheng P, Li Y F, Zhan X W . Chem. Commun., 2012, 48:4773. https://www.ncbi.nlm.nih.gov/pubmed/22491173

doi: 10.1039/c2cc31511d     URL     pmid: 22491173
[72]
Wu X F, Fu W F, Xu Z, Shi M M, Liu F, Chen H Z, Wan J H, Russell T P . Adv. Funct. Mater., 2015, 25:5954.
[73]
Li S X, Liu W Q, Shi M M, Mai J Q, Lau T K, Wan J H, Lu X H, Li C Z, Chen H Z . Energy Environ. Sci.Sci., 2016, 9:604.
[74]
Yuan C X, Liu W Q, Shi M M, Li S X, Wang Y Z, Chen H, Li C Z, Chen H Z . Dyes Pigments, 2017, 143:217.
[75]
Liu S Y, Liu W Q, Yuan C X, Zhong A G, Han D, Wang B, Shah M N, Shi M M, Chen H Z . Dyes Pigments, 2016, 134:139.
[76]
Liu S Y, Wang D G, Zhong A G, Wen H R . Org. Chem. Front., 2018, 5:653.
[77]
阙楚强(Que C Q), 陈宁(Chen N), 许家喜(Xu J X) . 化学进展(Progress in Chemistry), 2018, 30:139.
[78]
Liu S Y, Liu H, Shen Z Q, Huang W Y, Zhong A G, Wen H R . Dyes Pigments, 2019, 162:640.
[79]
Liu S Y, Cheng J Z, Zhang X F, Liu H, Shen Z Q, Wen H R . Polym. Chem., 2019, 10:325.
[80]
杨阳(Yang Y), 蒋秀(Jiang X), 占肖卫(Zhan X W), 陈兴国(Chen X G) . 物理化学学报(Acta Physico-Chimica Sinica), 2019, 35:257.
[81]
McNeill C R, Halls J J M, Wilson R, Whiting G L, Berkebile S, Ramsey M G, Friend R H, Greenham N C . Adv. Funct. Mater., 2008, 18:2309. http://doi.wiley.com/10.1002/adfm.v18%3A16

doi: 10.1002/adfm.v18:16     URL    
[82]
Sepe A, Rong Z X, Sommer M, Vaynzof Y, Sheng Y X, Peter M B, Smilgies D M, Tan Z K, Yang L, Friend R H, Steiner U, Hüttner S . Energ Environy. Sci., 2014, 7:1725.
[83]
Cao Y, Lei T, Yuan J S, Wang J Y, Pei J . Polym. Chem., 2013, 4:5228.
[84]
Shin R Y C, Sonar P, Siew P S, Chen Z K, Sellinger A . J. Org. Chem., 2009, 74:3293. https://www.ncbi.nlm.nih.gov/pubmed/19388713

doi: 10.1021/jo802720m     URL     pmid: 19388713
[85]
Schwenn P E, Gui K, Nardes A M, Krueger K B, Lee K H, Mutkins K, Halina R D, Shaw P E, Kopidakis N, Burn P L, Meredith P . Adv. Energy Mater., 2011, 1:73.
[86]
Fang Y, Pandey A K, Nardes A M, Kopidakis N, Burn P L, Meredith P . Adv. Energy Mater., 2013, 3:54.
[87]
Bloking J T, Han X, Higgs A T, Kastrop J P, Pandey L, Nor-ton J E, Risko C, Chen C E, Brédas J L, McGehee M D, Sellinger A . Chem. Mater., 2011, 23:5484.
[88]
Jinnai S H, Ie Y, Karakawa M, Aernouts T, Nakajima Y, Mori S, Aso Y . Chem. Mater., 2016, 28:1705.
[89]
Holliday S, Ashraf R S, Nielsen C B, Kirkus M, Röhr J A, Tan C H, Elisa C F, Knall A C, Durrant J R, Nelson J, McCulloch I. . J Am. Chem. Soc., 2015, 137:898. https://www.ncbi.nlm.nih.gov/pubmed/25545017

doi: 10.1021/ja5110602     URL     pmid: 25545017
[90]
Holliday S, Ashraf R S, Wadsworth A, Baran D, Yousaf S A, Nielsen C B, Tan C H, Dimitrov S D, Shang Z G, Gasparini N, Alamoudi M, Laquai F, Brabec C J, Salleo A, Durrant J R, McCulloch I . Nat. Commun., 2016, 7:11585. https://www.ncbi.nlm.nih.gov/pubmed/27279376

doi: 10.1038/ncomms11585     URL     pmid: 27279376
[91]
Wu Y, Bai H T, Wang Z Y, Cheng P, Zhu S Y, Wang Y F, Ma W, Zhan X W . Energy Environ. Sci., 2015, 8:3215.
[92]
Wang Y F, Jia B Y, FeiQin F, Wu Y, Meng W, Dai S X, Zhou Y H, Zhan X W . Polymer, 2016, 107:108.
[93]
Baran D, Ashraf R S, Hanifi D A, Abdelsamie M, Gasparini N, Röhr J A, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott C J M, Nelson J, Brabec C J, Amassian A, Salleo A, Kirchartz T, Durrant J R, McCulloch I M . Nature Mater., 2017, 16:363. https://www.ncbi.nlm.nih.gov/pubmed/27869824

doi: 10.1038/nmat4797     URL     pmid: 27869824
[94]
Winzenberg K N, Kemppinen P, Scholes F H, Collis G E . Chem. Commun., 2013, 49:6307. http://xlink.rsc.org/?DOI=c3cc42293c

doi: 10.1039/c3cc42293c     URL    
[95]
Liu W Q, Li S X, Huang J, Yang S D, Chen J H, Zuo L J, Shi M M, Zhan X W, Li C Z, Chen H Z . Adv. Mater., 2016, 28:9729. https://www.ncbi.nlm.nih.gov/pubmed/27634640

doi: 10.1002/adma.201603518     URL     pmid: 27634640
[96]
Kim H U, Kim J H, Suh H, Kwak J, Kim D, Grimsdale A C, Yoon S C, Hwang D H . Chem. Commun., 2013, 49:10950. https://www.ncbi.nlm.nih.gov/pubmed/24129602

doi: 10.1039/c3cc46557h     URL     pmid: 24129602
[97]
Gong X, Tong M H, Brunetti F G, Seo J, Sun Y, Moses D, Wudl F, Heeger A J . Adv. Mater., 2011, 23:2272. aa6c9d5e-1dea-40ed-bb37-18abd8775e51http://dx.doi.org/10.1002/adma.201003768

doi: 10.1002/adma.201003768     URL    
[98]
Zhou Y, Ding L, Shi K, Dai Y Z, Ai N, Wang J, Pei J . Adv. Mater., 2012, 24:957. https://www.ncbi.nlm.nih.gov/pubmed/22249903

doi: 10.1002/adma.201103927     URL     pmid: 22249903
[99]
Zhou Y, Dai Y Z, Zheng Y Q, Wang X Y, Wang J Y, Pei J . Chem. Commun., 2013, 49:5802. https://www.ncbi.nlm.nih.gov/pubmed/23595667

doi: 10.1039/c3cc41803k     URL     pmid: 23595667
[100]
Lim Y F, Shu Y, Parkin S R, Anthony J E, Malliaras G G . J. Mater. Chem., 2009, 19:3049. http://xlink.rsc.org/?DOI=b818693f

doi: 10.1039/b818693f     URL    
[101]
Shu Y, Lim Y F, Li Z, Purushothaman B, Hallani R, Kim J E, Parkin S R, Malliaras G G, Anthony J E . Chem. Sci., 2011, 2:363. cf425e3f-f608-4a6e-81cd-35c14914d1e3http://dx.doi.org/10.1039/c0sc00433b

doi: 10.1039/c0sc00433b     URL    
[102]
Xiao B, Tang A L, Zhang J Q, Mahmood A, Wei Z X, Zhou E J . Adv. Energy Mater., 2017, 7:1602269.
[103]
Xiao B, Tang A L, Yang J, Wei Z X, Zhou E J . ACS Macro Lett., 2017, 6:410.
[104]
Wen X Y, Xiao B, Tang A L, Hu J Y, Yang C H, Zhou E J . Chin. J. Chem. 2018, 36:392.
[105]
He Q, Li T F, Yan C Q, Liu Y, Wang J Y, Wang M G, Lin Y Z, Zhan X W . Dyes Pigments, 2016, 128:226.
[106]
Pho T V, Toma F M, Chabinyc M L, Wudl F . Angew. Chem. Int. Ed., 2013, 52(5):1446. https://www.ncbi.nlm.nih.gov/pubmed/23255510

doi: 10.1002/anie.201207608     URL     pmid: 23255510
[107]
Lu R Q, Zheng Y Q, Zhou Y N, Yan X Y, Lei T, Shi K, Zhou Y, Pei J, Zoppi L, Baldridge K K, Siegel J S, Cao X Y . J. Mater. Chem. A, 2014, 2:20515.
[108]
Wu J F, Xu Y X, Yang Z, Chen Y S, Sui X Y, Yang L, Ye P, Zhu T, Wu X X, Liu X F, Cao H, Peng A D, Huang H . Adv. Energy Mater., 2019, 9:1803012.
[109]
Lin Y Z, Wang H F, Li Y F, Zhu D B, Zhan X W . J. Mater. Chem. A, 2013, 1:14627.
[110]
Liu X, Xie Y, Zhao H B, Cai X Y, Wu H B, Su S J, Cao Y. New J . Chem., 2015, 39:8771.
[111]
Mao Z H, Senevirathna W, Liao J Y, Gu J, Kesava S V, Guo C H, Gomez E D, Sauvé G . Adv. Mater., 2014, 26(36):6290. https://www.ncbi.nlm.nih.gov/pubmed/25066024

doi: 10.1002/adma.201400647     URL     pmid: 25066024
[112]
Liu S Y, Shi M M, Huang J C, Jin Z N, Hu X L, Pan J Y, Li H Y, Jen A K Y, Chen H Z . J. Mater. Chem. A, 2013, 1:2795.
[113]
吴阳(Wu Y), 王再禹(Wang Z Y), 孟向毅(Meng X Y), 马伟(Ma W) . 化学进展(Progress in Chemistry), 2017, 29(1):93.
[1] 李炎平, 於黄忠, 董一帆, 黄欣欣. 溶液法制备有机太阳电池阳极界面修饰层MoO3[J]. 化学进展, 2016, 28(8): 1170-1185.
[2] 王维, 周铭露, 梁露英, 王文*, 凌启淡*. 多功能可交联材料在聚合物太阳能电池中的应用[J]. 化学进展, 2013, 25(0203): 350-362.
[3] 王洪宇,彭波,韦玮. 含苝酰亚胺衍生物太阳能电池材料研究进展[J]. 化学进展, 2008, 20(11): 1751-1760.