English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1177-1186 DOI: 10.7536/PC181215 前一篇   后一篇

• •

超级电容器用镍锰基二元金属氧化物电极材料

乔少明, 黄乃宝**(), 高正远, 周仕贤, 孙银   

  1. 大连海事大学交通运输工程学院 大连 116026
  • 收稿日期:2018-12-24 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 黄乃宝
  • 基金资助:
    科技部重点研发计划(2016YFB0101206); 国家自然科学基金项目(21676040); 国家自然科学基金项目(21276036); 大连市科技创新基金项目(2018J12GX053)

Nickel-Manganese Binary Metal Oxide as Electrode Materials for Supercapacitors

Shaoming Qiao, Naibao Huang**(), Zhengyuan Gao, Shixian Zhou, Yin Sun   

  1. College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China
  • Received:2018-12-24 Online:2019-08-15 Published:2019-05-30
  • Contact: Naibao Huang
  • About author:
  • Supported by:
    National Key Research and Development Program of China(2016YFB0101206); National Natural Science Foundation of China(21676040); National Natural Science Foundation of China(21276036); Dalian Science and Technology Innovation Funds(2018J12GX053)

赝电容电容器相比于双电层电容器拥有更高的比容量(大约10~100倍),由于在充电/放电过程中法拉第反应同时在电极材料表面和内部发生。因此,会产生更多电子,拥有更大的比容量。目前,赝电容电极材料的研究主要集中在金属氧化物和导电聚合物。镍锰基金属氧化物具有较高的理论比容量、成本低、无毒、环境友好等优点,但是其实际的电化学性能远低于理论值。因此,为了提升材料的电化学表现,研究者提出许多有效的策略,例如:制备不同种类金属氧化物作为电极材料;采用不同的工艺制备高比表面积的材料以及不同材料之间的复合产生协同作用等。本文综述了镍锰基二元金属氧化物(NiMnO3、NiMn2O4和Ni6MnO8)作为赝电容电极材料在超级电容器上的应用进展,同时结合目前研究方法进一步提出未来金属氧化物电极材料方面的发展方向,为继续深入研究提供一定的指导作用。

Pseudocapacitors have a higher specific capacitance than electrochemical double-layer capacitors (about 10~100 times). Since the Faraday reactions are simultaneously occur on the surface and inside of the electrode material during charging/discharging process. More electrons are generated and have a larger specific capacitance.At present, research on pseudocapacitance electrode materials mainly focuses on metal oxides and conductive polymers. Nickel-manganese-based metal oxides, as one of them, have the advantages of high theoretical specific capacitance, low cost, non-toxicity and environmental friendliness. However, its actual electrochemical performance is much lower than the theoretical value. Therefore, in order to improve the electrochemical performance of electrode materials. Some researchers have proposed many effective strategies, such as prepared of different kinds of metal oxides as electrode materials, use of different synthesis processes to prepare high specific surface area materials, the synergetic effect between the different materials and so on.In this paper, the application progress of nickel-manganese based binary metal oxides (NiMnO3, NiMn2O4 and Ni6MnO8) as pseudocapacitance electrode materials in supercapacitors has reviewed. At the same time, the future research directions of metal oxide electrode materials are further proposed.

()
图1 不同水热温度制备样品:(a)120,(b)140,(c)160和(d)180 ℃[23]
Fig. 1 Sample preparation at different hydrothermal temperatures:(a)120,(b)140,(c)160, and (d)180 ℃[23]
图2 (a) NiMnO3,(b) NiMnO3/Ni(OH)2 SEM图片,(c)循环伏安曲线,(d)恒流放电曲线:1.NiMnO3/Ni(OH)2,2.NiMnO3,3.MnOOH[27]
Fig. 2 SEM images of(a) NiMnO3,(b) NiMnO3/Ni(OH)2,(c) Cyclic voltammetry curves and(d) galvanostatic discharge curves:1.NiMnO3/Ni(OH)2, 2.NiMnO3,3.MnOOH[27]
图3 (a) 在扫描速度为1 mV/s时样品的CV 曲线,(b) EIS曲线[35]
Fig. 3 (a) CV curves of all samples at the scan rate of 1 mV/s,(b) EIS of samples[35]
图4 (a)不同铁离子掺杂量的NiMnO3电极材料的比电容,(b)15 wt%Fe掺杂NiMnO3和NiMnO3粉末的I-V曲线[38]
Fig. 4 (a)specific capacitance of NiMnO3 electrode material with different Fe ion mass ratios,(b)I-V plots of 15 wt% Fe-doped NiMnO3 and NiMnO3 powder[38]
图5 (a,b) NiMn2O4薄片的SEM 图片[41]
Fig. 5 (a,b) SEM images of NiMn2O4 thin films[41]
图6 多孔片状形貌的NiMn2O4材料[42]
Fig. 6 Porous sheets-like morphology NiMn2O4 material[42]
图7 NiMn2O4材料(a) SEM图片和(b)循环寿命测试结果[47]
Fig. 7 (a) SEM image and(b) cycling performance of NiMn2O4 material[47]
图8 CNT@NiMn2O4 SEM图片(a) 低放大倍数;(b) 高放大倍数;(c) TEM 图片;(d) TEM 放大图片[52]
Fig. 8 Characterization of the CNT@NiMn2O4 hybrid nanoarrays by SEM:(a) Low-magnification;(b) high-magnification;(c) TEM image;(d) TEM magnified images[52]
图9 SEM图片(a) Ni6MnO8,(b)NiO,(c)NiO/NMO-2,(d~f) 不同样品性能对比[73]
Fig. 9 SEM images of(a) Ni6MnO8,(b)NiO,(c)NiO/NMO-2,(d~f) Comparison of performance of different samples[73]
[1]
Simon P, Gogotsi Y . Nat. Mater., 2008,7:845. https://www.ncbi.nlm.nih.gov/pubmed/18956000

doi: 10.1038/nmat2297     URL     pmid: 18956000
[2]
Bonaccorso F, Colombo L, Yu G, Stoller M, Pellegrini V . Science, 2015,347:6217.
[3]
Sheberla D, Bachman J C, Elias J S, Sun C J, Mircea D . Nat. Mater., 2016,16:220. https://www.ncbi.nlm.nih.gov/pubmed/27723738

doi: 10.1038/nmat4766     URL     pmid: 27723738
[4]
Wang F, Wu X, Yuan X, Liu Z, Zhang Y, Fu L . Chem. Soc. Rev., 2017,46:6816. https://www.ncbi.nlm.nih.gov/pubmed/28868557

doi: 10.1039/c7cs00205j     URL     pmid: 28868557
[5]
Geng P, Zheng S, Tang H, Zhu R, Pang H . Adv. Energy Mater., 2018,15:1703259.
[6]
Yu M H, Zeng Y, Han Y, Cheng X Y, Zhao W X, Liang C L, Tong Y X, Tang H L, Lu X H . Adv. Func. Mater., 2015,25:3534. http://doi.wiley.com/10.1002/adfm.v25.23

doi: 10.1002/adfm.v25.23     URL    
[7]
Dubal D P, Chodankar N R, Kim D H, Gomez-Romero P . Chem. Soc. Rev., 2018,47:2065. https://www.ncbi.nlm.nih.gov/pubmed/29399689

doi: 10.1039/c7cs00505a     URL     pmid: 29399689
[8]
Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L . Chem. Rev., 2015,11:5159. https://www.ncbi.nlm.nih.gov/pubmed/25985835

doi: 10.1021/cr5006217     URL     pmid: 25985835
[9]
Majumder M, Choudhary R B, Thakur A K . Carbon, 2019,142:650. https://linkinghub.elsevier.com/retrieve/pii/S000862231831008X

doi: 10.1016/j.carbon.2018.10.089     URL    
[10]
Yang C Y, Zhang P F, Nautiyal A, Li S H, Liu N, Yin J L, Deng K L, Zhang X Y . ACS Appl. Mater. Inter., 2019,11:4258. https://pubs.acs.org/doi/10.1021/acsami.8b19180

doi: 10.1021/acsami.8b19180     URL    
[11]
Guo G Z, Sun Y Y, Fu Q, Ma Y B, Zhou Y Y, Xiong Z Y, Liu Y Q . Int. J. Hydrogen Energy, 2019,44:6103. https://linkinghub.elsevier.com/retrieve/pii/S0360319919302125

doi: 10.1016/j.ijhydene.2019.01.080     URL    
[12]
Vahidmohammadi A, Mojtabavi M, Caffrey N M, Wanunu M, Beidaghi M . Adv. Mater., 2019,31:1806931. http://doi.wiley.com/10.1002/adma.v31.8

doi: 10.1002/adma.v31.8     URL    
[13]
Li J H, Liu Z C, Zhang Q B, Cheng Y, Zhao B T, Dai S G, Wu H H, Zhang K L, Ding D, Wu Y P, Liu M L, Wang M S . Nano Energy, 2019,57:22. https://linkinghub.elsevier.com/retrieve/pii/S2211285518309157

doi: 10.1016/j.nanoen.2018.12.011     URL    
[14]
Mohanapriya K, Ghosh G, Jha N . Electrochim Acta, 2016,209:719. https://linkinghub.elsevier.com/retrieve/pii/S0013468616306521

doi: 10.1016/j.electacta.2016.03.111     URL    
[15]
Dubal D P, Chodankar N R, Kim D H, Gomez-Romero P . Chem. Soc. Rev., 2018,47:2065. https://www.ncbi.nlm.nih.gov/pubmed/29399689

doi: 10.1039/c7cs00505a     URL     pmid: 29399689
[16]
Wang N, Sun B L, Zhao P, Yao M Q, Hu W C, Komarneni S . Chen. Eng. J., 2018,345:31.
[17]
Zhang Y, Xu J, Zhang Y J, Hu X Y . J. Mater. Sci. Mater. Electron., 2016,27:8599. http://link.springer.com/10.1007/s10854-016-4878-6

doi: 10.1007/s10854-016-4878-6     URL    
[18]
Li X, Wu H J, Elshahawy A M, Wang L, Pennycook S J, Guan C, Wang J . Adv. Func. Mater., 2018,28:1800036. http://doi.wiley.com/10.1002/adfm.201800036

doi: 10.1002/adfm.201800036     URL    
[19]
Chen C, Yan D, Luo X, Gao W J, Huang G J, Han Z W, Zeng Y, Zhu Z H . ACS Appl. Mater. Inter., 2018,10:4662. https://www.ncbi.nlm.nih.gov/pubmed/29313663

doi: 10.1021/acsami.7b16271     URL     pmid: 29313663
[20]
Chen C, Wang S, Luo X, Gao W J, Huang G J, Zeng Y, Zhu Z H . J. Power Sources, 2019,409:112. https://linkinghub.elsevier.com/retrieve/pii/S0378775318311741

doi: 10.1016/j.jpowsour.2018.10.066     URL    
[21]
Cai G F, Wang X, Cui M Q, Darmawan P, Wang J X, Eh A L S, Lee P S . Nano Energy, 2015,12:258. https://linkinghub.elsevier.com/retrieve/pii/S2211285514003000

doi: 10.1016/j.nanoen.2014.12.031     URL    
[22]
Zhu S J, Li L, Liu J B, Wang H T, Wang T, Zhang Y X, Zhang L L, Ruoff R S, Dong F . ACS Nano, 2018,12:1033. https://www.ncbi.nlm.nih.gov/pubmed/29365253

doi: 10.1021/acsnano.7b03431     URL     pmid: 29365253
[23]
Qiao S M, Huang N B, Sun Y, Zhang J J, Zhang Y Y, Gao Z Y . J. Alloy. Compd., 2019,775:1109. https://linkinghub.elsevier.com/retrieve/pii/S0925838818338908

doi: 10.1016/j.jallcom.2018.10.216     URL    
[24]
Wang F D, Richards V N, Shields S P, Buhro W E . Chem Mater., 2014,26:5. https://www.ncbi.nlm.nih.gov/pubmed/24803724

doi: 10.1021/cm404044n     URL     pmid: 24803724
[25]
Patzke G R, Zhou Y, Kontic R, Conrad F . Angew. Chem. Int. Edit, 2011,50:826. 39353dc0-b32e-45af-89bf-4a88ee647b96http://dx.doi.org/10.1002/anie.201000235

doi: 10.1002/anie.201000235     URL    
[26]
Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna P L, Grey C P, Dunn B, Simon P . Nat. Energy, 2016,1:16070. https://doi.org/10.1038/nenergy.2016.70

doi: 10.1038/nenergy.2016.70     URL    
[27]
Ge Z, Wang X, Huo Y, Fang C . ChemistrySelect, 2018,3:8547. http://doi.wiley.com/10.1002/slct.201800236

doi: 10.1002/slct.201800236     URL    
[28]
Liu S, Hui K S, Hui K N . ACS Appl. Mater. Inter., 2016,8:3258. https://www.ncbi.nlm.nih.gov/pubmed/26757795

doi: 10.1021/acsami.5b11001     URL     pmid: 26757795
[29]
Ye C J, Qin Q Q, Liu J Q, Mao W P, Yan J, Wang Y, Cui J W, Zhang Q, Yang L P, Wu Y C . J. Mater. Chem. A, 2019,7:4998. http://xlink.rsc.org/?DOI=C8TA11948A

doi: 10.1039/C8TA11948A     URL    
[30]
Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J . Adv. Mater., 2017,29:1605336. http://doi.wiley.com/10.1002/adma.201605336

doi: 10.1002/adma.201605336     URL    
[31]
Yang Z, Xiao Z, Wang K, Guo M, He C, Xu F . Appl. Surf. Sci., 2015,347:690. https://linkinghub.elsevier.com/retrieve/pii/S0169433215010260

doi: 10.1016/j.apsusc.2015.04.160     URL    
[32]
Sanchez J S, Pendashteh A, Palma J, Anderson M, Marcilla R . Appl. Surf. Sci., 2018,460:74. https://linkinghub.elsevier.com/retrieve/pii/S0169433218305208

doi: 10.1016/j.apsusc.2018.02.165     URL    
[33]
Kakvand P, Rahmanifar M S, Elkady M F, Pendashteh A, Kiani M A, Hashami M, Najafi M, Abbasi A, Mousavi M F, Kaner R B . Nanotechnology, 2016,27:315401. https://www.ncbi.nlm.nih.gov/pubmed/27324723

doi: 10.1088/0957-4484/27/31/315401     URL     pmid: 27324723
[34]
Wang H B, Maiyalagan T, Wang X . ACS Catal., 2012,2:781. 6bb16005-1ad3-4c85-bd3d-64488e7ddeb4http://dx.doi.org/10.1021/cs200652y

doi: 10.1021/cs200652y     URL    
[35]
Giri S, Ghosh D, Das C K . Dalton Transo, 2013,42:14361. https://www.ncbi.nlm.nih.gov/pubmed/23999950

doi: 10.1039/c3dt51807h     URL     pmid: 23999950
[36]
Wang F F, Zhu Y F, Tian W, Lv X B, Zhang H L, Hu Z F, Zhang Y X, Ji J Y, Jiang W . J. Mater. Chem. A, 2018,6:10490. http://xlink.rsc.org/?DOI=C8TA03131B

doi: 10.1039/C8TA03131B     URL    
[37]
Gao Q, Wang J X, Ke B, Wang J F, Li Y Q . Cream. Int., 2018,44:18770. https://linkinghub.elsevier.com/retrieve/pii/S0272884218318352

doi: 10.1016/j.ceramint.2018.07.108     URL    
[38]
Qiao S, Huang N, Zhang J, Zhang Y, Sun Y, Gao Z . J. Solid State Electrochem., 2018,23:63. https://doi.org/10.1007/s10008-018-4115-8

doi: 10.1007/s10008-018-4115-8     URL    
[39]
Zhang M, Guo S, Zheng L, Zhang G, Hao Z, Kang L, Liu Z H . Electrochim. Acta, 2013,87:546. https://linkinghub.elsevier.com/retrieve/pii/S0013468612015630

doi: 10.1016/j.electacta.2012.09.085     URL    
[40]
Apurba R, Atanu R, Monalisa G, Alberto Ramos-Ramón J, Samik S, Umapada P, Kumar B S, Sachindranath D . Appl. Surf. Sci., 2019,463:513. https://linkinghub.elsevier.com/retrieve/pii/S0169433218324036

doi: 10.1016/j.apsusc.2018.08.259     URL    
[41]
Chavan U J, Yadav A A . J. Mater. Sci-Mater. Electron., 2017,28:4958. http://link.springer.com/10.1007/s10854-016-6148-z

doi: 10.1007/s10854-016-6148-z     URL    
[42]
Yan H, Li T, Qiu K, Lu Y, Cheng J, Liu Y, Xu J, Luo Y . J. Solid State Electrochem, 2015,19:3169. http://link.springer.com/10.1007/s10008-015-2946-0

doi: 10.1007/s10008-015-2946-0     URL    
[43]
Xu K, Li S, Yang J, Hu J . J. Colloid Interf. Sci., 2018,513:448. https://linkinghub.elsevier.com/retrieve/pii/S0021979717313577

doi: 10.1016/j.jcis.2017.11.052     URL    
[44]
Zheng D H, Zhao F, Li Y Y, Qin C L, Zhu J S, Hu Q F, Wang Z F, Inoue A . Electrochim. Acta, 2019,297:767. https://linkinghub.elsevier.com/retrieve/pii/S0013468618327336

doi: 10.1016/j.electacta.2018.12.035     URL    
[45]
Wei H, Wang J, Le Y, Zhang Y, Hou D, Li T . Ceram Int., 2016,42:14963. https://linkinghub.elsevier.com/retrieve/pii/S027288421630983X

doi: 10.1016/j.ceramint.2016.06.140     URL    
[46]
Bhagwan J, Rani S, Sivasankaran V, Yadav K L, Sharma Y . Appl. Surf. Sci., 2017,426:913. https://linkinghub.elsevier.com/retrieve/pii/S0169433217322535

doi: 10.1016/j.apsusc.2017.07.253     URL    
[47]
Sankar K V, Surendran S, Pandi K, Allin A M, Nithya V D, Lee Y S, Selvan R K . RSC Adv., 2015,5:27649. http://xlink.rsc.org/?DOI=C5RA00407A

doi: 10.1039/C5RA00407A     URL    
[48]
Dubal D P, Dhawale D S, Salunkhe R R, Pawar S M, Lokhande C D . Appl. Surf. Sci., 2010,256:4411. https://linkinghub.elsevier.com/retrieve/pii/S0169433209017668

doi: 10.1016/j.apsusc.2009.12.057     URL    
[49]
Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D . J. Mater. Chem. A, 2017,5:25.
[50]
Xiao P W, Meng Q, Zhao L, Li J J, Wei Z, Han B H . Mater. Design, 2017,129:164.
[51]
Fletcher S, Kirkpatrick I, Puttock R, Thring R, Howroyd S . J. Power Sources, 2017,345:247. https://linkinghub.elsevier.com/retrieve/pii/S0378775317301684

doi: 10.1016/j.jpowsour.2017.02.012     URL    
[52]
Nan H, Ma W, Gu Z, Geng B, Zhang X . RSC Adv., 2015,5:24607. http://xlink.rsc.org/?DOI=C5RA00979K

doi: 10.1039/C5RA00979K     URL    
[53]
Li L, Hu H, Ding S . Inorg. Chem. Front., 2018,5:1714. http://xlink.rsc.org/?DOI=C8QI00121A

doi: 10.1039/C8QI00121A     URL    
[54]
Ouyang Y, Feng Y, Zhang H, Liu L, Wang Y . ACS Sustain. Chem. Eng., 2016,5:196. https://pubs.acs.org/doi/10.1021/acssuschemeng.6b01249

doi: 10.1021/acssuschemeng.6b01249     URL    
[55]
Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y, Ou E, Xu W . Small, 2017,13:5.
[56]
Yang S, Liu Y, Hao Y, Yang X, Goddard W A, Zhang X L . Adv. Sci., 2018,5:1700659. https://www.ncbi.nlm.nih.gov/pubmed/29721414

doi: 10.1002/advs.201700659     URL     pmid: 29721414
[57]
Hu R, Jing R, Zhang J . J. Mater. Sci-Mater. Electron., 2017,28:14568. http://link.springer.com/10.1007/s10854-017-7320-9

doi: 10.1007/s10854-017-7320-9     URL    
[58]
Hu N, Huang L, Gong W, Shen P K . ACS Sustain. Chem. Eng., 2018,6:16933. https://pubs.acs.org/doi/10.1021/acssuschemeng.8b04265

doi: 10.1021/acssuschemeng.8b04265     URL    
[59]
Wei T Y, Chen C H, Chien H C, Lu S Y, Hu C C . Adv Mater., 2010,22:347. https://www.ncbi.nlm.nih.gov/pubmed/20217716

doi: 10.1002/adma.200902175     URL     pmid: 20217716
[60]
Hu L, Wu L, Liao M, Hu X, Fang X . Adv. Funct. Mater., 2012,22:998. http://doi.wiley.com/10.1002/adfm.v22.5

doi: 10.1002/adfm.v22.5     URL    
[61]
Sahoo S, Zhang S J, Shim J J . Electrochim. Acta, 2016,216:386. https://linkinghub.elsevier.com/retrieve/pii/S001346861631920X

doi: 10.1016/j.electacta.2016.09.030     URL    
[62]
Saranya P E, Selladurai S . J. Mater. Sci-Mater Electron., 2018,29:3326. http://link.springer.com/10.1007/s10854-017-8268-5

doi: 10.1007/s10854-017-8268-5     URL    
[63]
Qiu Z, Yi P, He D, Wang Y, Chen H . J. Mater. Sci., 2018,53:1.
[64]
Taguchi H, Tahara S, Okumura M, Hirota K . J. Solid. State. Chem., 2014,215:300. https://linkinghub.elsevier.com/retrieve/pii/S0022459614001674

doi: 10.1016/j.jssc.2014.04.010     URL    
[65]
Chapman J V, Sankar K, Hino A, Lin X, Chang W S, Coker D, Grinstaff M . Chem. Commun., 2018,54:5590. https://www.ncbi.nlm.nih.gov/pubmed/29766179

doi: 10.1039/c8cc01093e     URL     pmid: 29766179
[66]
Thangavel R, Kannan A G, Ponraj R, Thangavel V, Kim D W, Lee Y S . J. Power Sources, 2018,383:102. https://linkinghub.elsevier.com/retrieve/pii/S0378775318301514

doi: 10.1016/j.jpowsour.2018.02.037     URL    
[67]
Xu J, Wang Y, Cao S, Zhang J, Zhang G X, Xue H G, Xu Q, Pang H . J. Mater. Chem. A, 2018,6:17329. http://xlink.rsc.org/?DOI=C8TA05976D

doi: 10.1039/C8TA05976D     URL    
[68]
Abbasi N, Moradi M, Hajati S, Kiani M A, Toth J . J. Mol. Liq., 2017,244:269. https://linkinghub.elsevier.com/retrieve/pii/S0167732217332531

doi: 10.1016/j.molliq.2017.09.018     URL    
[69]
Joseph J, Rajagopalan R, Anoop S S, Amruthalakshmi V, Ajay A, Nair S V, Balakrishnan A . RSC Adv., 2014,4:39378. http://xlink.rsc.org/?DOI=C4RA05054A

doi: 10.1039/C4RA05054A     URL    
[70]
易锦馨(Yi J X), 霍志鹏(Huo Z P), Asiri A M, Alamry K M, 李家星(Li J X) . 化学进展( Progress in Chemistry), 2018,30(11):1624
[71]
Wang L, Duan G, Zhu J, Chen S M, Liu X . Electrochim. Acta, 2016,219:284. https://linkinghub.elsevier.com/retrieve/pii/S0013468616320369

doi: 10.1016/j.electacta.2016.09.118     URL    
[72]
Zhang J, Hu R, Dai P, Bai Z, Yu X, Wu M, Li G . J. Mater. Sci-Mater. Electron., 2018,29:7510. https://doi.org/10.1007/s10854-018-8742-8

doi: 10.1007/s10854-018-8742-8     URL    
[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[3] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[4] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[5] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[6] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[7] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[8] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[9] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[10] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.
[13] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[14] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[15] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.