English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1159-1165 DOI: 10.7536/PC190122 前一篇   后一篇

• •

锰基催化剂催化燃烧VOCs

刘昕1, 王永强1,2,**(), 刘芳1,2, 赵朝成1, 刘华欣1, 时林1   

  1. 1. 中国石油大学(华东)化学工程学院环境与安全工程系 青岛 266580
    2. 石油石化污染物控制与处理国家重点实验室 青岛 266580
  • 收稿日期:2019-01-16 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 王永强
  • 基金资助:
    山东省自然科学基金项目(ZR2019EE112); 中央高校基本科研业务费专项资金(18CX02123A)

Catalytic Combustion of VOCs by Manganese-Based Catalysts

Xin Liu1, Yongqiang Wang1,2,**(), Fang Liu1,2, Chaocheng Zhao1, Huaxin Liu1, Lin Shi1   

  1. 1. College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, China
    2. State Key Laboratory of Petroleum Pollution Control, China University of Petroleum(East China), Qingdao 266580, China
  • Received:2019-01-16 Online:2019-08-15 Published:2019-05-30
  • Contact: Yongqiang Wang
  • About author:
  • Supported by:
    Shandong Province Natural Science Foundation(ZR2019EE112); Fundamental Research Funds for the Central Universities(18CX02123A)

锰基催化剂作为一种催化活性高、稳定性强、价格低廉的非贵金属类材料,在催化燃烧VOCs领域显示出了广阔的应用前景。然而,该材料存在表面电子传递能力弱,比表面积低等缺点须通过掺杂改性等方式得到优化。本文分别对单一锰氧化物、贵金属掺杂、负载以及钙钛矿型的锰基催化剂近年来从制备方法、催化剂的化学组分、形貌结构等方面提高催化剂活性的最新研究进展进行综述,并对锰基催化剂整体化、工业化的发展提出展望。

Manganese-based catalysts have shown broad application prospects in the field of catalytic combustion of VOCs as a kind of non-noble metal materials with high catalytic activity, strong stability and low cost. However, there are also some shortcomings about the material, such as weak surface electron transfer ability and low specific surface area. Series of measures are applied in order to overcome these limitations, such as doping modification. In this paper, the recent advances in preparation methods, chemical compositions, morphology and structure of manganese-based catalysts are reviewed from four aspects: single manganese oxide, noble metal doping, supports and perovskite-type catalysts. The future research focus should be the monolith and industrialization of manganese-based catalysts.

()
表1 用不同方法制备锰氧化物催化剂用于催化燃烧甲苯
Table 1 Manganese oxide catalyst by different preparation methods for catalytic combustion of toluene
表2 不同孔结构的锰基氧化物催化剂
Table 2 Manganese-based oxide catalysts with different pore structures
表3 用于VOCs燃烧的A位取代的钙钛矿催化剂的研究成果
Table 3 Research results of A-substituted perovskite catalysts for VOCs combustion
[1]
王铁宇(Wang T Y), 李奇锋(Li Q F), 吕永龙(Lu Y L) . 环境科学( Environmental Science), 2013,34(12):4756.
[2]
张志华(Zhang Z H) . 安徽工程大学硕士论文( Master’s Dissertation of Anhui Polytechnic University), 2015.
[3]
韦清华(Wei Q H), 韩振刚(Han Z G), 李常青(Li C Q), 谷丽芬(Gu L F), 王语林(Wang Y L) . 广东化工( Guangdong Chemical Industry), 2017,44(9):171.
[4]
刘敏敏(Liu M M), 王永强(Wang Y Q), 赵朝成(Zhao C C), 赵东风(Zhao D F), 刘芳(Liu F) . 化工进展( Chemical Industry and Engineering Progress), 2017,( 08):2934.
[5]
Xu P, Zhang X, Zhao X, Yang J, Hou Z, Bai L, Chang H, Liu Y, Deng J, Guo G, Dai H, Au C . Applied Catalysis A: General, 2018,562:284.
[6]
Zwinkels M M, Jã Rã S S, Govindmenon P, Griffin T . Catalysis Reviews, 1993,35:319.
[7]
Bai B, Qiao Q, Li J, Hao J . Chinese Journal of Catalysis, 2016,37:102.
[8]
Liu Y, Dai H, Deng J, Du Y, Li X, Zhao Z, Wang Y, Gao B, Yang H, Guo G . Applied Catalysis B: Environmental, 2013,140.
[9]
Han Y F, Ramesh K, Chen L, Widjaja E, Srilakshmi Chilukoti A, Chen F . J.Phys.Chem.C, 2007,111:2830.
[10]
Aguero F N, Barbero B P, Almeida L C, Montes M, Cadús L E . Chemical Engineering Journal, 2011,166:218.
[11]
Garcia T, Sellick D, Varela F, Vázquez I, Dejoz A, Agouram S, Taylor S H, Solsona B . Applied Catalysis A General, 2013,450:169.
[12]
Santos V P, Pereira M F R, Órfão J J M, Figueiredo J L . Applied Catalysis B Environmental, 2010,99:353.
[13]
Lahousse C, Bernier A, Grange P, Delmon B, Papaefthimiou P, Ioannides T, Verykios X . Journal of Catalysis, 1998,178:214.
[14]
Kim S C, Shim W G . Applied Catalysis B: Environmental, 2010,98:180.
[15]
Zhou G, Lan H, Wang H, Xie H, Zhang G, Zheng X . Journal of Molecular Catalysis A: Chemical, 2014,393:279.
[16]
Wang L, Zhang C, Huang H, Li X, Zhang W, Lu M, Li M . ReactionKinetics, Mechanisms and Catalysis, 2016,118:605.
[17]
Piumetti M, Fino D, Russo N . Applied Catalysis B Environmental, 2015,163:277.
[18]
Yang X, Yu X, Lin M, Ma X, Ge M . Catalysis Today, 2018.
[19]
Li L, Niu S, Qu Y, Zhang Q, Li H, Li Y, Zhao W, Shi J . Journal of Materials Chemistry, 2012,22:9263. 5158e582-dd43-4000-a7d3-fabbc004a9bdhttp://dx.doi.org/10.1039/c2jm15870a

doi: 10.1039/c2jm15870a     URL    
[20]
Liu Y, Deng J, Xie S, Wang Z, Dai H . Chinese Journal of Catalysis, 2016,37:1193.
[21]
Bai B, Qiao Q, Li J, Hao J . Chinese Journal of Catalysis, 2016,37:27.
[22]
Ming S, Bang L, Lin Y, Fei Y, Wei S, He J, Diao G, Zheng Y . Materials Letters, 2012,86:18.
[23]
Shi F, Wang F, Dai H, Dai J, Deng J, Liu Y, Bai G, Ji K, Au C T . Applied Catalysis A General, 2012,433.
[24]
廖银念(Liao Y N), 张璇(Zhang X), 牛文浩(Niu W H), 赵梦奇(Zhao M Q), 苏玉红(Su Y H) . 环境工程( Environmental Engineering), 2018,( 1):62.
[25]
Bai B, Li J, Hao J . Applied Catalysis B: Environmental, 2015,164:241.
[26]
Xu H, Jia J, Guo Y, Qu Z, Liao Y, Xie J, Shangguan W, Yan N . Journal of Hazardous Materials, 2017,342:69. https://www.ncbi.nlm.nih.gov/pubmed/28822251

doi: 10.1016/j.jhazmat.2017.08.011     URL     pmid: 28822251
[27]
Sayle T X, Parker S C, Sayle D C . Physical Chemistry Chemical Physics, 2005,7:2936. https://www.ncbi.nlm.nih.gov/pubmed/16189614

doi: 10.1039/b506359k     URL     pmid: 16189614
[28]
Yu D, Liu Y, Wu Z . Catalysis Communications, 2010,11:788.
[29]
Wang X, Kang Q, Li D . Catalysis Communications, 2008,158:336.
[30]
Wu L, He F, Luo J, Liu S . RSC Advances, 2017,7:26952.
[31]
卢媛娇(Lu Y J) . 华东理工大学博士论文( Doctoral Dissertation of East China University of Science and Technology), 2014.
[32]
Li Z, Guo X, Tao F, Zhou R . RSC Advances, 2018,8:25283.
[33]
Li B, Huang Q, Yan X K, Xu X L, Qiu Y, Yang B, Chen Y W, Zhu S M, Shen S B . Journal of Industrial & Engineering Chemistry, 2014,20:2359.
[34]
Li J, Zhao P, Liu S . Applied Catalysis A: General, 2014,482:363.
[35]
Wu X D, Si Z C, Li G, Weng D, Maziran . Journal of Rare Earths, 2011,29:64.
[36]
Park , Hee K, Lee , Sang M, Kwon , Dong W, Hong , Chang S, Kim . Catalysis Letters, 2013,143:246.
[37]
Yan L, Luo M, Wei Z, Qin X, Ying P, Li C . Applied Catalysis B Environmental, 2001,29:61.
[38]
Wan Y, Xie X, Chen X . Progress in Reaction Kinetics & Mechanism, 2017,42:259.
[39]
张燕(Zhang Y) . 浙江工业大学硕士论文( Master’s Dissertation of Zhejiang University of Technology), 2009.
[40]
王胜(Wang S), 高典楠(Gao D N), 张纯希(Zhang C X), 袁中山(Yuan Z S), 张朋(Zhang P), 王树东(Wang S D), . 化学进展( Progress in Chemistry), 2008,20(6):789.
[41]
叶青(Ye Q), 霍飞飞(Huo F F), 王海平(Wang H P), 王娟(Wang J), 王道(Wang D) . 高等学校化学学报( Chemical Journal of Chinese Universities), 2013,34(5):1187.
[42]
Ye Q, Zhao J, Huo F, Wang J, Cheng S, Kang T, Dai H . Catalysis Today, 2011,175:603.
[43]
Song K S, Kang S K, Kim S D . Catalysis Letters, 1997,49:65.
[44]
Tang X, Wang M, Feng W, Feng F, Yan K . International Symposium on Plasma Chemistry. 2011,20.
[45]
Liu Y, Dai H, Deng J, Li X, Wang Y, Arandiyan H, Xie S, Yang H, Guo G . Journal of Catalysis, 2013,305:146.
[46]
Xia Y, Xia L, Liu Y, Yang T, Deng J, Dai H . Journal of Environmental Sciences, 2018,64:276.
[47]
Li X, Liu Y, Deng J, Zhang Y, Xie S, Zhao X, Wang Z, Guo G, Dai H . Catalysis Today, 2018,308:71.
[48]
Jiang Y, Xie S, Yang H, Deng J, Liu Y, Dai H . Catalysis Today, 2017,281:437.
[49]
Peluso , Sambeth , Colman-Lerner E, Thomas . Reaction Kinetics Mechanisms & Catalysis, 2013,108:443.
[50]
Xu P, Zhang X, Zhao X, Yang J, Hou Z, Bai L, Chang H, Liu Y, Deng J, Guo G . Applied Catalysis A General, 2018,562.
[51]
戴洪兴(Dai H X), 何洪(He H), 李佩珩(Li P H), 訾学红(Zi X H) . 中国稀土学报( Journal of The Chinese Rare Earth Society), 2003,21(s2):1.
[52]
Tarjomannejad A, Farzi A, Niaei A, Salari D . Korean Journal of Chemical Engineering, 2016,33:2628.
[53]
黄海凤(Huang H F), 唐伟(Tang W), 陈银飞(Chen Y F), 陈碧芬(Chen B F) . 中国稀土学报( Journal of The Chinese Rare Earth Society), 2004,22(s2):85.
[54]
lvarez-Galván M C, de la Peña O’Shea V A, Arzamendi G, Pawelec B, Gandía L M, Fierro J L G . Applied Catalysis B: Environmental, 2009,92:445.
[55]
Zhang C, Guo Y, Guo Y, Lu G, Boreave A, Retailleau L, Baylet A, Giroir-Fendler A . Applied Catalysis B: Environmental, 2014,148. https://www.ncbi.nlm.nih.gov/pubmed/32362724

doi: 10.1016/j.apcatb.2013.11.038     URL     pmid: 32362724
[56]
Sui Z J, Vradman L, Reizner I, Landau M V, Herskowitz M . Catalysis Communications, 2011,12:1437.
[57]
Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z . Applied Catalysis B: Environmental, 2012,119.
[58]
Liu Y, Dai H, Du Y, Deng J, Zhang L, Zhao Z, Au C T . Journal of Catalysis, 2012,287:149.
[59]
官芳(Guan F), 卢晗锋(Lu H F), 张燕(Zhang Y), 刘华彦(Liu H Y), 陈银飞(Chen Y F) . 浙江工业大学学报( Journal of Zhejiang University of Technology), 2009,37(1):22.
[60]
Zhang C, Wang C, Gil S, Boreave A, Retailleau L, Guo Y, Valverde J L, Giroir-Fendler A . Applied Catalysis B: Environmental, 2017,201:552.
[61]
Fino D, Russo N, Saracco G, Specchia V . Journal of Catalysis, 2003,217:367.
[62]
Lee Y N, Sapiña F, Martímez E, Folgado J V, Corberán V C . Studies in Surface Science & Catalysis, 1997,110:747.
[63]
方俊飞(Fang J F), 宣益民(Xuan Y M), 李强(Li Q) . 科学通报( Chinese Science Bulletin), 2011,56(17):1386.
[64]
Ji K, Dai H, Deng J, Jiang H, Lei Z, Han Z, Cao Y . Chemical Engineering Journal, 2013,214:262.
[65]
Alifanti M, Auer R, Kirchnerova J, Thyrion F, Grange P, Delmon B . Applied Catalysis B: Environmental, 2003,41:71.
[66]
Stege W P, Cadús L E, Barbero B P . Catalysis Today, 2011,172:53.
[67]
Arandiyan H, Dai H, Deng J, Liu Y, Bai B, Wang Y, Li X, Xie S, Li J . Journal of Catalysis, 2013,307:327.
[68]
Wang Y, Xue Y, Zhao C, Zhao D, Liu F, Wang K, Dionysiou D D . Chemical Engineering Journal, 2016,300:300.
[69]
Chen D L, Pan K L, Chang M B . Journal of Environmental Sciences, 2017,56:131.
[70]
Alifanti M, Kirchnerova J, Delmon B, Klvana D . Applied Catalysis A General, 2004,262:167.
[71]
Seiyama T . Catalysis Reviews, 1993,34:281.
[72]
Suárez-Vázquez S I, Gil S, García-Vargas J M, Cruz-López A, Giroir-Fendler A . Applied Catalysis B: Environmental, 2018,223:201.
[73]
Zheng J, Liu J, Zhao Z, Xu J, Duan A, Jiang G . Catalysis Today, 2012,191:146.
[74]
Hosseini S A, Salari D, Niaei A, Oskoui S A . Journal of Industrial and Engineering Chemistry, 2013,19:1903
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[5] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[6] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[12] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[13] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[14] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[15] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
阅读次数
全文


摘要

锰基催化剂催化燃烧VOCs