English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1067-1074 DOI: 10.7536/PC190138 前一篇   后一篇

• •

基于DNA的细胞膜功能化

刘江波1,2, 王丽华1, 左小磊3,**()   

  1. 1. 中国科学院上海应用物理研究所物理生物学研究室 上海光源生物成像中心 上海 201800
    2. 中国科学院大学 北京 100049
    3. 上海交通大学医学院分子医学研究院 上海 200127
  • 收稿日期:2019-01-26 出版日期:2019-08-15 发布日期:2019-05-30
  • 通讯作者: 左小磊
  • 基金资助:
    上海市“曙光计划”(18SG16)

Cell Membranes Functionalization Based on DNA

Jiangbo Liu1,2, Lihua Wang1, Xiaolei Zuo3,**()   

  1. 1. Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. Institute of Molecular Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
  • Received:2019-01-26 Online:2019-08-15 Published:2019-05-30
  • Contact: Xiaolei Zuo
  • About author:
  • Supported by:
    “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission, China(18SG16)

细胞膜在细胞与外界环境间的物质运输、能量转换和信息传递等过程中起着重要作用,研究和控制细胞膜上的分子的相互作用,对理解和操控细胞的生理功能具有重要意义。脱氧核糖核酸(Deoxyribonucleic acid, DNA)分子具有精确自组装和可编程的特性,是一种研究生物膜分子相互作用的新工具。本综述中,我们概括了DNA分子修饰细胞膜的方法,随后介绍了基于DNA分子的监测、控制细胞膜分子相互作用的工作以及DNA分子介导细胞连接的研究,并分析了上述研究的局限性。最后,我们对基于DNA的细胞膜功能化研究进行总结与展望,以期促进对细胞膜功能的新认识,获得控制细胞功能的新方法。

Cell membranes play an important role in the process of material transportation, energy conversion and signal transduction between the cell and the external environment. Researching and controlling the interaction of molecules on the cell membranes is important to understand and manipulate the physiological functions of cells. Deoxyribonucleic acid(DNA) molecules have precise self-assembly and programmable properties and are a new tool for researching molecular interactions in bio-membranes. In this review, the method of modifying cell membranes with DNA molecules are outlined, followed by the work of monitoring and controlling the interaction of cell membranes molecules and the research of cell junction based on DNA. Simultaneously, the limitations of these research are analyzed. Finally, we summarize and prospect the research on DNA-based cell membranes functionalization. We hope that in-depth research in this field can promote new understanding of cell membranes function and obtain new methods for controlling cell function.

()
图1 DNA修饰细胞膜的主要方法[27]
Fig. 1 Main methods of DNA modification on cell membranes[27]. Reproduced with permission from copyright(2012) American Chemical Society
图2 DNA可视化细胞膜表面蛋白糖基化[46]
Fig. 2 The visualization of glycosylation states of proteins with DNA[46]. Reproduced with permission from copyright(2018) American Chemical Society
图3 DNA介导的化学诱导酪氨酸激酶二聚化[47]。(a)ATP诱导酪氨酸激酶二聚化示意图,(b)ATP诱导酪氨酸激酶二聚化共聚焦荧光显微镜表征,(c)ATP诱导酪氨酸激酶二聚化流式表征,(d)ATP诱导酪氨酸激酶二聚化后c-Met磷酸化蛋白质印记表征
Fig. 3 DNA-mediated chemically induced receptor tyrosine kinases dimerization[47]. (a) ATP-responsive D-CID. (b) Confocal fluorescence microscopy images for the study of ATP-responsible D-CID on a cell surface. (c) ATP induced fluorescence decay monitored by flow cytometry. (d) ATP-triggered c-Met phosphorylation determined by western blotting. Reproduced with permission from copyright(2018) Wiley
图4 DPAC构建类似人体组织的类器官[55]。(a)DPAC示意图,(b)脂质DNA修饰细胞表面,(c)DPAC过程,(d)DPAC 中细胞显微镜图片,标尺:100 μm
Fig. 4 DPAC reconstitutes the multicellular organization of organoid-like tissues[55].(a) Scheme showing the DPAC,(b) Incubation of cells with lipid modified oligonucleotides results in chemical remodeling of cell surfaces,(c) Procedure of DPAC,(d) Cell image during DPAC, scale bars, 100 μm. Reproduced with permission from copyright(2015) Nature Publishing Group
[1]
Sezgin E, Levental I, Mayor S, Eggeling C . Nat. Rev. Mol. Cell Biol., 2017,18:361. http://www.nature.com/articles/nrm.2017.16

doi: 10.1038/nrm.2017.16     URL    
[2]
Vries L D, Zheng B, Fischer T, Elenko E, Farquhar M G . Annu. Rev. Pharmacol. Toxicol., 2000,40:235. https://www.ncbi.nlm.nih.gov/pubmed/10836135

doi: 10.1146/annurev.pharmtox.40.1.235     URL     pmid: 10836135
[3]
Reitsma S, Slaaf D W, Vink H, Zandvoort M A M J V, Egbrink M G A O . Pflugers. Arch.- Eur. J. Physiol., 2007,454:345.
[4]
Shi Y, Massagué J . Cell, 2003,113:685. https://www.ncbi.nlm.nih.gov/pubmed/12809600

doi: 10.1016/s0092-8674(03)00432-x     URL     pmid: 12809600
[5]
Barbieri E, Fiore P P D, Sigismund S . Curr. Opin. Cell Biol., 2016,39:21. https://www.ncbi.nlm.nih.gov/pubmed/26872272

doi: 10.1016/j.ceb.2016.01.012     URL     pmid: 26872272
[6]
Conner S D, Schmid S L . Nature, 2003,422:37. https://www.ncbi.nlm.nih.gov/pubmed/12621426

doi: 10.1038/nature01451     URL     pmid: 12621426
[7]
Krol S, Del G S, Grupillo M, Diaspro A, Gliozzi A, Marchetti P . Nano Lett., 2006,6:1933. https://www.ncbi.nlm.nih.gov/pubmed/16968004

doi: 10.1021/nl061049r     URL     pmid: 16968004
[8]
Boura C, Menu P, Payan E, Picart C, Voegel J, Muller S, Stoltz J . Biomaterials, 2003,24:3521. https://www.ncbi.nlm.nih.gov/pubmed/12809781

doi: 10.1016/s0142-9612(03)00214-x     URL     pmid: 12809781
[9]
Sangmin L, Heebeom K, Hee N J, Seung J H, Hyun S M, So J L, Hwa K S, Seok H Y, Seo Y J, Ick C K . ACS Nano, 2014,8:2048. https://www.ncbi.nlm.nih.gov/pubmed/24499346

doi: 10.1021/nn406584y     URL     pmid: 24499346
[10]
Chu T W, Yang J Y, Zhang R, Sima M, Kope$\check{c}$ek J . ACS Nano, 2014,8:719. https://www.ncbi.nlm.nih.gov/pubmed/24308267

doi: 10.1021/nn4053827     URL     pmid: 24308267
[11]
Serganov A, Nudler E . Cell, 2013,152:17. https://www.ncbi.nlm.nih.gov/pubmed/23332744

doi: 10.1016/j.cell.2012.12.024     URL     pmid: 23332744
[12]
Ge Z L, Gu H Z, Li Q, Fan C H . J. Am. Chem. Soc., 2018,140:17808. https://www.ncbi.nlm.nih.gov/pubmed/30516961

doi: 10.1021/jacs.8b10529     URL     pmid: 30516961
[13]
Rothemund P W K . Nature, 2006,440:297. https://www.ncbi.nlm.nih.gov/pubmed/16541064

doi: 10.1038/nature04586     URL     pmid: 16541064
[14]
Douglas S M, Dietz H, Liedl T, Högberg B, Graf F, Shih W M . Nature, 2009,459:414. https://www.ncbi.nlm.nih.gov/pubmed/19458720

doi: 10.1038/nature08016     URL     pmid: 19458720
[15]
Pei H, Lu N, Wen Y L, Song S P, Liu Y, Yan H, Fan C H . Adv. Mater., 2010,22:4754. https://www.ncbi.nlm.nih.gov/pubmed/20839255

doi: 10.1002/adma.201002767     URL     pmid: 20839255
[16]
Lin M H, Wang J J, Zhou G B, Wang J B, Wu N, Lu J X, Gao J M, Chen X Q, Shi J Y, Zuo X L, Fan C H . Angew. Chem., 2015,127:2179.
[17]
Li J, Pei H, Zhu B, Liang L, Wen M, He Y, Chen N, Li D, Huang Q, Fan C H . ACS Nano, 2011,5:8783. https://www.ncbi.nlm.nih.gov/pubmed/21988181

doi: 10.1021/nn202774x     URL     pmid: 21988181
[18]
Pei H, Liang L, Yao G B, Li J, Huang Q, Fan C H . Angew. Chem., 2012,51:9185.
[19]
Liang L, Li J, Li Q, Huang Q, Shi J Y, Yan H, Fan C H . Angew. Chem., 2014,53:7745. https://www.ncbi.nlm.nih.gov/pubmed/24827912

doi: 10.1002/anie.201403236     URL     pmid: 24827912
[20]
Yuan J C, Benjamin G, Muscat R A, Georg S . Nat. Nanotechnol., 2015,10:748. https://www.ncbi.nlm.nih.gov/pubmed/26329111

doi: 10.1038/nnano.2015.195     URL     pmid: 26329111
[21]
Arb T, Plouffe B, Rd C T, Shukla A K, Tarrasch J T, Dosey A M, Kahsai A W, Strachan R T, Pani B, Mahoney J P . Cell, 2016,166:907. https://www.ncbi.nlm.nih.gov/pubmed/27499021

doi: 10.1016/j.cell.2016.07.004     URL     pmid: 27499021
[22]
Gao X X, Lowry P R, Zhou X, Charlene D, Wei Z K, Wong G W, Zhang J . Proc. Natl. Acad. Sci. U. S. A., 2011,108:14509. https://www.ncbi.nlm.nih.gov/pubmed/21873248

doi: 10.1073/pnas.1019386108     URL     pmid: 21873248
[23]
Hsiao S C, Shum B J, Hiroaki O, Douglas E S, Gartner Z J, Mathies R A, Bertozzi C R, Francis M B . Langmuir, 2009,25:6985. https://www.ncbi.nlm.nih.gov/pubmed/19505164

doi: 10.1021/la900150n     URL     pmid: 19505164
[24]
Saxon E, Bertozzi C R . Science, 2000,287:2007. https://www.ncbi.nlm.nih.gov/pubmed/10720325

doi: 10.1126/science.287.5460.2007     URL     pmid: 10720325
[25]
Shi P, Zhao N, Lai J, Coyne J, Gaddes E R, Wang Y . Angew. Chem., 2018,57:6800. https://www.ncbi.nlm.nih.gov/pubmed/29380466

doi: 10.1002/anie.201712596     URL     pmid: 29380466
[26]
Kamitani R, Niikura K, Okajima T, Matsuo Y, Ijiro K . ChemBioChem, 2010,10:230. https://www.ncbi.nlm.nih.gov/pubmed/19090520

doi: 10.1002/cbic.200800621     URL     pmid: 19090520
[27]
Selden N S, Todhunter M E, Jee N Y, Liu J S, Broaders K E, Gartner Z J . J. Am. Chem. Soc., 2012,134:765.
[28]
Taylor M J, Husain K, Gartner Z J, Mayor S, Vale R D . Cell, 2017,169:108. https://www.ncbi.nlm.nih.gov/pubmed/28340336

doi: 10.1016/j.cell.2017.03.006     URL     pmid: 28340336
[29]
Tan W H, Donovan M J, Jianhui J . Chem. Rev., 2013,113:2842. https://www.ncbi.nlm.nih.gov/pubmed/23509854

doi: 10.1021/cr300468w     URL     pmid: 23509854
[30]
Yu F H, Kwame S, Suwussa B, Huan T C, Tan W H . Langmuir, 2008,24:11860. https://www.ncbi.nlm.nih.gov/pubmed/18817428

doi: 10.1021/la801969c     URL     pmid: 18817428
[31]
Shanguang D H, Li Y, Tang Z W, Cao Z H, William C H, Prabodhika M, Kwame S, Yang C Y, Tan W H . Proc. Natl. Acad. Sci. U. S. A., 2006,103:11838. https://www.ncbi.nlm.nih.gov/pubmed/16873550

doi: 10.1073/pnas.0602615103     URL     pmid: 16873550
[32]
Song P, Ye D K, Zuo X L, Li J, Wang J B, Liu H J, Hwang M T, Chao J, Su S, Wang L H, Shi J Y, Wang L H, Huang W, Lal R, Fan C H . Nano Lett., 2017,17:5193. https://www.ncbi.nlm.nih.gov/pubmed/28771008

doi: 10.1021/acs.nanolett.7b01006     URL     pmid: 28771008
[33]
Zhao B, O’Brien C, Mudiyanselage A P K K K, Li N, You M . J. Am. Chem. Soc., 2017,139:18182. https://www.ncbi.nlm.nih.gov/pubmed/29211468

doi: 10.1021/jacs.7b11176     URL     pmid: 29211468
[34]
Zhang Y, Ge C, Zhu C, Salaita K . Nat. Commun., 2014,5:5167. https://www.ncbi.nlm.nih.gov/pubmed/25342432

doi: 10.1038/ncomms6167     URL     pmid: 25342432
[35]
Dutta P K, Zhang Y, Blanchard A, Ge C, Rushdi M, Weiss K, Zhu C, Ke Y, Salaita K . Nano Lett., 2018,18:4803. https://www.ncbi.nlm.nih.gov/pubmed/29911385

doi: 10.1021/acs.nanolett.8b01374     URL     pmid: 29911385
[36]
Tatsumi K, Ohashi K, Teramura Y, Utoh R, Kanegae K, Watanabe N, Mukobata S, Nakayama M, Iwata H, Okano T . Biomaterials, 2012,33:821. https://www.ncbi.nlm.nih.gov/pubmed/22027599

doi: 10.1016/j.biomaterials.2011.10.016     URL     pmid: 22027599
[37]
Versluis F, Voskuhl J, van Kolck B, Zope H, Bremmer M, Albregtse T, Kros A . J. Am. Chem. Soc., 2013,135:8057. https://www.ncbi.nlm.nih.gov/pubmed/23659206

doi: 10.1021/ja4031227     URL     pmid: 23659206
[38]
Weber R J, Liang S I, Selden N S, Desai T A, Gartner Z J . Biomacromolecules, 2014,15:4621. https://www.ncbi.nlm.nih.gov/pubmed/25325667

doi: 10.1021/bm501467h     URL     pmid: 25325667
[39]
Patwa A, Gissot A, Bestel I, Barthélémy P . Chem. Soc. Rev., 2011,40:5844. https://www.ncbi.nlm.nih.gov/pubmed/21611637

doi: 10.1039/c1cs15038c     URL     pmid: 21611637
[40]
Borisenko G G, Zaitseva M A, Chuvilin A N, Pozmogova G E . Nucleic Acids Res., 2009,37:28.
[41]
Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov V N, Hein B, Middendorff C V, Schönle A . Nature, 2009,457:1159. https://www.ncbi.nlm.nih.gov/pubmed/19098897

doi: 10.1038/nature07596     URL     pmid: 19098897
[42]
Hess S T, Gould T J, Gudheti M V, Maas S A, Mills K D, Zimmerberg J . Proc. Natl. Acad. Sci. U. S. A., 2007,104:17370. https://www.ncbi.nlm.nih.gov/pubmed/17959773

doi: 10.1073/pnas.0708066104     URL     pmid: 17959773
[43]
You M, Lyu Y, Han D, Qiu L, Liu Q, Chen T, Wu C S, Peng L, Zhang L, Bao G, Tan W H . Nat. Nanotechnol., 2017,12:453. https://www.ncbi.nlm.nih.gov/pubmed/28319616

doi: 10.1038/nnano.2017.23     URL     pmid: 28319616
[44]
Zhang Y D, Winfree E . J. Am. Chem. Soc., 2009,131:17303. https://www.ncbi.nlm.nih.gov/pubmed/19894722

doi: 10.1021/ja906987s     URL     pmid: 19894722
[45]
Groves J T, Parthasarathy R, Forstner M B . Annu. Rev. Biomed. Eng., 2008,10:311. https://www.ncbi.nlm.nih.gov/pubmed/18429702

doi: 10.1146/annurev.bioeng.10.061807.160431     URL     pmid: 18429702
[46]
Li J, Liu S, Sun L, Li W, Zhang S Y, Yang S, Li J, Yang H H . J. Am. Chem. Soc., 2018,140:16589. https://www.ncbi.nlm.nih.gov/pubmed/30407002

doi: 10.1021/jacs.8b08442     URL     pmid: 30407002
[47]
Li H, Wang M, Shi T, Yang S, Zhang J, Wang H H, Nie Z . Angew. Chem., 2018,57:10226. https://www.ncbi.nlm.nih.gov/pubmed/29944203

doi: 10.1002/anie.201806155     URL     pmid: 29944203
[48]
Stanton B Z, Chory E J, Crabtree G R . Science, 2018,359:1117.
[49]
Anderson P W . Science, 1972,177:393. https://www.ncbi.nlm.nih.gov/pubmed/17796623

doi: 10.1126/science.177.4047.393     URL     pmid: 17796623
[50]
Wang X F, Ha T . Science, 2013,340:991.
[51]
Blakely B L, Dumelin C E, Britta T, McGregor L M, Choi C K, Anthony P C, Duesterberg V K, Baker B M, Block S M, Liu D R . Nat. Methods, 2014,11:1229. https://www.ncbi.nlm.nih.gov/pubmed/25306545

doi: 10.1038/nmeth.3145     URL     pmid: 25306545
[52]
Teramura Y . Biomaterials, 2015,48:119. https://www.ncbi.nlm.nih.gov/pubmed/25701037

doi: 10.1016/j.biomaterials.2015.01.032     URL     pmid: 25701037
[53]
Gartner Z J, Bertozzi C R . Proc. Natl. Acad. Sci. U.S. A., 2009,106:4606. https://www.ncbi.nlm.nih.gov/pubmed/19273855

doi: 10.1073/pnas.0900717106     URL     pmid: 19273855
[54]
Cerchiari A E, Garbe J C, Jee N Y, Todhunter M E, Broaders K E, Peehl D M, Desai T A, Labarge M A, Matthew T, Gartner Z J . Proc. Natl. Acad. Sci. U.S. A., 2015,112:2287. https://www.ncbi.nlm.nih.gov/pubmed/25633040

doi: 10.1073/pnas.1410776112     URL     pmid: 25633040
[55]
Todhunter M E, Jee N Y, Hughes A J, Coyle M C, Cerchiari A, Farlow J, Garbe J C, Labarge M A, Desai T A, Gartner Z J . Nat. Methods, 2015,12:975. https://www.ncbi.nlm.nih.gov/pubmed/26322836

doi: 10.1038/nmeth.3553     URL     pmid: 26322836
[56]
SantaLucia J, Hicks D . Annu. Rev. Biophys. Biomol. Struct., 2004,33:415. https://www.ncbi.nlm.nih.gov/pubmed/15139820

doi: 10.1146/annurev.biophys.32.110601.141800     URL     pmid: 15139820
[57]
Rinker S, Ke Y G, Liu Y, Chhabra R, Yan H . Nat. Nanotechnol., 2008,3:418. https://www.ncbi.nlm.nih.gov/pubmed/18654566

doi: 10.1038/nnano.2008.164     URL     pmid: 18654566
[58]
Song G T, Chen M L, Chen C, Wang C Y, Hu D, Ren J S, Qu X G . Biochimie, 2010,92:121. https://www.ncbi.nlm.nih.gov/pubmed/19879317

doi: 10.1016/j.biochi.2009.10.007     URL     pmid: 19879317
[59]
Campbell N H, Karim N H A, Parkinson G N, Gunaratnam M, Petrucci V, Todd A K, Vilar R, Neidle S . J. Med. Chem., 2012,55:209.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[5] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[6] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[7] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[8] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[11] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[12] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[13] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[14] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[15] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
阅读次数
全文


摘要

基于DNA的细胞膜功能化