English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 996-1006 DOI: 10.7536/PC190103 前一篇   后一篇

• •

用于N-糖肽/糖蛋白分离富集的新型材料

梁阿新1, 汤波1, 孙立权1, 张鑫1,2, 侯慧鹏1, 罗爱芹1,*()   

  1. 1.北京理工大学生命学院 北京 100081
    2.南阳师范学院生命科学与技术学院 南阳 473061
  • 收稿日期:2019-01-04 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 罗爱芹
  • 作者简介:

New Materials for the Separation and Enrichment of N-Glycopeptides/Glycoproteins

Axin Liang1, Bo Tang1, Liquan Sun1, Xin Zhang1,2, Huipeng Hou1, Aiqin Luo1,*()   

  1. 1.School of Life Science, Beijing Institute of Technology, Beijing 100081, China
    2.School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China
  • Received:2019-01-04 Online:2019-07-15 Published:2019-04-26
  • Contact: Aiqin Luo

蛋白质糖基化在调节各种复杂的生物过程中,如分子识别、免疫应答和蛋白质折叠等起着至关重要的作用。由于糖肽/糖蛋白在复杂生物样品或临床样品中丰度较低,进行糖蛋白组学分析前往往需要进行目标蛋白的分离富集。研究开发具有高效糖蛋白分离富集能力的新型材料对糖蛋白/糖肽的研究具有重要意义。近年来报道了许多新型糖蛋白分离富集材料,如有机高分子材料、生物基材料、新型有机骨架材料和新型功能复合材料等。这些材料因其结构、生物相容性和理化性质等特点,从不同层面推动了糖蛋白分离富集技术的发展。本文就目前国内外有关糖肽/糖蛋白分离富集的新型材料进行了总结和讨论,并对其未来发展提出展望。

Protein glycosylation plays a crucial role in regulating various complex biological processes, such as molecular recognition, immune response, and protein folding. Since glycopeptides/glycoproteins are less abundant in complex biological samples or clinical samples, separation and enrichment of target proteins are often required before glycoproteomics analysis. Research and development of novel materials with high-efficiency glycoprotein separation and enrichment ability are of great significance for the study of glycoprotein/glycopeptide. In recent years, many new glycoprotein separation and enrichment materials have been reported, such as organic polymer materials, bio-based materials, new organic framework materials and new functional composite materials. Due to their structure, biocompatibility and physical and chemical properties, these materials have promoted the development of glycoprotein separation and enrichment technology from different levels. In this paper, the new materials related to the separation and enrichment of glycopeptide/glycoprotein at home and abroad are summarized and discussed, and the future development is proposed.

()
图1 (a)BTZ、(b)BZ-PDI及(c)POP-1的合成示意图[31]
Fig. 1 Fabrication routes of(a) benzene-1,3,5-tricarbohydrazide(BTZ),(b) 4,4'-(1,4-phenylene)-bis(1-phenylsemicarbazide)(BZ-PDI) and(c) polyacylsemicarbazide material(POP-1)[31]
图2 CS@PGMA@IDA的合成示意图[39]
Fig. 2 Synthesis of CS@PGMA@IDA[39]
图3 基于TpPa-1的糖基化检测方法示意图[52]
Fig. 3 The procedure for enrichment and detection of the glycopeptides based on TpPa-1[52]
图4 SBA-15-SO3H合成示意图[57]
Fig. 4 Synthesis of SBA-15-SO3H[57]
图5 Cys-Mal@SiO2制备流程图[58]
Fig. 5 Procedure of the preparation of Cys-Mal@SiO2[58]
图6 Poly-Pro@SiO2合成路线图[59]
Fig. 6 Synthesis of Poly-Pro@SiO2[59]
图7 Fe3O4@MPS@PMAC 纳米粒子合成示意图[66]
Fig. 7 Schematic illustration of the synthetic procedure of Fe3O4@MPS@PMAC nanoparticles[66]
图8 Fe3O4@PMAH 核-壳型磁性纳米复合材料合成示意图[68]
Fig. 8 Synthetic procedure for preparation of Fe3O4@PMAH core-shell magnetic nanocomposites[68]
[1]
Lu H J, Zhang Y, Yang P Y . Natl. Sci. Rev., 2016,3(3):345.
[2]
Zielinska D F, Gnad F, Wisniewski J R, Mann M . Cell, 2010,141:897.
[3]
Nilsson J, Ruetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G . Nature Methods, 2009,6(11):809.
[4]
Zhang X H, Wang J W, He X W . ACS Appl. Mater. Interfaces, 2015,7:24576.
[5]
Chen C C, Su W C, Huang B Y, Chen Y J, Tai H C, Obena R P . Analyst, 2014,139(4):688.
[6]
Perego P, Gatti L, Beretta G L . Nat. Rev. Cancer, 2010,10:523.
[7]
Diop N K, Hrycyna C A . Biochemistry, 2005,44:5420.
[8]
Ohtsubo K, Marth J D . Cell, 2006,126:855.
[9]
Tsai P L, Chen S F . Mass Spectrom., 2017,6:S0064.
[10]
Zou X J, Jie J Z, Yang B . Chem. Commun., 2016,52:325.
[11]
Wu R Q, Li L T, Deng C H . Proteomics, 2016,16:1311.
[12]
Haltiwanger R S, Lowe J B . Annual Review of Biochemistry, 2004,73:491.
[13]
Ohta Y, Kameda K, Matsumoto M, Kawasaki N . Mass Spectrometry, 2017,6(1):A0061.
[14]
曹晶(Cao J), 聂爱英(Nie A Y), 陈瑶函(Chen Y H), 王胜(Wang S), 陆家杰(Lu J J), 杨芃原(Yang P Y), . 化学进展 (Progress in Chemistry), 2009,21(9):1888.
[15]
Shao W Y, Liang Y, Liang Z, Zhang L H, Zhang Y K . Journal of Instrumental Analysis, 2018,37(10):1212.
[16]
Zheng J N, Xiao Y, Wang L, Lin Z, Yang H H, Zhang L, Chen G A . J. Chromatogr. A, 2014,1358:29.
[17]
Zhang H, Li X J, Martin D B, Aebersold R . Nat. Biotechnol., 2003,21:660.
[18]
Liu L L, Yu M, Zhang Y, Wang C C, Lu H J . ACS Appl. Mater. Inter., 2014,6:7823.
[19]
Zhang L J, Jiang H C, Yao J, Wang Y L, Fang C Y, Yang P Y, Lu H J . Chem. Commun., 2014,50:1027.
[20]
Sun S S, Yang G L, Wang T, Wang Q Z, Chen C, Li Z . Anal. Bioanal. Chem., 2010,396:3071.
[21]
Wang Y L, Liu M B, Xie L Q, Fang C Y, Xiong H M, Lu H . Anal. Chem., 2014,86:2057.
[22]
Chen M, Lu Y, Ma Q, Guo L, Feng Y Q . Analyst, 2009,134:2158.
[23]
Qiu R Q, Regnier F E . Anal. Chem., 2005,77:2802.
[24]
Jin T, Xiong Z C, Zhu X . ACS Macro Lett., 2015,4:570.
[25]
Wang X, Liu Y, Ren L, Li H, Liu Z . Analytical Methods, 2013,5(20):5444.
[26]
Zheng J, Xiao Y, Wang L, Lin Z, Yang H, Zhang L . J. Chromatogr. A, 2014,1358:29.
[27]
Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X . Journal of the American Chemical Society, 2004,126(32):9938.
[28]
Zhao H, Li Y, Hu Y . Clinical Proteomics, 2014,11(1):21.
[29]
Bodnar E D, Perreault H . Analytical Chemistry, 2013,85(22):10895.
[30]
姜和(Jiang H), 付训忠(Fu X Z), 闵文杰(Min W J) . 重庆理工大学学报(自然科学)(Journal of Chongqing University of Technology)(Natural Science), 2012,26(03):23.
[31]
王红卫(Wang H W), 刘忠山(Liu Z S), 彭孝军(Peng X J), 欧俊杰(Ou J J), 叶明亮(Ye M L) . 色谱 (Chinese Journal of Chromatography), 2017,35(07):688.
[32]
Zhang J, Qi L, Zheng W T, Tian Y L, Chi A P, Zhang Z Q . Journal of Separation Science, 2017,40(5):1107.
[33]
Sun X, Dong J, Li J, Ye M, Zhang W, Ou J . J. Chromatogr, 2017,1489:72.
[34]
Azura A R, Misman M A . Solid State Phenomena, 2017,264:220.
[35]
吴秋惠(Wa Q H), 吴皓(Wu H), 王令充(Wang L C), 嵇晶(Ji J), 陈士勇(Chen S Y) . 中国新药杂志 (Chinese Journal of New Drugs), 2011,20(24):2430.
[36]
He X, Liang X, Chen X, Yuan B, Zhou P, Zhang L . Analytical Chemistry, 2017,89(18).
[37]
Sha Q Y, Wu Y K, Wang C, Sun B Y, Zhang Z H, Zhang L, Lin Y W, Liu X . J. Chromatogr. A, 2018,1569:8.
[38]
Liu Y J, Liu Y J, Dan Z, Zhang R Q, Li Z L . Analytical Chemistry, 2016,88(2):1067.
[39]
Zou X J, Jie J Z, Yang B . Chem. Commun., 2016,52:3251.
[40]
Xiao H, Chen W, Smeekens J M, Wu R . Nature Communications, 2018,9(1):1692.
[41]
Iqbal M S, Massey S, Akbar J, Ashraf C M, Masi, R . Food Chemistry, 2013,140(1/2):178.
[42]
Li S X, Deng N S, Qian S H, Huang G Q . Journal of Analytical Science, 2004,20(2):199.
[43]
Yang T, Cui Y N, Chen H Y, Li W H . Acta Chimica Sinica, 2017,75(4):339.
[44]
Paesani F . Chemical Society Reviews, 2003,32(5):276.
[45]
Ma W, Xu L N, Li X J . ACS Appl. Mater. Interfaces, 2017,9:19562.
[46]
Wang J, Li J, Wang Y, Gao M, Zhang X, Yang P . ACS Appl. Mater. Interfaces, 2016,8:27482.
[47]
Liu Q J, Xie Y Q, Deng C H, Li Y . Talanta, 2017,175:477.
[48]
Côté AP, Benin A I, Ockwig N W, O'Keeffe M, Matzger A J, Yaghi O M . Science, 2005,310(5751):1166.
[49]
El-Kaderi H M, Hunt J R, Mendoza-Cortes J L, Cote A P, Taylor R E, O″Keeffe M . Science, 2007,316(5822):268.
[50]
Feng X, Ding X, Jiang D . Chemical Society Reviews, 2012,41(18):6010.
[51]
Ding S Y, Wang W . Chemical Society Reviews, 2012,42(2):548.
[52]
Ma Y, Yuan F, Zhang X, Zhou Y, Zhang X . Analyst, 2017,142(17):3212.
[53]
Wang J, Li J, Gao M, Zhang X . Nanoscale, 2017,9(30):10750.
[54]
Huang G, Xiong Z, Qin H, Zhu J, Sun Z, Zhang Y . Analytica Chimica Acta, 2014,809:61.
[55]
Wu Z Y, Liang H W, Li C, Hu B C, Xu X X, Wang Q . Nano Research, 2014,7(12):1861.
[56]
Kresge C T, Leonowicz M E, Roth W J . Nature, 1992,359(6397):710.
[57]
Bibi A, Ju H X . Talanta, 2016,161:681.
[58]
Sun X, Zhang L, Zhang W . Se Pu, 2017,35(7):696.
[59]
姚要(Yao Y), 王宏喜(Wang H X), 卿光焱(Qing G Y), 孙涛垒(Sun T L) . 武汉理工大学学报 (Journal of Wuhan University of Technology), 2016,38(06):1.
[60]
Cao Y, Wen L, Svec F, Tan T, Lv Y . Chem. Eng. J., 2016,286:272.
[61]
Cao J, Xu J J, & Liu X G . J. Chromatogr. A, 2016,1468:86.
[62]
Kim D H, Guo Y, Zhang Z, Procissi D, Nicolai J, Omary R A . Adv. Healthc. Mater., 2014,3(5):714.
[63]
Peiris P M, Bauer L, Toy R . ACS Nano, 2012,6(5):4157.
[64]
Chen C, Wang S, Li L, Wang P, Chen C, Sun Z . Biomaterials, 2016,104:352.
[65]
Han L, Zhang Y, Zhang Y, Shu Y, Chen X W, Wang J H . Talanta, 2017,171:32.
[66]
Jiao F, Gao F, Wang H, Deng Y, Zhang Y, Qian X . Sci. Rep., 2017,7(6984):1.
[67]
Li Y, Wang J, Sun N, Deng C H . Anal. Chem. 2017,89:11151.
[68]
Liu L, Yu M, Zhang Y, Wang C, Lu H . ACS Appl. Mater. Inter., 2014,6(10):7823.
[69]
Krishnamoorthy L, Mahal L K . ACS Chemical Biology, 2009,4(9):715.
[70]
Zhang W, Liu W, Li P . Angewandte Chemie, 2015,53(46):12489.
[71]
Dube D H, Bertozzi C R . Nature Reviews Drug Discovery, 2005,4(6):477.
[72]
Ding X, Heiden P A . Macromolecular Materials & Engineering, 2014,299(3):268.
[73]
Xuan G S, Sun Q Y, Zheng X . Advanced Materials Research, 2014, 998-999:19.
[74]
Sellergren B, Martin-Esteban A . Molecularly Imprinted Polymers Elsevier, 2001.
[75]
Haupt K, Mosbach K . Chemical Reviews, 2000,100(7):2495.
[76]
Yoshimi Y . Ieej Transactions on Sensors & Micromachines, 2015,135(8):305.
[77]
Wulff G . Chemical Reviews, 2002,102(1):1.
[78]
Xing R, Wang S, Bie Z, He H, Liu Z . Nature Protocols, 2017,12(5):964.
[79]
Xie J, Zhong G, Cai C . Talanta, 2017,169:98.
[80]
Kasper E, Hanne D, Joseph L, Erik S R, Renato R, Benjamin H . Nutrients, 2018,10(6):751.
[81]
Li D, Tu T, Yang M, Xu C . Talanta, 2018,184:316.
[82]
Hunter T . Cell, 2000,100(1):113.
[83]
Olsen J V, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P . Cell, 2006,127(3):635.
[84]
Ohtsubo K, Marth J D . Cell, 2006,126(5):855.
[85]
Thingholm T E, Jensen O N, Larsen M R . Proteomics, 2009,9(6):1451.
[86]
Lin H Z, Yuan K P, Deng C H . Talanta, 2017,175:427.
[87]
Chen R, Wang F, Tan Y, Sun Z, Song C, Ye M . Journal of Proteomics, 2012,75(5):1666.
[88]
Mariño K, Bones J, Kattla J J, Rudd P M . Nature Chemical Biology, 2010,6(10):713.
[89]
Zhang Y, Kuang M, Zhang L, Yang P, Lu H . Analytical Chemistry, 2013,85(11):5535.
[90]
Mysling S, Palmisano G, HøJrup P, Thaysen-Andersen M . Analytical Chemistry, 2010,82(13):5598.
[91]
Neue K, Mormann M, Peter-Katalinić J, & Pohlentz G . J. Proteome Res, 2011,10:2248. 9a9ac33f-b7d7-4f78-8ec6-dec6b5c744fehttp://dx.doi.org/10.1021/pr101082c

doi: 10.1021/pr101082c     URL    
[92]
Yeh C H, Chen S H, Li D T, Lin H P, Huang H J, Chang C I . J. Chromatogr. A, 2012,1224(3):70.
[93]
Cao W, Huang J, Jiang B, Gao X, Yang P . Scientific Reports, 2016,6:29776.
[94]
Zhang M, Liu Y, Zhang D, Chen T, Li Z . Anal. Chem., 2017,89(15):8064.
[95]
包慧敏(Bao H M), 谢力琦(Xie L Q), 陆豪杰(Lu H J) . 色谱 (Chinese Journal of Chromatography), 2016,34(12):1145.
[1] 赵凤阳, 姜永健, 刘涛, 叶纯纯. 纳滤膜新型材料研究[J]. 化学进展, 2018, 30(7): 1013-1027.
[2] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[3] 毕鹏禹, 常林, 牟瑛琳, 刘建友, 吴昱, 魏芸. 溶剂浮选技术的研究现状与展望[J]. 化学进展, 2013, 25(08): 1362-1374.
[4] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.
[5] 陈旭伟, 毛全兴, 王建华*. 离子液体在蛋白质萃取分离中的应用[J]. 化学进展, 2013, 25(05): 661-668.
[6] 王胜, 邹霞, 张延. 基于质谱的蛋白质O-糖基化分析研究进展[J]. 化学进展, 2010, 22(12): 2428-2435.
[7] 曹晶,聂爱英,陈瑶函,王胜,陆豪杰,杨芃原. 糖蛋白/糖肽的分离富集方法* [J]. 化学进展, 2009, 21(09): 1888-1894.
[8] 张英,黄琳娟,王仲孚. 糖蛋白的凝胶电泳和电印迹染色鉴定技术*[J]. 化学进展, 2008, 20(0708): 1158-1164.
[9] 李娟,郑基深,沈非,方葛敏,郭庆祥,刘磊. 蛋白质的化学全合成*[J]. 化学进展, 2007, 19(012): 1866-1882.
[10] 徐溢,张剑,徐平洲,卢倩,曾雪,温志渝. 微流控芯片系统中固液双相分离富集技术[J]. 化学进展, 2007, 19(01): 186-192.
[11] 孙兴权,李,静,耿美玉,管华诗. 糖组学研究中糖蛋白糖链结构分析技术[J]. 化学进展, 2007, 19(01): 130-135.
[12] 马强,巨勇,赵玉芬. 糖缀合物的化学合成*[J]. 化学进展, 2006, 18(09): 1110-1120.
[13] 张法 刘刚 . 糖肽的固相合成[J]. 化学进展, 2006, 18(05): 579-600.
[14] 李平,张建林,王爱勤. 壳聚糖及其衍生物在分析化学中的应用[J]. 化学进展, 2006, 18(04): 467-473.
[15] 阎哲,黄骏雄. 糖蛋白激素的不均一性及其色谱分离纯化研究的进展[J]. 化学进展, 1999, 11(02): 163-.