English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 882-893 DOI: 10.7536/PC181103 前一篇   后一篇

• •

锡基钙钛矿太阳电池光吸收材料

李晓茵, 周传聪, 王英华, 丁菲菲, 周华伟, 张宪玺**()   

  1. 聊城大学化学化工学院 山东省化学储能与新型电池技术重点实验室 聊城 252000
  • 收稿日期:2018-11-02 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 张宪玺
  • 基金资助:
    国家自然科学基金项目(21171084); 山东省自然科学基金项目(ZR2016BQ20); 山东省高等学校科技计划项目(J17KA097); 山东省高等学校科技计划项目(J16LC05); 聊城大学科技项目

Sn-Based Light-Absorbing Materials for Perovskite Solar Cells

Xiaoyin Li, Chuancong Zhou, Yinghua Wang, Feifei Ding, Huawei Zhou, Xianxi Zhang**()   

  1. Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China
  • Received:2018-11-02 Online:2019-06-15 Published:2019-04-26
  • Contact: Xianxi Zhang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(21171084); Natural Science Foundation of Shandong Province(ZR2016BQ20); Science and Technology Projects for Colleges and Universities in Shandong Province(J17KA097); Science and Technology Projects for Colleges and Universities in Shandong Province(J16LC05); Science and Technology Projects of Liaocheng University.

钙钛矿太阳电池以其优异的光吸收特性、载流子传输能力以及简单的制备工艺,成为太阳电池领域研究的热点。高效、无污染、低成本一直是太阳电池领域追求的目标。然而,传统钙钛矿太阳电池由于其光吸收材料中含重金属元素铅,对环境有较大影响,从而限制了此类钙钛矿太阳电池的进一步商业化应用。基于此,科学家们都在致力于寻找新的无铅钙钛矿材料。在众多无铅钙钛矿材料中,锡基钙钛矿材料由于其相对较小的毒性、合适的带隙以及相应器件具有较高的能量转换效率等优点,成为最有希望应用于钙钛矿太阳电池的替代材料。然而,锡基钙钛矿太阳电池也存在一些弱点,其能量转换效率和器件稳定性相较于铅基钙钛矿太阳电池仍然存在很大差距,器件制备过程中对空气十分敏感。为了更好地解决这些问题,对锡基钙钛矿材料及器件性能的各种影响因素进行系统地研究势在必行。文章分类介绍了各类锡基钙钛矿材料及其在太阳电池中的应用,包括有机-无机杂化锡基钙钛矿材料,锡铅混合钙钛矿材料和全无机锡基钙钛矿材料,综述了锡基钙钛矿材料及其相应器件性能的最新研究进展,并且讨论了影响器件性能的各项因素,最后对锡基钙钛矿太阳电池未来的发展做出了展望。

Due to its excellent optical absorption properties, carrier transport capability and simple fabrication processes, perovskite solar cells have attracted much attention in recent years. High efficiency, pollution-free and low cost have always been the goals pursued in the solar cell field. However, traditional perovskite solar cells have a greater impact on the environment due to the heavy metal element lead in their light absorbing materials, which limits the further commercial application of such perovskite solar cells. Based on this consideration, many scientists are working hard to find novel lead-free perovskite materials. Among numerous lead-free perovskite materials, Sn-based perovskite materials have become the most promising alternatives due to their relatively low toxicity, suitable band gap, and high power conversion efficiency of corresponding devices. Sn-based perovskite solar cells also have some weak points, however. Their energy conversion efficiency and the device stability are much lower compared with Pb-based perovskite solar cells. The device is very sensitive to air during the preparation process. In order to solve these problems, it is imperative to study the factors affecting the performances of Sn-based perovskite materials and devices. The paper introduces various kinds of Sn-based perovskite materials and their application in perovskite solar cells, including organic-inorganic hybrid Sn-based perovskite materials, mixed Sn-Pb perovskite materials and all-inorganic Sn-based perovskite materials. The latest research progress of Sn-based perovskite materials and their corresponding device properties are summarized. In addition, the factors affecting the device performances are discussed, and the future directions of the Sn-based perovskite solar cells are forecast.

()
图1 MASnI3-xBrx钙钛矿的能带结构图[16]
Fig. 1 Schematic energy-level diagram of MASnI3-xBrx compounds[16]
图2 MASn1-xPbxI3钙钛矿(a、b和c)的晶体结构[28]
Fig. 2 Crystal structure(a、b and c) of the MASn1-xPbxI3 solid solutions[28]
图3 MASn1-xPbxI3钙钛矿的能带结构图[28]
Fig. 3 Schematic energy level diagram of the MASn1-xPbxI3 solid solution perovskites[28]
图4 CsSnI3(a)和Cs2SnI6(b)的晶体结构图以及化学势-相图(c)[90]
Fig. 4 Crystal structure of CsSnI3(a), Cs2SnI6(b) and chemical potential-phase map(c)[90]
[1]
Ma S, Cai M, Cheng T, Ding X, Shi X, Alsaedi A, Hayat T, Ding Y, Tan Z A, Dai S . Sci. China Mater., 2018,61(10):1257.
[2]
Tsai C M, Lin Y P, Pola M K, Narra S, Jokar E, Yang Y W, Diau E W G . ACS Energy Lett., 2018,3(9):2077.
[3]
Zuo C, Bolink H J, Han H, Huang J, Cahen D, Ding L . Adv. Sci., 2016,3:1500324. https://www.ncbi.nlm.nih.gov/pubmed/27812475

doi: 10.1002/advs.201500324     URL     pmid: 27812475
[4]
阙亚萍(Que Y P), 翁坚(Weng J), 胡林华(Hu L H), 戴松元(Dai S Y) . 化学进展 (Progress in Chemistry), 2016,28(1):40.
[5]
王露(Wang L), 霍志鹏(Huo Z P), 易锦馨(Yi J X), Alsaedi A, Hayat T, 戴松元(Dai S Y) . 化学进展 (Progress in Chemistry), 2017,29(8):870.
[6]
Rong Y, Hu Y, Mei A, Tan H, Saidaminov M I, Seok S I, McGehee M D, Sargent E H, Han H . Science, 2018,361:6408.
[7]
Rajagopal A, Yao K, Jen A K . Adv. Mater., 2018,30(32):e1800455. https://www.ncbi.nlm.nih.gov/pubmed/29883006

doi: 10.1002/adma.201800455     URL     pmid: 29883006
[8]
白晓功(Bai X G), 史彦涛(Shi Y T), 王开(Wang K), 董庆顺(Dong Q S), 邢玉瑾(Xing Y J), 张鸿(Zhang H), 王亮(Wang L), 马廷丽(Ma T L) . 物理化学学报 (Acta Physico-Chimica Sinica), 2015,2:285.
[9]
Zhao Y, Zhu K . Chem. Soc. Rev., 2016,45(3):655. https://www.ncbi.nlm.nih.gov/pubmed/26645733

doi: 10.1039/c4cs00458b     URL     pmid: 26645733
[10]
Shi Z, Guo J, Chen Y, Li Q, Pan Y, Zhang H, Xia Y, Huang W . Adv. Mater., 2017,29:1605005.
[11]
Nie Z, Yin J, Zhou H, Chai N, Chen B, Zhang Y, Qu K, Shen G, Ma H, Li Y, Zhao J, Zhang X . ACS Appl. Mater. Interfaces, 2016,8:28187.
[12]
Zhang X, Yin J, Nie Z, Zhang Q, Sui N, Chen B, Zhang Y, Qu K, Zhao J, Zhou H . RSC Adv., 2017,7:37419.
[13]
Zhou H, Liu X, He G, Fan L, Shi S, Wei J, Xu W, Yuan C, Chai N, Chen B, Zhang Y, Zhang X, Zhao J, Wei X, Yin J, Tian D . ACS Omega, 2018,3:14021. https://www.ncbi.nlm.nih.gov/pubmed/31458097

doi: 10.1021/acsomega.8b01337     URL     pmid: 31458097
[14]
Shao S, Liu J, Portale G, Fang H, Blake G R, Brink G H, Koster L J, Loi M A . Adv. Energy Mater., 2018,8:1702019.
[15]
Ogomi Y, Morita A, Tsukamoto S, Saitho T, Fujikawa N, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S . J. Phys. Chem. Lett., 2014,5(6):1004. https://www.ncbi.nlm.nih.gov/pubmed/26270980

doi: 10.1021/jz5002117     URL     pmid: 26270980
[16]
Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G. Nat . Photonics, 2014,8(6):489.
[17]
Noel N K, Stranks S D, Abate A, Wehrenfennig C, Guarnera S, Haghighirad A A, Sadhanala A, Eperon G E, Pathak S K, Johnston M B, Petrozza A, Herz L M, Snaith H J . Energy Environ. Sci., 2014,7(9):3061.
[18]
Stoumpos C C, Malliakas C D, Kanatzidis M G . Inorg. Chem., 2013,52(15):9019 https://www.ncbi.nlm.nih.gov/pubmed/23834108

doi: 10.1021/ic401215x     URL     pmid: 23834108
[19]
Zhang J, Wu T, Duan J, Ahmadi M, Jiang F, Zhou Y, Hu B . Nano Energy, 2017,38:297.
[20]
Giorgi G, Fujisawa J I, Segawa H, Yamashita K . J. Phys. Chem. C, 2014,118(23):12176.
[21]
Borriello I, Cantele G, Ninno D . Phys. Rev. B, 2008,77:235214.
[22]
Umari P, Mosconi E, De Angelis F . Sci. Rep., 2014,4:4467. https://www.ncbi.nlm.nih.gov/pubmed/24667758

doi: 10.1038/srep04467     URL     pmid: 24667758
[23]
Takahashi Y, Hasegawa H, Takahashi Y . J. Solid State Chem., 2013,44(42):39.
[24]
Feng J, Xiao B . J. Phys. Chem. C, 2014,118(34):19655.
[25]
Moyez S A, Roy S J . J. Nanopart. Res., 2018,20:5.
[26]
Ma L, Hao F, Stoumpos C C, Phelan B T, Wasielewski M R, Kanatzidis M G . J. Am. Chem. Soc., 2016,138(44):14750. https://www.ncbi.nlm.nih.gov/pubmed/27750426

doi: 10.1021/jacs.6b09257     URL     pmid: 27750426
[27]
Rahul, Singh P K, Singh R, Singh V, Bhattacharya B, Khan Z H . Mater. Res. Bull., 2018,97:572.
[28]
Hao F, Stoumpos C C, Chang R P, Kanatzidis M G . J. Am. Chem. Soc., 2014,136(22):8094. https://www.ncbi.nlm.nih.gov/pubmed/24823301

doi: 10.1021/ja5033259     URL     pmid: 24823301
[29]
Hao F, Stoumpos C C, Guo P, Zhou N, Marks T J, Chang R P, Kanatzidis M G . J. Am. Chem. Soc., 2015,137(35):11445. https://www.ncbi.nlm.nih.gov/pubmed/26313318

doi: 10.1021/jacs.5b06658     URL     pmid: 26313318
[30]
Weiss M, Horn J, Richter C, Schlettwein D . Phys. Status Solidi A, 2016,213(4):975.
[31]
Parrott E S, Milot R L, Stergiopoulos T, Snaith H J, Johnston M B, Herz L M . J. Phys. Chem. Lett., 2016,7(7):1321. https://www.ncbi.nlm.nih.gov/pubmed/26990282

doi: 10.1021/acs.jpclett.6b00322     URL     pmid: 26990282
[32]
Yang Z, Wang Y, Liu Y . Appl. Surf. Sci., 2018,441:394. https://linkinghub.elsevier.com/retrieve/pii/S0169433218303817

doi: 10.1016/j.apsusc.2018.02.038     URL    
[33]
Gao F, Li C, Qin L, Zhu L, Huang X, Liu H, Liang L, Hou Y, Lou Z, Hu Y, Teng F . RSC Adv., 2018,8:14025.
[34]
Yokoyama T, Cao D H, Stoumpos C C, Song T B, Sato Y, Aramaki S, Kanatzidis M G . J. Phys. Chem. Lett., 2016,7(5):776. https://www.ncbi.nlm.nih.gov/pubmed/26877089

doi: 10.1021/acs.jpclett.6b00118     URL     pmid: 26877089
[35]
Hoshi H, Shigeeda N, Dai T . Mater. Lett., 2016,183:391.
[36]
Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M, Snaith H J . Energy Environ. Sci., 2014,7(3):982. http://xlink.rsc.org/?DOI=c3ee43822h

doi: 10.1039/c3ee43822h     URL    
[37]
Snaith H J . Adv. Funct. Mater., 2010,20:13. https://www.ncbi.nlm.nih.gov/pubmed/22199989

doi: 10.1002/adfm.201000367     URL     pmid: 22199989
[38]
Pisanu A, Mahata A, Mosconi E, Patrini M, Quadrelli P, Milanese C, Angelis F D, Malavasi L . ACS Energy Lett., 2018,3(6):1353.
[39]
Xi J, Wu Z, Jiao B, Dong H, Ran C, Piao C, Lei T, Song T B, Ke W, Yokoyama T, Hou X, Kanatzidis M G . Adv. Mater., 2017,29(23):1606964.
[40]
Zhang M, Lyu M, Yun J H, Noori M, Zhou X, Cooling N A, Wang Q, Yu H, Dastoor P C, Wang L . Nano. Res., 2016,9(6):1570.
[41]
Ke W, Stoumpos C C, Zhu M, Mao L, Spanopoulos I, Liu J, Kontsevoi O Y, Chen M, Sarma D, Zhang Y, Wasielewski M R, Kanatzidis M G . Sci. Adv., 2017,3(8):e1701293. https://www.ncbi.nlm.nih.gov/pubmed/28875173

doi: 10.1126/sciadv.1701293     URL     pmid: 28875173
[42]
Zhao Z, Gu F, Li Y, Sun W, Ye S, Rao H, Liu Z, Bian Z, Huang C . Adv. Sci., 2017,4(11):1700204. https://www.ncbi.nlm.nih.gov/pubmed/29201617

doi: 10.1002/advs.201700204     URL     pmid: 29201617
[43]
Lee S J, Shin S S, Im J, Ahn T K, Noh J H, Jeon N J, Seok S Il, Seo J . ACS Energy Lett., 2018,3:46.
[44]
Koh T M, Krishnamoorthy T, Yantara N, Shi C, Leong W L, Boix P P, Grimsdale A C, Mhaisalkar S G, Mathews N . J. Mater. Chem. A, 2015,3(29):14996.
[45]
Lee S J, Shin S S, Kim Y C, Kim D, Ahn T K, Noh J H, Seo J, Seok S I . J. Am. Chem. Soc., 2016,138(12):3974. https://www.ncbi.nlm.nih.gov/pubmed/26960020

doi: 10.1021/jacs.6b00142     URL     pmid: 26960020
[46]
Liao W, Zhao D, Yu Y, Grice C R, Wang C, Cimaroli A J, Schulz P, Meng W, Zhu K, Xiong R G, Yan Y . Adv. Mater., 2016,28(42):9333. https://www.ncbi.nlm.nih.gov/pubmed/27571446

doi: 10.1002/adma.201602992     URL     pmid: 27571446
[47]
Dang Y, Zhou Y, Liu X, Ju D, Xia S, Xia H, Tao X . Angew. Chem. Int. Ed., 2016,55(10):3447. https://www.ncbi.nlm.nih.gov/pubmed/26889919

doi: 10.1002/anie.201511792     URL     pmid: 26889919
[48]
Ran C, Xi J, Gao W, Yuan F, Lei T, Jiao B, Hou X, Wu Z . ACS Energy Lett., 2018,3:713.
[49]
Lang L, Yang J H, Liu H R, Xiang H J, Gong X G . Phys. Lett. A, 2014,378(3):290.
[50]
Gao X, Daw M S . Phys. Rev. B, 2008,77:033103.
[51]
Im J, Stoumpos C C, Jin H, Freeman A J, Kanatzidis M G . J. Phys. Chem. Lett., 2015,6(17):3503. https://www.ncbi.nlm.nih.gov/pubmed/27120685

doi: 10.1021/acs.jpclett.5b01738     URL     pmid: 27120685
[52]
Feng H J, Paudel T R, Tsymbal E Y, Zeng X C . J. Am. Chem. Soc., 2015,137(25):8227. https://www.ncbi.nlm.nih.gov/pubmed/26011597

doi: 10.1021/jacs.5b04015     URL     pmid: 26011597
[53]
Goyal A, McKechnie S, Pashov D, Tumas W, Schilfgaarde M, Stevanovic V . Chem. Mater., 2018,30:3920.
[54]
Xu P, Chen S, Xiang H J, Gong X G, Wei S H . Chem. Mater., 2014,26(20):6068.
[55]
Berdiyorov G R, Madjet M E, El-Mellouhi F . Sol. Energy Mater. Sol. Cells, 2017,170:8.
[56]
Mosconi E, Umari P, De Angelis F . J. Mater. Chem. A, 2015,3(17):9208.
[57]
Zhang X, Cao W, Wang W, Xu B, Liu S, Dai H, Chen S, Wang K, Sun X W . Nano. Energy, 2016,30:511. https://linkinghub.elsevier.com/retrieve/pii/S2211285516304578

doi: 10.1016/j.nanoen.2016.10.039     URL    
[58]
Dimesso L, Das C, Stöhr M, Jaegermann W . Mater. Res. Bull., 2017,85:80.
[59]
Pramchu S, Jaroenjittichai A P, Laosiritaworn Y . Surf. Coat. Technol. A, 2016,306:285.
[60]
Shen Q, Ogomi Y, Chang J, Toyoda T, Fujiwara K, Yoshino K, Sato K, Yamazaki K, Akimoto M, Kuga Y, Katayama K, Hayase S . J. Mater. Chem. A, 2015,3(17):9308. http://xlink.rsc.org/?DOI=C5TA01246E

doi: 10.1039/C5TA01246E     URL    
[61]
Zuo F, Williams S T, Liang P W, Chueh C C, Liao C Y, Jen A K . Adv. Mater., 2014,26(37):6454. https://www.ncbi.nlm.nih.gov/pubmed/25123496

doi: 10.1002/adma.201401641     URL     pmid: 25123496
[62]
Lin G, Lin Y, Huang H, Cui R, Guo X, Liu B, Dong J, Guo X, Sun B . Nano Energy, 2016,27:638. https://linkinghub.elsevier.com/retrieve/pii/S2211285516303019

doi: 10.1016/j.nanoen.2016.08.015     URL    
[63]
Zhu L, Yuh B, Schoen S, Li X, Aldighaithir M, Richardson B J, Alamer A, Yu Q . Nanoscale, 2016,8(14):7621. https://www.ncbi.nlm.nih.gov/pubmed/26987754

doi: 10.1039/c6nr00301j     URL     pmid: 26987754
[64]
Lyu M, Zhang M, Cooling N A, Jiao Y, Wang Q, Yun J H, Vaughan B, Triani G, Evans P, Zhou X, Feron K, Du A, Dastoor P, Wang L . Sci. Bull., 2016,61(20):1558.
[65]
Lee S, Ha T J, Kang D W . Mater. Lett., 2018,227:311.
[66]
Tavakoli M M, Zakeeruddin S M, Grätzel M, Fan Z . Adv. Mater., 2018,30:1705998.
[67]
Wang Y, Fu W, Yan J, Chen J, Yang W, Chen H . J. Mater. Chem. A, 2018,6(27):13090. http://xlink.rsc.org/?DOI=C8TA03054E

doi: 10.1039/C8TA03054E     URL    
[68]
Xu X, Chueh C C, Yang Z, Rajagopal A, Xu J, Jo S B, Jen A K Y . Nano Energy, 2017,34:392.
[69]
Li M, Wang Z, Zhuo M, Hu Y, Hu K, Ye Q, Jain S M, Yang Y, Gao X, Liao L . Adv. Mater., 2018,30:1800258.
[70]
Scaife D E, Weller P F, Fisher W G . J. Solid State Chem., 1974,9(3):308.
[71]
Chung I, Song J H, Im J, Androulakis J, Malliakas C D, Li H, Freeman A J, Kenney J T, Kanatzidis M G . J. Am. Chem. Soc., 2012,134(20):8579. https://www.ncbi.nlm.nih.gov/pubmed/22578072

doi: 10.1021/ja301539s     URL     pmid: 22578072
[72]
Chung I, Lee B, He J, Chang R P, Kanatzidis M G . Nature, 2012,485(7399):486. https://www.ncbi.nlm.nih.gov/pubmed/22622574

doi: 10.1038/nature11067     URL     pmid: 22622574
[73]
Kumar M H, Dharani S, Leong W L, Boix P P, Prabhakar R R, Baikie T, Shi C, Ding H, Ramesh R, Asta M, Graetzel M, Mhaisalkar S G, Mathews N . Adv. Mater., 2014,26(41):7122. https://www.ncbi.nlm.nih.gov/pubmed/25212785

doi: 10.1002/adma.201401991     URL     pmid: 25212785
[74]
Shum K, Chen Z, Qureshi J, Yu C, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T . Appl. Phys. Lett., 2010,96(22):221903.
[75]
Chen Z, Yu C, Shum K, Wang J J, Pfenninger W, Vockic N, Midgley J, Kenney J T . J. Lumin., 2012,132(2):345.
[76]
Huang L Y, Lambrecht W R L . Phys. Rev. B, 2013,88(16).
[77]
Sabba D, Mulmudi H K, Prabhakar R R, Krishnamoorthy T, Baikie T, Boix P P, Mhaisalkar S, Mathews N . J. Phys. Chem. C, 2015,119(4):1763.
[78]
Jellicoe T C, Richter J M, Glass H F, Tabachnyk M, Brady R, Dutton S E, Rao A, Friend R H, Credgington D, Greenham N C, Bohm M L . J. Am. Chem. Soc., 2016,138(9):2941. https://www.ncbi.nlm.nih.gov/pubmed/26901659

doi: 10.1021/jacs.5b13470     URL     pmid: 26901659
[79]
Pramchu S, Laosiritaworn Y, Jaroenjittichai A P . Surf. Coat. Technol., 2016,306:159. https://linkinghub.elsevier.com/retrieve/pii/S0257897216304467

doi: 10.1016/j.surfcoat.2016.05.062     URL    
[80]
Gupta S, Bendikov T, Hodes G, Cahen D . ACS Energy Lett., 2016,1(5):1028.
[81]
Moghe D, Wang L, Traverse C J, Redoute A, Sponseller M, Brown P R, Bulović V, Lunt R R . Nano Energy, 2016,28:469
[82]
Marshall K P, Walton R I, Hatton R A . J. Mater. Chem. A, 2015,3(21):11631.
[83]
Chen L J, Lee C R, Chuang Y J, Wu Z H, Chen C . J. Phys. Chem. Lett., 2016,7(24):5028. https://www.ncbi.nlm.nih.gov/pubmed/27973874

doi: 10.1021/acs.jpclett.6b02344     URL     pmid: 27973874
[84]
Hong W L, Huang Y C, Chang C Y, Zhang Z C, Tsai H R, Chang N Y, Chao Y C . Adv. Mater., 2016,28(36):8029. https://www.ncbi.nlm.nih.gov/pubmed/27376676

doi: 10.1002/adma.201601024     URL     pmid: 27376676
[85]
Wang N, Zhou Y, Ju M G, Garces H F, Ding T, Pang S, Zeng X C, Padture N P, Sun X W . Adv. Energy Mater., 2016,6(24):1601130.
[86]
Xiao Z, Lei H, Zhang X, Zhou Y, Hosono H, Kamiya T . Bull. Chem. Soc. Jpn., 2015,88(9):1250.
[87]
Zhang J, Li S, Yang P, Liu W, Liao Y . J. Mater. Sci., 2018,53:4378.
[88]
Lee B, Krenselewski A, Baik S I, Seidman D N, Chang R P H . Sustainable Energy Fuels, 2017,1(4):710.
[89]
Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T, Ishibashi S, Terakura K . Dalton Trans., 2011,40(20):5563. https://www.ncbi.nlm.nih.gov/pubmed/21494720

doi: 10.1039/c0dt01601b     URL     pmid: 21494720
[90]
Xiao Z, Zhou Y, Hosono H, Kamiya T . Phys. Chem. Chem. Phys., 2015,17(29):18900. https://www.ncbi.nlm.nih.gov/pubmed/26144220

doi: 10.1039/c5cp03102h     URL     pmid: 26144220
[91]
Jiang Y, Zhang H, Qiu X, Cao B . Mater. Lett., 2017,199:50.
[92]
Wang A, Yan X, Zhang M, Sun S, Yang M, Shen W, Pan X, Wang P, Deng Z . Chem. Mater., 2016,28(22):8132.
[93]
Zhu W, Xin G, Wang Y, Min X, Yao T, Xu W, Fang M, Shi S, Shi J, Lian J . J. Mater. Chem. A, 2018,6(6):2577.
[94]
Qiu X, Cao B, Yuan S, Chen X, Qiu Z, Jiang Y, Ye Q, Wang H, Zeng H, Liu J, Kanatzidis M G . Sol. Energy Mater. Sol. Cells, 2017,159:227.
[95]
Qiu X, Jiang Y, Zhang H, Qiu Z, Yuan S, Wang P, Cao B . Phys. Status Solidi RRL, 2016,10(8):587.
[96]
Ke J C, Lewis D J, Walton A S, Spencer B F, O’Brien P, Thomas A G, Flavell W R . J. Mater. Chem. A, 2018,6(24):11205.
[1] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[2] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[3] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[4] 单雪燕, 王时茂, 孟钢, 方晓东. 钙钛矿太阳电池电子传输层与光吸收层的界面工程[J]. 化学进展, 2019, 31(5): 714-722.
[5] 阙亚萍, 翁坚, 胡林华, 戴松元. 二氧化钛在钙钛矿太阳电池中的应用[J]. 化学进展, 2016, 28(1): 40-50.
[6] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
[7] 张兴宏, 闵玉勤, 华正江. 含氮杂环结构的阻燃环氧树脂基电子材料[J]. 化学进展, 2014, 26(06): 1021-1031.
阅读次数
全文


摘要

锡基钙钛矿太阳电池光吸收材料