English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 800-810 DOI: 10.7536/PC181039 前一篇   后一篇

• •

微纳结构柔性压力传感器的制备及应用

熊耀旭1,2, 胡友根1,**(), 朱朋莉1,**(), 孙蓉1, 汪正平3   

  1. 1.中国科学院深圳先进技术研究院 深圳 518055
    2.中国科学院大学深圳先进技术学院 深圳 518055
    3.佐治亚理工学院 美国佐治亚州 30332
  • 收稿日期:2018-10-31 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 胡友根, 朱朋莉
  • 基金资助:
    国家自然科学基金项目(61701488); 国家自然科学基金项目(21571186); 深圳市基础研究项目(JCYJ20170818162548196); 国家地方联合工程实验室项目(2017-934); 中国科学院深圳先进技术研究院优秀青年基金项目(2016005)

Fabrication and Application of Flexible Pressure Sensors with Micro/Nano-Structures

Yaoxu Xiong1,2, Yougen Hu1,**(), Pengli Zhu1,**(), Rong Sun1, Ching-Ping Wong3   

  1. 1.Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    2.Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
    3.Georgia Institute of Technology, Georgia 30332, USA
  • Received:2018-10-31 Online:2019-06-15 Published:2019-04-26
  • Contact: Yougen Hu, Pengli Zhu
  • About author:
    ** E-mail: (Yougen Hu);
    (Pengli Zhu)
  • Supported by:
    National Natural Science Foundation of China(61701488); National Natural Science Foundation of China(21571186); Shenzhen Basic Research Plan(JCYJ20170818162548196); National and Local Joint Engineering Laboratory(2017-934); SIAT Innovation Program for Excellent Young Researchers(2016005)

柔性压力传感器是一种能够感知或监测外界压力变化的柔性电子器件,具备灵敏度高、形变灵活、制备工艺简单等特点,在可穿戴式电子产品、健康医疗、软体机器人、人机交互等新兴领域具有广泛而重要的应用。灵敏度、检测极限、响应时间与循环工作稳定性是柔性压力传感的核心性能指标,微纳结构的引入对提高柔性压力传感器综合性能具有重要作用。本文根据微纳结构的主要类型介绍了基于微纳结构的柔性压力传感器的最新研究进展,包括各种不同形貌微纳结构对柔性压力传感器性能的影响及其在柔性压力传感器中的应用,并对柔性压力传感器未来的发展提出展望。

As one of flexible electronic devices, flexible pressure sensors have many merits such as high sensitivity, excellent flexibility and facile fabrication process, and they have been widely used in many burgeoning fields including wearable devices, health care, soft robots, human-machine interaction, etc. Sensitivity, detection limit, response time and cyclic stability are the key parameters of the flexible pressure sensors, and the introduction of micro/nano- structures into flexible pressure sensors will play an important role in improving their comprehensive performance. Based on the main types of micro-nano structure, this review introduces the latest research progress of flexible pressure sensors, including the influence of various morphological micro-nano structures on the performance of flexible pressure sensors and their applications in flexible electronics. Moreover, the prospect of their future development is also outlined.

()
表1 电阻型与电容型柔性压力传感器比较
Table 1 Comparison of resistive and capacitive flexible pressure sensors
图1 微纳结构对压阻型和电容型传感器的影响示意图(a)无微纳结构压阻式柔性压力传感器;(b)微纳结构压阻式柔性压力传感器;(c)无微纳结构电容式柔性压力传感器;(d)微纳结构电容式柔性压力传感器
Fig. 1 Schematic diagram of the effect of micro/nano structure on piezoresistive and capacitive sensors (a) Piezoresistive flexible pressure sensor without micro/nano-structure; (b) Piezoresistive flexible pressure sensor with micro/nano-structure; (c) Capacitive flexible pressure sensor without micro/nano-structure; (d) Capacitive flexible pressure sensor without micro/nano-structure
图2 通过预拉伸的方法制备波浪形微结构电容式柔性压力传感器的流程图:(a)等离子体处理预拉伸的PDMS;(b)旋涂银纳米线;(c)释放预应力;(d)旋涂PDMS;(e)分离PDMS;(f)组装柔性压力传感器[39]
Fig. 2 Process of the capacitive-type flexible pressure sensors with wavy microstructure by pre-stretching method:(a) Treating the pre-stretched PDMS by plasma;(b) Spin-coating silver nanowires;(c) Release of pre-stress;(d) Spin-coating PDMS(e) Separating PDMS;(f) Schematic diagram of assembled flexible pressure sensor[39]
图3 压阻式压力传感器制作示意图和性能表征图(a)制作过程;(b) 金字塔结构传感器在拉伸时的微结构变化图;(c)压力检测;(d) 脉搏检测[44]
Fig. 3 Schematic diagram and performance characterization of piezoresistive pressure sensor(a) Fabrication process;(b) Schematic diagram of microstructure changed during stretching;(c) Pressure detection;(d) Pulse detection[44]
图4 自组装方法制备为凸点微结构示意图[20]
Fig. 4 Preparation of micro-convex structure by self-assembly method[20]
图5 柔性压力传感器示意图以及脉冲信号监测示意图(a) 传感器检测人体颈部脉搏的示意图;(b,c) 微结构SEM 图像;(d)颈部监测示意图;(e) 脉搏信号检测[48]
Fig. 5 Schematic diagram of flexible pressure sensor and pulse signal monitoring diagram(a) Schematic diagram of sensor detecting human neck pulse;(b, c) The SEM of microstructure;(d) Schematic diagram of the monitoring human neck;(e) Pulse signal detection[48]
图6 仿生微结构制备示意图(a)仿玫瑰花微结构的制作过程[64];(b)仿荷叶微结构的制作过程[67];(c)仿金榆叶微结构的制作过程[71]
Fig. 6 Preparation of bionic microstructure(a) Fabrication process of imitation rosette micro-structure[64];(b) Fabrication process of imitation lotus leaf micro-structure[67];(c) Fabrication process of imitation epipremnumaureum leaf micro-structure[71]
图7 RGO-PU-HT-P海绵压力传感器模型以及压缩变形的示意图[76]
Fig. 7 Pressure-sensing models of as-prepared RGO-PU-HT-P sponge pressure sensors and the contact area variation of fiber network with compressive deformation[76]
图8 柔性压力传感器的微结构表征及其应用(a)空心球结构示意图;(b)空心球的SEM和TEM图像;(c)柔性压力传感器在检测压力大小及其分布的应用[87]
Fig. 8 Microstructure characterization and application of flexible pressure sensor(a) Schematic diagram of hollow sphere structure;(b) SEM and TEM morphology of hollow sphere;(c) Application of flexible pressure sensor in detecting pressure and its distribution[87]
图9 具有多级微结构的压力传感器(a) 不同尺寸的金字塔微结构示意图;(b) SEM;(c) 不同尺寸微结构在压力下变形示意图及其对比[30]
Fig. 9 Pressure sensor with multi-size microstructure(a) Schematic diagram of pyramid microstructures of different sizes;(b) SEM;(c) Schematic diagram of deformation of different size microstructures under pressure and comparison[30]
[1]
Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X M . Adv. Mater., 2014,26:5310. https://www.ncbi.nlm.nih.gov/pubmed/24943999

doi: 10.1002/adma.201400633     URL     pmid: 24943999
[2]
Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W . Nat. Commun., 2014,5:3132. https://www.ncbi.nlm.nih.gov/pubmed/24495897

doi: 10.1038/ncomms4132     URL     pmid: 24495897
[3]
Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A . Nat. Mater., 2013,12:899. https://www.ncbi.nlm.nih.gov/pubmed/23872732

doi: 10.1038/nmat3711     URL     pmid: 23872732
[4]
Schwartz G, Tee B C K, Mei J, Appleton A L, Kim D H, Wang H, Bao Z . Nat. Commun., 2013,4:1859. https://www.ncbi.nlm.nih.gov/pubmed/23673644

doi: 10.1038/ncomms2832     URL     pmid: 23673644
[5]
Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwoediauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T . Nature, 2013,499:458. https://doi.org/10.1038/nature12314

doi: 10.1038/nature12314     URL    
[6]
Fan F R, Lin L, Zhu G, Wu W, Zhang R, Wang Z L . Nano Lett., 2012,12:3109. https://www.ncbi.nlm.nih.gov/pubmed/22577731

doi: 10.1021/nl300988z     URL     pmid: 22577731
[7]
Lipomi D J, Vosgueritchian M, Tee B C K, Hellstrom S L, Lee J A, Fox C H, Bao Z . Nat. Nanotechnol., 2011,6:788. https://www.ncbi.nlm.nih.gov/pubmed/22020121

doi: 10.1038/nnano.2011.184     URL     pmid: 22020121
[8]
Abraham W T, Adamson P B, Bourge R C, Aaron M F, Costanzo M R, Stevenson L W, Strickland W, Neelagaru S, Raval N, Krueger S, Weiner S, Shavelle D, Jeffries B, Yadav J S, Grp C T S . Lancet, 2011,377:658. https://www.ncbi.nlm.nih.gov/pubmed/21315441

doi: 10.1016/S0140-6736(11)60101-3     URL     pmid: 21315441
[9]
Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A . Nat. Mater., 2010,9:821. https://www.ncbi.nlm.nih.gov/pubmed/20835235

doi: 10.1038/nmat2835     URL     pmid: 20835235
[10]
Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z . Nature Materials, 2010,9:859. https://www.ncbi.nlm.nih.gov/pubmed/20835231

doi: 10.1038/nmat2834     URL     pmid: 20835231
[11]
Dahiya R S, Metta G, Valle M, Sandini G . LEEE Transactions on Robotics, 2010,26:1.
[12]
Wang X, Zhou J, Song J, Liu J, Xu N, Wang Z L . Nano Lett., 2006,6:2768. https://www.ncbi.nlm.nih.gov/pubmed/17163703

doi: 10.1021/nl061802g     URL     pmid: 17163703
[13]
Khang D Y, Jiang H Q, Huang Y, Rogers J A . Science, 2006,311:208. https://www.ncbi.nlm.nih.gov/pubmed/16357225

doi: 10.1126/science.1121401     URL     pmid: 16357225
[14]
Qian X, Su M, Li F, Song Y . Acta Chimica Sinica, 2016,74:565.
[15]
Li Y, Li Y, Su M, Li W, Li Y, Li H, Qian X, Zhang X, Li F, Song Y . Advanced Electronic Materials, 2017,3:1700253.
[16]
Su M, Huang Z, Li F, Zhang Z, Guo Y, Cai Z, Li Y, Li W, Qian X, Li Y, Zhang X, Song Y . Advanced Materials Technologies, 2018,3.
[17]
Trung T Q, Lee N E . Adv. Mater., 2016,28:4338. https://www.ncbi.nlm.nih.gov/pubmed/26840387

doi: 10.1002/adma.201504244     URL     pmid: 26840387
[18]
Han S, Kim M K, Wang B, Wie D S, Wang S D, Lee C H . Adv. Mater., 2016,28:10257. https://www.ncbi.nlm.nih.gov/pubmed/27714861

doi: 10.1002/adma.201603878     URL     pmid: 27714861
[19]
Zou M, Ma Y, Yuan X, Hu Y, Liu J, Zhong J . J. Semicond., 2018,39:011010.
[20]
Zhang Y, Hu Y G, Zhu P L, Han F, Zhu Y, Sun R, Wong C P . ACS Appl. Mater. Interfaces, 2017,9:35968.
[21]
Su M, Li F, Chen S, Huang Z, Qin M, Li W, Zhang X, Song Y . Adv. Mater., 2016,28:1369. https://www.ncbi.nlm.nih.gov/pubmed/26644086

doi: 10.1002/adma.201504759     URL     pmid: 26644086
[22]
Rogers J A, Someya T, Huang Y G . Science, 2010,327:1603. https://www.ncbi.nlm.nih.gov/pubmed/20339064

doi: 10.1126/science.1182383     URL     pmid: 20339064
[23]
Wang Y, Li Z, Xiao J . Journal of Electronic Packaging, 2016,138. https://www.ncbi.nlm.nih.gov/pubmed/27222634

doi: 10.1115/1.4032932     URL     pmid: 27222634
[24]
Si C, Wang Y, Zhang J, Gao H, Lv L, Han L, Zhang Z . Nano Energy, 2016,23:105.
[25]
Lou Z, Chen S, Wang L, Jiang K, Shen G . Nano Energy, 2016,23:7.
[26]
Amjadi M, Pichitpajongkit A, Lee S, Ryu S, Park I . ACS Nano, 2014,8:5154. https://www.ncbi.nlm.nih.gov/pubmed/24749972

doi: 10.1021/nn501204t     URL     pmid: 24749972
[27]
Oh J Y, Rondeau-Gagne S, Chiu Y C, Chortos A, Lissel F, Wang G N, Schroeder B C, Kurosawa T, Lopez J, Katsumata T, Xu J, Zhu C, Gu X, Bae W G, Kim Y, Jin L, Chung J W, Tok J B, Bao Z . Nature, 2016,539:411. https://www.ncbi.nlm.nih.gov/pubmed/27853213

doi: 10.1038/nature20102     URL     pmid: 27853213
[28]
Onorato J, Pakhnyuk V, Luscombe C K . Polymer Journal, 2017,49:41.
[29]
Xu S, Yan Z, Jang K I, Huang W, Fu H, Kim J, Wei Z, Flavin M, McCracken J, Wang R, Badea A, Liu Y, Xiao D, Zhou G, Lee J, Chung H U, Cheng H, Ren W, Banks A, Li X, Paik U, Nuzzo R G, Huang Y, Zhang Y, Rogers J A . Science, 2015,347:154. https://www.ncbi.nlm.nih.gov/pubmed/25574018

doi: 10.1126/science.1260960     URL     pmid: 25574018
[30]
Shu Y, Tian H, Yang Y, Li C, Cui Y, Mi W, Li Y, Wang Z, Deng N, Peng B, Ren T L . Nanoscale, 2015,7:8636. https://www.ncbi.nlm.nih.gov/pubmed/25901569

doi: 10.1039/c5nr01259g     URL     pmid: 25901569
[31]
Spain E, McCooey A, Dolan C, Bagshaw H, Leddy N, Keyes T E, Forster R J . Analyst, 2014,139:5504. https://www.ncbi.nlm.nih.gov/pubmed/25184761

doi: 10.1039/c4an01222d     URL     pmid: 25184761
[32]
Song J, Li J, Xu J, Zeng H . Nano Lett., 2014,14:6298. https://www.ncbi.nlm.nih.gov/pubmed/25302453

doi: 10.1021/nl502647k     URL     pmid: 25302453
[33]
Rathmell A R, Minh N, Chi M, Wiley B J . Nano Lett., 2012,12:3193. https://www.ncbi.nlm.nih.gov/pubmed/22642652

doi: 10.1021/nl301168r     URL     pmid: 22642652
[34]
Rathmell A R, Bergin S M, Hua Y L, Li Z Y, Wiley B J . Adv. Mater., 2010,22:3558. https://www.ncbi.nlm.nih.gov/pubmed/20512817

doi: 10.1002/adma.201000775     URL     pmid: 20512817
[35]
Jiang H Q, Sun Y G, Rogers J A, Huang Y G . Appl. Phys. Lett., 2007,90:3.
[36]
Yang C F, Li L L, Zhao J X, Wang J J, Xie J X, Cao Y P, Xue M Q, Lu C H . ACS Appl. Mater. Interfaces, 2018,10:25811.
[37]
Kou H, Zhang L, Tan Q, Liu G, Lv W, Lu F, Dong H, Xiong J . Sensors and Actuators a -Physical, 2018,277:150.
[38]
Kim H, Lee S W, Joh H, Seong M, Lee W S, Kang M S, Pyo J B, Oh S J . ACS Appl. Mater. Interfaces, 2018,10:1389.
[39]
Shuai X T, Zhu P L, Zeng W J, Hu Y G, Liang X W, Zhang Y, Sun R, Wong C P . ACS Appl. Mater. Interfaces, 2017,9:26314.
[40]
Cui J, Zhang B, Duan J, Guo H, Tang J . Sensors, 2016,16.
[41]
Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M . Adv. Mater., 2016,28:9491. https://www.ncbi.nlm.nih.gov/pubmed/27629525

doi: 10.1002/adma.201603395     URL     pmid: 27629525
[42]
Schwartz G, Tee B C K, Mei J G, Appleton A L, Kim D H, Wang H L, Bao Z N . Nat. Commun., 2013,4:8.
[43]
Zhu B W, Niu Z Q, Wang H, Leow W R, Wang H, Li Y G, Zheng L Y, Wei J, Huo F W, Chen X D . Small, 2014,10:3625. https://www.ncbi.nlm.nih.gov/pubmed/24895228

doi: 10.1002/smll.201401207     URL     pmid: 24895228
[44]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I . Adv. Mater., 2014,26:3451. https://www.ncbi.nlm.nih.gov/pubmed/24536023

doi: 10.1002/adma.201305182     URL     pmid: 24536023
[45]
Park J, Lee Y, Hong J, Ha M, Jung Y D, Lim H, Kim S Y, Ko H . ACS Nano, 2014,8:4689. https://www.ncbi.nlm.nih.gov/pubmed/24592988

doi: 10.1021/nn500441k     URL     pmid: 24592988
[46]
Wang Z, Zhang L, Liu J, Jiang H, Li C . Nanoscale, 2018,10:10691. https://www.ncbi.nlm.nih.gov/pubmed/29845159

doi: 10.1039/c8nr01495g     URL     pmid: 29845159
[47]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y . Nat. Mater., 2012,11:795. https://www.ncbi.nlm.nih.gov/pubmed/22842511

doi: 10.1038/nmat3380     URL     pmid: 22842511
[48]
Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H, Bao Z A . Adv. Mater., 2015,27:634. https://www.ncbi.nlm.nih.gov/pubmed/25358966

doi: 10.1002/adma.201403807     URL     pmid: 25358966
[49]
Shao Q, Niu Z Q, Hirtz M, Jiang L, Liu Y J, Wang Z H, Chen X D . Small, 2014,10:1466. https://www.ncbi.nlm.nih.gov/pubmed/24851243

doi: 10.1002/smll.201303601     URL     pmid: 24851243
[50]
Liu H, Li Y, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z . J. Mater. Chem. C, 2016,4:157.
[51]
Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L . Adv. Mater., 2014,26:2659. https://www.ncbi.nlm.nih.gov/pubmed/24677245

doi: 10.1002/adma.201305064     URL     pmid: 24677245
[52]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z . Adv. Funct. Mater., 2014,24:5427.
[53]
Xiao F, Li Y, Gao H, Ge S, Duan H . Biosensors & Bioelectronics, 2013,41:417. https://www.ncbi.nlm.nih.gov/pubmed/23036772

doi: 10.1016/j.bios.2012.08.062     URL     pmid: 23036772
[54]
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z . Adv. Mater., 2013,25:5997. https://www.ncbi.nlm.nih.gov/pubmed/24151185

doi: 10.1002/adma.201302240     URL     pmid: 24151185
[55]
Tee B C K, Wang C, Allen R, Bao Z . Nat. Nanotechnol., 2012,7:825. https://www.ncbi.nlm.nih.gov/pubmed/23142944

doi: 10.1038/nnano.2012.192     URL     pmid: 23142944
[56]
Jung I, Xiao J, Malyarchuk V, Lu C, Li M, Liu Z, Yoon J, Huang Y, Rogers J A . Proc. Natl. Acad. Sci. U. S. A., 2011,108:1788. https://www.ncbi.nlm.nih.gov/pubmed/21245356

doi: 10.1073/pnas.1015440108     URL     pmid: 21245356
[57]
Akle B J, Bennett M D, Leo D J, Wiles K B, McGrath J E . Journal of Materials Science, 2007,42:7031.
[58]
Biddiss E, Chau T . Medical Engineering & Physics, 2006,28:568. https://www.ncbi.nlm.nih.gov/pubmed/16260170

doi: 10.1016/j.medengphy.2005.09.009     URL     pmid: 16260170
[59]
Cornell B A, BraachMaksvytis V L B, King L G, Osman P D J, Raguse B, Wieczorek L, Pace R J . Nature, 1997,387:580. https://www.ncbi.nlm.nih.gov/pubmed/9177344

doi: 10.1038/42432     URL     pmid: 9177344
[60]
Liu L, Huang Y, Li F, Ma Y, Li W, Su M, Qian X, Ren W, Tang K, Song Y . Chemical Communications, 2018,54:4810. https://www.ncbi.nlm.nih.gov/pubmed/29693084

doi: 10.1039/c8cc02339e     URL     pmid: 29693084
[61]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K . Adv. Mater., 2016,28:5300. https://www.ncbi.nlm.nih.gov/pubmed/27159832

doi: 10.1002/adma.201600408     URL     pmid: 27159832
[62]
Su B, Gong S, Ma Z, Yap L W, Cheng W . Small, 2015,11:1886. https://www.ncbi.nlm.nih.gov/pubmed/25504745

doi: 10.1002/smll.201403036     URL     pmid: 25504745
[63]
Wang X, Gu Y, Xiong Z, Cui Z, Zhang T . Adv. Mater., 2014,26:1336. https://www.ncbi.nlm.nih.gov/pubmed/24347340

doi: 10.1002/adma.201304248     URL     pmid: 24347340
[64]
Wei Y, Chen S, Lin Y, Yang Z M, Liu L . J. Mater. Chem. C, 2015,3:9594.
[65]
Wan Y, Qiu Z, Huang J, Yang J, Wang Q, Lu P, Yang J, Zhang J, Huang S, Wu Z, Guo C F . Small, 2018,14:1801657.
[66]
Li T, Luo H, Qin L, Wang X, Xiong Z, Ding H, Gu Y, Liu Z, Zhang T . Small, 2016,12:5042. https://www.ncbi.nlm.nih.gov/pubmed/27323288

doi: 10.1002/smll.201600760     URL     pmid: 27323288
[67]
Wan Y, Qiu Z, Hong Y, Wang Y, Zhang J, Liu Q, Wu Z, Guo C F . Advanced Electronic Materials, 2018,4:1700586. http://doi.wiley.com/10.1002/aelm.v4.4

doi: 10.1002/aelm.v4.4     URL    
[68]
Shi J D, Wang L, Dai Z H, Zhao L Y, Du M D, Li H B, Fang Y . Small, 2018,14:7.
[69]
Park J, Kim M, Lee Y, Lee H S, Ko H . Sci. Adv., 2015,1:13.
[70]
Cao Y, Li T, Gu Y, Luo H, Wang S, Zhang T . Small, 2018,14.
[71]
Xia K L, Wang C Y, Jian M Q, Wang Q, Zhang Y Y . Nano Res., 2018,11:1124.
[72]
Liu H, Dong M, Huang W, Gao J, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z . J. Mater. Chem. C, 2017,5:73.
[73]
Wei Y, Chen S, Yuan X, Wang P, Liu L . Adv. Funct. Mater., 2016,26:5078.
[74]
Wei Y, Chen S, Li F, Lin Y, Zhang Y, Liu L . ACS Appl. Mater. Interfaces, 2015,7:14182.
[75]
Wang J, Jiu J, Nogi M, Sugahara T, Nagao S, Koga H, He P, Suganuma K . Nanoscale, 2015,7:2926. https://www.ncbi.nlm.nih.gov/pubmed/25588044

doi: 10.1039/c4nr06494a     URL     pmid: 25588044
[76]
Yao H B, Ge J, Wang C F, Wang X, Hu W, Zheng Z J, Ni Y, Yu S H . Adv. Mater., 2013,25:6692. https://www.ncbi.nlm.nih.gov/pubmed/24027108

doi: 10.1002/adma.201303041     URL     pmid: 24027108
[77]
Vandeparre H, Watson D, Lacour S P . Appl. Phys. Lett., 2013,103:204103. http://aip.scitation.org/doi/10.1063/1.4832416

doi: 10.1063/1.4832416     URL    
[78]
Yu B Z, Long N, Moussy Y, Moussy F . Biosensors & Bioelectronics, 2006,21:2275. https://www.ncbi.nlm.nih.gov/pubmed/16330201

doi: 10.1016/j.bios.2005.11.002     URL     pmid: 16330201
[79]
Cao M, Wang M, Li L, Qiu H, Padhiar M A, Yang Z . Nano Energy, 2018,50:528.
[80]
Zhao S, Guo L, Li J, Li N, Zhang G, Gao Y, Li J, Cao D, Wang W, Jin Y, Sun R, Wong C P . ACS Appl. Mater. Interfaces, 2017,9:12147.
[81]
Zhao S, Guo L, Li J, Li N, Zhang G, Gao Y, Li J, Cao D, Wang W, Jin Y, Sun R, Wong C P . Small, 2017,13:1700944. http://doi.wiley.com/10.1002/smll.v13.28

doi: 10.1002/smll.v13.28     URL    
[82]
Zhang H, Liu N, Shi Y, Liu W, Yue Y, Wang S, Ma Y, Wen L, Li L, Long F, Zou Z, Gao Y . ACS Appl. Mater. Interfaces, 2016,8:22374.
[83]
Zhao S, Gao Y, Zhang G, Deng L, Li J, Sun R, Wong C P . Carbon, 2015,86:225.
[84]
He W, Li G, Zhang S, Wei Y, Wang J, Li Q, Zhang X . ACS Nano, 2015,9:4244. https://www.ncbi.nlm.nih.gov/pubmed/25811954

doi: 10.1021/acsnano.5b00626     URL     pmid: 25811954
[85]
Huang Y, He X, Gao L, Wang Y, Liu C, Liu P . Journal of Materials Science-Materials in Electronics, 2017,28:9495.
[86]
Dong X, Wei Y, Chen S, Lin Y, Liu L, Li J . Composites Science and Technology, 2018,155:108.
[87]
Pan L J, Chortos A, Yu G H, Wang Y Q, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z N . Nat. Commun., 2014,5:8.
[88]
Lou Z, Chen S, Wang L L, Shi R L, Li L, Jiang K, Chen D, Shen G Z . Nano Energy, 2017,38:28.
[89]
Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z . Nat. Commun., 2014,5:3002. https://www.ncbi.nlm.nih.gov/pubmed/24389734

doi: 10.1038/ncomms4002     URL     pmid: 24389734
[90]
Cheng W, Wang J, Ma Z, Yan K, Wang Y M, Wang H T, Li S, Li Y, Pan L J, Shi Y . IEEE Electron Device Lett., 2018,39:288.
[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[3] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[4] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[5] 段树铭, 任晓辰*, 张小涛, 程姗姗, 胡文平*. 丝网印刷柔性电子器件[J]. 化学进展, 2018, 30(4): 429-438.
[6] 谢祥, 吕文珍, 陈润锋, 黄维. 有机太阳能电池给受体材料界面的微纳结构调控[J]. 化学进展, 2016, 28(11): 1591-1600.
[7] 安光明, 凌世全, 王智伟, 栾琳, 吴天准. 基于微纳结构液体灌注的超滑表面的制备与应用[J]. 化学进展, 2015, 27(12): 1705-1713.