English
新闻公告
More
化学进展 2019, Vol. 31 Issue (6): 906-928 DOI: 10.7536/PC181005 前一篇   

• •

含硼有机发光二极管材料与器件

杨智文1, 詹迎迎1, 籍少敏1,2, 杨庆旦1, 李琦1, 霍延平1,2,*()   

  1. 1.广东工业大学轻工化工学院 广州 510006
    2.中国科学院上海有机化学研究所 有机氟化学中国科学院重点实验室 上海 200032
  • 收稿日期:2018-10-08 出版日期:2019-06-15 发布日期:2019-04-26
  • 通讯作者: 霍延平
  • 基金资助:
    国家自然科学基金项目(61671162); 广东省科技计划项目(2016A010103031); 广东省教育厅重点项目(2017KZDXM025)

Boron-Containing Organic Light-Emitting Diodes: Materials and Devices

Zhiwen Yang1, Yingying Zhan1, Shaomin Ji1,2, Qingdan Yang1, Qi Li1, Yanping Huo1,2,*()   

  1. 1.School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2.Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received:2018-10-08 Online:2019-06-15 Published:2019-04-26
  • Contact: Yanping Huo
  • About author:
  • Supported by:
    National Natural Science Foundation of China(61671162); Technology Plan of Guangdong Province(2016A010103031); Key Project of Educational Commission of Guangdong Province, China(2017KZDXM025)

硼元素因其独特的价层电子结构——价电子数少于价轨道数,而拥有一个空的p轨道,其三配位化合物既可以和邻近的π体系产生有效共轭,又可以容易地与路易斯碱发生络合,形成四配位化合物。将硼元素引入传统的光电功能分子当中,往往能给整个体系带来独特的光电性质,这已成为新型有机光电功能分子设计的重要思路。本文围绕硼元素的三配位化合物和四配位化合物,从分子设计理念、化合物光电性质、相关器件的结构与效率等方面对含硼有机光电功能分子及其器件的研究进展进行综述,并对其未来发展做出展望。

Due to its unique valence electron distribution characteristics that the number of valence electron is less than the number of valence orbital, boron has an empty p orbit. It makes its tri-coordinated compounds can be effectively conjugated with the adjacent π system, and also can easily complex with the Lewis base to form a tetra-coordinated compound. The introduction of boron into traditional photoelectric functional molecules always brings unique photoelectric properties to the whole system, which has become an important idea for the design of new organic photoelectric functional molecules. In this paper, developments on tri-coordinated compounds and tetra-coordinated compounds of boron and performance of their OLED devices are reviewed around the aspects of molecular design, photoelectric properties of compounds, device structure and efficiency. The future development is also discussed.

()
图1 典型的三层OLED器件结构
Fig. 1 Typical structure of triple-layer OLED
图2 各代OLED器件发光机理示意图
Fig. 2 Luminescence Mechanism of various generations of OLEDs
图3 含硼有机光电功能分子设计原理
Fig. 3 Principles of designing organic boron-containing photoelectric functional molecules
表1 化合物1 ~ 3部分OLED器件的性能
Table 1 Performance of OLEDs using compounds 1~3
表2 以化合物5~7为空穴阻挡层的OLED器件的性能
Table 2 Performance of OLEDs using compound 5 ~ 7 as HBL
表3 化合物11 ~18的OLED器件性能
Table 3 Performance of OLEDs using compounds 11 ~18
表4 化合物19 ~23的OLED器件性能
Table 4 Performance of OLEDs using compounds 19 ~23
表5 化合物24 ~ 40作为发光层的OLED器件性能
Table 5 Performance of OLEDs using compounds 24 ~ 40 as EML
表6 分子41 ~43作为发光层的 OLED器件性能
Table 6 Performance of OLEDs using compounds 41 ~43 as EML
表7 化合物45 ~ 56的部分OLED器件性能
Table 7 Performance of OLEDs using compounds 45 ~ 56
表8 化合物56 ~ 72的OLED器件性能
Table 8 Performance of OLEDs using compounds 56 ~ 72
表9 化合物73 ~ 78的OLED器件性能
Table 9 Performance of OLEDs using compounds 73 ~ 78
表10 化合物79 ~ 81的OLED器件性能
Table 10 Performance of OLEDs using compounds 79 ~ 81
表11 化合物82 ~ 85的OLED器件性能
Table 11 Performance of OLEDs using compounds 82 ~ 85
表12 化合物86 ~ 89的OLED器件性能
Table 12 Performance of OLEDs using compounds 86 ~ 89
表13 化合物90 ~ 94的部分OLED器件性能
Table 13 Performance of OLEDs using compounds 90 ~ 94
表14 化合物96 ~ 122的部分OLED器件性能
Table 14 Performance of OLEDs using compounds 96 ~ 122
表15 化合物125 ~ 128的OLED器件性能
Table 15 Performance of OLEDs using compounds 125 ~ 128
[1]
Im Y, Byun S Y, Kim J H, Lee D R, Oh C S, Yook K S, Lee J Y . Adv. Funct. Mater., 2017,27(13):1606458. https://www.ncbi.nlm.nih.gov/pubmed/29046623

doi: 10.1002/adfm.201605094     URL     pmid: 29046623
[2]
Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R . Nat. Rev. Mater., 2018,3:18020.
[3]
Cho J, Park J H, Kim J K, Schubert E F . Laser Photonics Rev., 2017,11(2):1600147.
[4]
林丹燕(Lin D Y), 宋森川(Song S C), 陈智勇(Chen Z Y), 郭鹏然(Guo P R), 陈江韩(Chen J H), 史华红(Shi H H), 麦裕良(Mai Y L), 宋化灿(Song H C) . 有机化学 (Chinese Journal of Organic Chemistry), 2018,38(1):103.
[5]
谭继华(Tan J H), 霍延平(Huo Y P), 蔡宁(Cai N), 籍少敏(Ji S M), 李宗植(Li Z Z), 张力(Zhang L) . 有机化学 (Chinese Journal of Organic Chemistry), 2017,37(10):2457.
[6]
蔡勤山(Cai Q S), 王世荣(Wang S R), 肖毅(Xiao Y), 李祥高(Li X G) . 化学进展 (Progress in Chemistry), 2018,30(8):1202.
[7]
Pope M, Kallmann H P, Magnante P . J. Chem. Phys., 1963,30(8):2042.
[8]
Tang C W, VanSlyke S A . Appl. Phys. Lett., 1987,51:913.
[9]
Turro N J, Ramamurthy V, Scaiano J C . Photochem. Photobiol., 2017,11(2):1600147.
[10]
Forrest S R, Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E . Nature, 1998,395:151.
[11]
Kozhevnikov V N, Zheng Y, Clough M, Al-Attar H A, Griffiths G C, Abdullah K, Monkman A P . Chem. Mater., 2013,25(11):2352.
[12]
Chen W C, Lee C S, Tong Q X . J. Mater. Chem. C, 2015,3(42):10957.
[13]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C . Adv. Mater., 2009,21:4802. https://www.ncbi.nlm.nih.gov/pubmed/21049498

doi: 10.1002/adma.200900983     URL     pmid: 21049498
[14]
Zhang Q S, Li B, Huang S P, Nomura H, Tanaka H, Adachi C . Nat. Photonics., 2014,8:326.
[15]
Sato K, Shizu K, Yoshimura K, Kawada A, Miyazaki H, Adachi C . Phys. Rev. Lett., 2013,110:247401. https://www.ncbi.nlm.nih.gov/pubmed/25165959

doi: 10.1103/PhysRevLett.110.247401     URL     pmid: 25165959
[16]
Li W J, Pan Y Y, Xiao R, Peng Q M, Zhang S T, Ma D G, Li F, Shen F Z, Wang Y H, Yang B, Ma Y G . Adv. Funct. Mater., 2014,24(11):1609. http://doi.wiley.com/10.1002/adfm.v24.11

doi: 10.1002/adfm.v24.11     URL    
[17]
Li W J, Pan Y Y, Yao L, Liu H C, Zhang S T, Wang C, Shen F Z, Lu P, Yang B, Ma, Y . Adv. Opt. Mater., 2014,2(9):892. 16e820db-a08d-4cba-b05c-b394ae101f76http://dx.doi.org/10.1002/adom.201400154

doi: 10.1002/adom.201400154     URL    
[18]
Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H . Nat. Photonics., 2018,12(4):235.
[19]
Nagata R, Nakanotani H, Potscavage W J . Adachi C. Adv. Mater., 2018,30(33):1801484.
[20]
张佐伦(Zhang Z L) . 吉林大学博士论文( Doctoral Dissertation of Jilin University), 2010.
[21]
孙作榜(Sun Z B) . 山东大学硕士论文( Master Dissertation of Shandong University), 2017.
[22]
Ji L, Griesbeck S, Marder T B . Chem. Sci., 2017,8(2):846. https://www.ncbi.nlm.nih.gov/pubmed/28572897

doi: 10.1039/c6sc04245g     URL     pmid: 28572897
[23]
Yamaguchi S, Akiyama S, Tamao K . J. Am. Chem. Soc., 2001,123(46):11372. https://www.ncbi.nlm.nih.gov/pubmed/11707112

doi: 10.1021/ja015957w     URL     pmid: 11707112
[24]
王保林(Wang B L) . 兰州大学博士论文( Doctoral Dissertation of Jilin University), 2014.
[25]
Noda T, Shirota Y . J. Am. Chem. Soc., 1998,120(37):9714. https://pubs.acs.org/doi/10.1021/ja9817343

doi: 10.1021/ja9817343     URL    
[26]
Noda T, Ogawa H, Shirota Y . Adv. Mater., 1999,11(4):283.
[27]
Kinoshita M, Shirota Y . Chem. Lett., 2001,30(7):614.
[28]
Kinoshita M, Kita H, Shirota Y . Adv. Funct. Mater., 2002,12(11/12):780.
[29]
Mazzeo M, Vitale V, Della Sala F, Anni M, Barbarella G, Favaretto L, Sotgiu G, Cingolani R, Gigli G . Adv. Mater., 2005,17(1):34.
[30]
Ma Y G, Zhang H Y, Shen J C, Che C M . J. Am. Chem. Soc., 2001,123(46):11372. https://www.ncbi.nlm.nih.gov/pubmed/11707112

doi: 10.1021/ja015957w     URL     pmid: 11707112
[31]
刘磊(Liu L) . 南开大学博士论文( Doctoral Dissertation of Nankai University), 2010.
[32]
唐佳(Liu L) . 吉林大学硕士论文( Master Dissertation of Jilin University), 2015.
[33]
Zhou G J, Ho C L, Wong W Y, Wang Q, Ma D G, Wang L X, Lin Z Y, Marder D B, Beeby A . Adv. Funct. Mater., 2008,18(3):499.
[34]
Hudson Z M, Sun C, Helander M G, Amarne H, Lu Z H, Wang S . Adv. Funct. Mater., 2010,20(20):3426.
[35]
Hudson Z M, Helander M G, Lu Z H, Wang S . Chem. Commun., 2011,47(2):755. https://www.ncbi.nlm.nih.gov/pubmed/21069240

doi: 10.1039/c0cc04014b     URL     pmid: 21069240
[36]
Hudson Z M, Wang S . Dalton Trans., 2011,40(31):7805. https://www.ncbi.nlm.nih.gov/pubmed/21603687

doi: 10.1039/c1dt10292c     URL     pmid: 21603687
[37]
Wang Z B, Helander M G, Hudson Z M, Qiu J, Wang S N, Lu Z H . Appl. Phys. Lett., 2011,98(21):95.
[38]
Hudson Z M, Sun C, Helander M G, Chang Y L, Lu Z H, Wang S N . J. Am. Chem. Soc., 2012,134(34):13930. https://www.ncbi.nlm.nih.gov/pubmed/22891995

doi: 10.1021/ja3048656     URL     pmid: 22891995
[39]
Yang X L, Guo H R, Liu B A, Zhao J, Zhou G J, Wu Z X, Wong W Y . Adv. Mater., 2018,5(5):1701067.
[40]
Shirota Y, Kinoshita M, Noda T, Okumoto K, Ohara T . J. Am. Chem. Soc., 2000,122(44):11021.
[41]
Doi H, Kinoshita M, Okumoto K, Shirota Y .Chem. Mater., 2003,15(5):1080.
[42]
Suzuki K, Kubo S, Shizu K, Fukushima T, Wakamiya A, Murata Y, Adachi C, Kaji H . Angew. Chem. Int. Ed., 2015,54(50):15231. https://www.ncbi.nlm.nih.gov/pubmed/26563845

doi: 10.1002/anie.201508270     URL     pmid: 26563845
[43]
Numata M, Yasuda T, Adachi C . Chem. Commun., 2015,51(46):9443. https://www.ncbi.nlm.nih.gov/pubmed/25959457

doi: 10.1039/c5cc00307e     URL     pmid: 25959457
[44]
Kitamoto Y, Namikawa T, Ikemizu D, Miyata Y, Suzuki T, Kita H, Sato T, Oi S . J. Mater. Chem. C, 2015,3(35):9122.
[45]
Kitamoto Y, Namikawa T, Suzuki T, Miyata Y, Kita H, Sato T, Oi S . Org. Electron., 2016,34:208.
[46]
Kitamoto Y, Namikawa T, Suzuki T, Miyata Y, Kita H, Sato T, Oi S . Tetrahedron Lett., 2016,57(44):4914.
[47]
Chen X L, Jia J H, Yu R, Liao J Z, Yang M X, Lu C Z . Angew. Chem. Int. Ed., 2017,56(47):15006. https://www.ncbi.nlm.nih.gov/pubmed/28990260

doi: 10.1002/anie.201709125     URL     pmid: 28990260
[48]
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J P, Ono Y H, Ikuta T . Adv. Mater., 2016,28(14):2777. https://www.ncbi.nlm.nih.gov/pubmed/26865384

doi: 10.1002/adma.201505491     URL     pmid: 26865384
[49]
Liang X, Yan Z P, Han H B, Wu Z G, Zheng Y X, Meng H, Zuo J L, Huang W . Angew. Chem. Int. Ed., 2018,130(35):11486.
[50]
Li D, Zhang H Y, Wang Y . Chem. Soc. Rev., 2013,42(21):8416. https://www.ncbi.nlm.nih.gov/pubmed/23900268

doi: 10.1039/c3cs60170f     URL     pmid: 23900268
[51]
张振宇(Zhang Z Y) . 吉林大学博士论文( Doctoral Dissertation of Jilin University), 2016.
[52]
秦研研(Qin Y Y), 许文娟(Xu W J), 胡长永(Hu C Y), 刘淑娟(Liu S J), 赵强(Zhao Q) . 无机化学学报 (Chinese Journal of inorganic Chemistry), 2017,33(10):1705.
[53]
Wu Q, Esteghamatian M, Hu N X, Popovic Z, Enright G, Tao Y, D’Iorio M, Wang S N . Chem. Mater., 2000,12(1):79.
[54]
Anderson S, Weaver M S, Hudson A J . Synth. Met., 2000,111:459.
[55]
Qin Y, Kiburu I, Shah S, Jäkle F . Org. Lett., 2006,8(23):5227. https://www.ncbi.nlm.nih.gov/pubmed/17078684

doi: 10.1021/ol0619664     URL     pmid: 17078684
[56]
Kappaun S, Rentenberger S, Pogantsch A, Zojer E, Mereiter K, Trimmel G, Saf R, Möller K C, Stelzer F, Slugovc C . Chem. Mater., 2006,18(15):3539.
[57]
Li Y Q, Liu Y, Bu W M, Guo J H, Wang Y . Chem. Commun., 2000(16):1551.
[58]
Zhang H Y, Huo C, Ye K Q, Zhang P, Tian W J, Wang Y . Inorg. Chem., 2006,45(7):2788. https://www.ncbi.nlm.nih.gov/pubmed/16562936

doi: 10.1021/ic051881j     URL     pmid: 16562936
[59]
Zhang H Y, Huo C, Zhang J Y, Zhang P, Tian W J, Wang Y . Chem. Commun., 2006(3):281.
[60]
Zhang Z L, Yao D D, Zhao S S, Gao H Z, Fan Y, Su Z M, Wang Y . Dalton Trans., 2010,39(21):5123. https://www.ncbi.nlm.nih.gov/pubmed/20407672

doi: 10.1039/b925608c     URL     pmid: 20407672
[61]
Li D, Zhang H Y, Wang C G, Huang S, Guo J H, Wang Y . J. Mater. Chem., 2012,22(10):4319.
[62]
Zhang Z Y, Zhang Z L, Ye K Q, Zhang J Y, Zhang H Y, Wang Y . Dalton Trans., 2015,44(32):14436. https://www.ncbi.nlm.nih.gov/pubmed/26202879

doi: 10.1039/c5dt02093j     URL     pmid: 26202879
[63]
张振宇(Zhang Z Y), 李婉君(Li W J), 叶开其(Ye K Q), 张红雨(Zhang H Y) . 化学学报 (Acta Chimica Sinica), 2016,74:179.
[64]
Zhang Z L, Bi H, Zhang Y, Yao D D, Gao H Z, Fan Y, Zhang H Y, Wang Y, Wang Y P, Chen Z Y, Ma D . Inorg. Chem., 2009,48(15):7230. https://www.ncbi.nlm.nih.gov/pubmed/19555088

doi: 10.1021/ic900673s     URL     pmid: 19555088
[65]
Hassan A, Wang S N, Chem. Commun ., 1998(2):211.
[66]
Wu Q G, Esteghamatian M, Hu N X, Popovic Z, Enright G, Breeze S R, Wang S N . Angew. Chem. Int. Ed., 1999,38(7):985. https://www.ncbi.nlm.nih.gov/pubmed/29711864

doi: 10.1002/(SICI)1521-3773(19990401)38:7【-逻*辑*与-】lt;985::AID-ANIE985【-逻*辑*与-】gt;3.0.CO;2-C     URL     pmid: 29711864
[67]
Liu S F, Wu Q G, Schmider H L, Aziz H, Hu N X, Popović Z, Wang S N . J. Am. Chem. Soc., 2000,122(15):3671.
[68]
Liu Q D, Mudadu M S, Schmider H, Thummel R, Tao Y, Wang S N . Organometallics., 2002,21(22):4743.
[69]
Liu Q D, Mudadu M S, Thummel R, Tao Y, Wang S N . Adv. Funct. Mater., 2005,15(1):143. http://doi.wiley.com/10.1002/%28ISSN%291616-3028

doi: 10.1002/(ISSN)1616-3028     URL    
[70]
Chen H Y., Chi Y, Liu C S, Yu J K, Cheng Y M, Chen K S, Chou P T, Peng S M, Lee G H, Carty A J, Yeh S J, Chen C T . Adv. Funct. Mater., 2005,15(4):567.
[71]
Chen T R, Chien R H, Yeh A, Chen J D . J. Organomet. Chem., 2006,691(9):1998.
[72]
Suresh D, Gomes C S, Gomes P T, Di Paolo R E, Maçanita A L, Calhorda M J, Duarte M T . Dalton Trans., 2012,41(28):8502. https://www.ncbi.nlm.nih.gov/pubmed/22552694

doi: 10.1039/c2dt30487b     URL     pmid: 22552694
[73]
Suresh D, Gomes C S, Lopes P S, Figueira C A, Ferreira B, Gomes P T, Di Paolo R E, Maçanita A L, Duarte M T, Charas A, Morgado J, Vila-Viçosa D, Calhorda M J . Chem. -Eur. J., 2015,21(25):9133. https://www.ncbi.nlm.nih.gov/pubmed/25965317

doi: 10.1002/chem.201500109     URL     pmid: 25965317
[74]
Loudet A, Burgess K . Handbook of Porphyrin Science(Volume 8). 2010. 1.
[75]
Boens N, Leen V, Dehaen W . Chem. Soc. Rev., 2012,41(3):1130. https://www.ncbi.nlm.nih.gov/pubmed/21796324

doi: 10.1039/c1cs15132k     URL     pmid: 21796324
[76]
Guo Z, Park S, Yoon J, Shin I . Chem. Soc. Rev., 2014,43(1):16. https://www.ncbi.nlm.nih.gov/pubmed/24052190

doi: 10.1039/c3cs60271k     URL     pmid: 24052190
[77]
池雨(Chi Y), 高云玲(Gao Y L), 潘勇(Pan Y), 刘孟(Liu M),赵辉(Zhao H) . 化工进展 (Chemical Industrial and Engineering Progress), 2018,37(3):1137.
[78]
Chapran M, Angioni E, Findlay N J, Breig B, Cherpak V, Stakhira P, Tuttle T, Volyniuk D, Grazulevicius J V, Nastishin Y A, Lavrentovich O D, Skabara P J . ACS Appl. Mater. Inter., 2017,9(5):4750. https://www.ncbi.nlm.nih.gov/pubmed/28078885

doi: 10.1021/acsami.6b13689     URL     pmid: 28078885
[79]
Zampetti A, Minotto A, Squeo B M, Gregoriou V G, Allard S, Scherf U, Chochos C L, Cacialli F . Sci. Rep., 2017,7(1):1611. https://www.ncbi.nlm.nih.gov/pubmed/28487525

doi: 10.1038/s41598-017-01785-2     URL     pmid: 28487525
[80]
D’Aléo A, Sazzad M H, Kim D H, Choi E Y, Wu J W, Canard G, Fages F, Ribierre J C, Adachi C . Chem Commun., 2017,53(52):7003. https://www.ncbi.nlm.nih.gov/pubmed/28513655

doi: 10.1039/c7cc01786c     URL     pmid: 28513655
[81]
Kim D H, D’Aléo A, Chen X K, Sandanayaka A D S, Yao D D, Zhao L, Komino T, Zaborova E, Canard G, Tsuchiya Y, Choi E, Wu J W, Fages F, Brédas J L, Ribierre J C, Adachi C . Nat. Photonics., 2018,12(2):98.
[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[5] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[6] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[11] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[12] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[13] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
阅读次数
全文


摘要

含硼有机发光二极管材料与器件