English
新闻公告
More
化学进展 2019, Vol. 31 Issue (8): 1129-1135 DOI: 10.7536/PC190201 前一篇   后一篇

• •

用于细胞检测的微电极传感器设计及传感分析

夏也1,2,4, 苏喜1,2,4, 陈李1,3,4,5, 李顺波1,3,4,5,**(), 徐溢1,2,3,4,5,**()   

  1. 1. 重庆大学新型微纳器件与系统技术重点学科实验室 重庆 400030
    2. 重庆大学化学化工学院 重庆 400030
    3. 重庆大学光电技术与系统教育部重点实验室 重庆 400030
    4. 重庆大学微纳系统与新材料国际联合研发中心 重庆 400030
    5. 重庆大学光电工程学院 重庆 400030
  • 收稿日期:2019-02-01 出版日期:2019-08-15 发布日期:2019-04-12
  • 通讯作者: 李顺波, 徐溢
  • 基金资助:
    国家自然科学基金项目(61971074); 国家自然科学基金项目(61904021); 重庆市人工智能技术创新重大主题专项项目(CSTC2017RGZN-ZDYFX0019); 重庆市技术创新与应用示范重大主题专项项目(CSTC2018JSZX-CYZTZX0216); 中央高校基本科研业务费专项高校基金(2019CDYGYB003)

Design and Application of Electrochemical Sensor in Cell Detection

Ye Xia1,2,4, Xi Su1,2,4, Li Chen1,3,4,5, Shunbo Li1,3,4,5,**(), Yi Xu1,2,3,4,5,**()   

  1. 1. Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400030, China
    2. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
    3. Key Laboratory for Optoelectronic Technology & System of Ministry of Education, Chongqing University, Chongqing 400030, China
    4. International R & D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China
    5. School of Optoelectronics Engineering, Chongqing University, Chongqing 400030, China
  • Received:2019-02-01 Online:2019-08-15 Published:2019-04-12
  • Contact: Shunbo Li, Yi Xu
  • About author:
    ** E-mail: (Yi Xu)
  • Supported by:
    National Natural Science Foundation of China(61971074); National Natural Science Foundation of China(61904021); Chongqing Arpngicial Intelligence Technology Innovation Major Special Project(CSTC2017RGZN-ZDYFX0019); Major Project of Technological Innovation and Application Demonstration of Chongqing(CSTC2018JSZX-CYZTZX0216); Special Funds for Basic Scienpngic Research in Central Universities(2019CDYGYB003)

本文针对肿瘤细胞的活性检测、神经细胞的神经递质检测与巨噬细胞等的氧化损伤检测等细胞检测中的核心问题,简要介绍电化学生化传感器和传感方法在细胞检测领域的应用和发展,重点对不同微电极结构的电化学传感器的设计制作、细胞检测方法及应用进展进行了综述。电化学生化传感器从单一检测电极向集成多功能和阵列式电极发展,从单个电极传感检测模式向芯片集成微电极式传感系统发展,而在其生物相容性、检测限和检测效率等方面尚需进一步提升和拓展。基于微机电系统(MEMS)技术制作的微电极研制,电极表面的多种化学和生物修饰的敏感膜研究,从硅基到聚合物柔性基底电极的材料拓展,小体积、植入式、可穿戴式的电化学生化传感器研制等是目前发展的方向,其在临床检验、精准医疗、运动健康监测、老年健康服务等诸多领域中显示出巨大的应用前景。

The application and development of electrochemical sensors and sensing methods in the field of cell detection are introduced briefly, aiming at the core problems in cell detection, such as detection of tumor cell activity, neurotransmitters in nerve cells and oxidative damage in macrophages. The design, fabrication, detection and application of electrochemical sensors with different microelectrode structures are discussed in details. It is shown that electrochemical sensors have developed from single detection electrode to integrated multi-functional and array electrode, and from single electrode sensing detection mode to chip integrated microelectrode sensing system. However, its biocompatibility, detection limit and detection efficiency need to be further improved and expanded. The development of microelectrode based on MEMS(Micro-electro-mechanical system)technology, the research of various chemical and biological modified sensitive film on the electrode surface, the material expansion from silicon-based to polymer flexible base electrode, and the development of small volume, implantable and wearable electrochemical and biochemical sensors are the current development directions. It has also illustrated great application prospects in clinical examination, precision medicine, sports health monitoring, elderly health services and many other fields.

()
图1 Clark电极的发展:(A)传统Clark型电化学传感器校准示意图;(B)全固态微型溶解氧传感器结构示意图[18,19]
Fig. 1 Development of Clark sensors.(A)Calibration diagram of traditional Clark electrochemical sensor;(B)All solid state dissolved oxygen sensor[18,19]
图2 过氧化氢检测阵列芯片传感器实物图[27]
Fig. 2 Sensor diagram of hydrogen peroxide detection array chip[27]
[1]
Wu C C, Saito T, Yasukawa T, Shiku H, Hiroyoshi H, Matsue T . Sensors and Actuators B Chemical, 2007. 125(2):680.
[2]
Yamagishi A, Tanabe K, Yokokawa M, Morimoto Y, Kinoshita M, Suzuki H . Analytica Chimica Acta, 2017,985:1. https://www.ncbi.nlm.nih.gov/pubmed/28864179

doi: 10.1016/j.aca.2017.07.049     URL     pmid: 28864179
[3]
Li W T, Wu H, Gao C, Yang D, Yang D P, Shen J G . Frontiers in Physiology, 2018,9:864. https://www.ncbi.nlm.nih.gov/pubmed/30079025

doi: 10.3389/fphys.2018.00864     URL     pmid: 30079025
[4]
Zhu Q, Gao F, Gao F, Huang J, Pan Y, Wang Q . Materials Science & Engineering C Materials for Biological Applications, 2017,72:692. https://www.ncbi.nlm.nih.gov/pubmed/28024640

doi: 10.1016/j.msec.2016.11.134     URL     pmid: 28024640
[5]
Pang X, Bian H, Su M, Ren Y, Qi J, Ma H, Wu D Hu L, Du B, Wei Q . Analytical Chemistry, 2017,89(15):7950. https://www.ncbi.nlm.nih.gov/pubmed/28677958

doi: 10.1021/acs.analchem.7b01038     URL     pmid: 28677958
[6]
Liu J, Qin J, Li J, Li D Y, Xu Z, Zhang X W, Du L Q, Liu C . Electrochemistry Communications, 2013,31(31):20.
[7]
宋轶琳(Song Y L), 林楠森(Lin N S), 姜红(Jiang H), 刘春秀(Liu C X), 邢国刚(Xing G G), 蔡新霞(Cai X X) . 东南大学学报(医学版)( Journal of Southeastern University, Medical Version), 2011,30(1):29.
[8]
Cao J, An W, Reeves A, Lippert A R . Chemical Science, 2018,9(9):2552. https://www.ncbi.nlm.nih.gov/pubmed/29732134

doi: 10.1039/c7sc05087a     URL     pmid: 29732134
[9]
Zhang K Y, Yu Q, Wei H, Liu S, Zhao Q, Huang W . Chemical Reviews, 2018,118(4):1770. https://www.ncbi.nlm.nih.gov/pubmed/29393632

doi: 10.1021/acs.chemrev.7b00425     URL     pmid: 29393632
[10]
Li J, Yim D, Jang W D, Yoon J Y . Chemical Society Reviews, 2016,46(9):2437. https://www.ncbi.nlm.nih.gov/pubmed/27711665

doi: 10.1039/c6cs00619a     URL     pmid: 27711665
[11]
Kolanowski J L, Liu F, New E J . Chemical Society Reviews, 2018,47(1):195. https://www.ncbi.nlm.nih.gov/pubmed/29119192

doi: 10.1039/c7cs00528h     URL     pmid: 29119192
[12]
Li M, Gao H, Wang X, Qi Y F, Zhang H L, Cheng X . Microchimica Acta, 2017,184(2):603.
[13]
Kim T H, Choi J, Kim H G, Kim H R . Journal of Analytical Methods in Chemistry, 2014,2014:1.
[14]
Liu H, Weng L, Yang C . Microchimica Acta, 2017,184(5):1.
[15]
Chang B Y, Park S M . Annual Review of Analytical Chemistry, 2010,3(1):207.
[16]
Luo X L, Davis J J . Chemical Society Reviews, 2013,42:5944. https://www.ncbi.nlm.nih.gov/pubmed/23615920

doi: 10.1039/c3cs60077g     URL     pmid: 23615920
[17]
Barsan M M, Ghica M E, Brett C M A . Analytica Chimica Acta, 2015,881:1. https://www.ncbi.nlm.nih.gov/pubmed/26041516

doi: 10.1016/j.aca.2015.02.059     URL     pmid: 26041516
[18]
Bazzu G, Puggioni G M, Dedola S, Calia G, Rocchitta G, Migheli R, Desole M S, Lowry J P, Serra P A . Analytical Chemistry, 2009,81(6):2235. https://www.ncbi.nlm.nih.gov/pubmed/19222224

doi: 10.1021/ac802390f     URL     pmid: 19222224
[19]
Wang P, Liu Y, Abruña H D, Sepctor J A, Olbricht W L . Sensors & Actuators B Chemical, 2011,153(1):145.
[20]
Eminaga Y, Brischwein M, Wiest J, Clauss J, Becker S, Wolf B . Sensors & Actuators B Chemical, 2013,177(177):785.
[21]
Lim T S, Lee J H, Papautsky I . Sensors & Actuators B Chemical, 2009,141(1):50.
[22]
杨丽丽(Yang L L), 宋轶琳(Song Y L), 徐声伟(Xu S W), 张禹(Zhang Y), 肖桂花(Xiao G H), 张松(Zhang S), 高飞(Gao F), 李子岳(Li Z Y), 蔡新霞(Cai X X) . 分析化学( Chinese Journal of Analytical Chemistry), 2017,( 07):1088.
[23]
Fan X, Song Y l, Ma Y, Zhang S, Xiao G h, Yang L L, Xu H, Zhang D, Cai X X . Sensors, 2017,17(1):61.
[24]
Rivera J F, Sridharan S V, James N, Miloro S A, Alam M A, Rickus J L, Janes D B . The Analyst, 2018,143:4954. https://www.ncbi.nlm.nih.gov/pubmed/30225487

doi: 10.1039/c8an01198b     URL     pmid: 30225487
[25]
Xu S W, Zhang Y, Zhang S, Xiao G H, Wang M X, Song Y L, Gao F, Li Z Y, Zhuang P, Chan P, Tao G X, Yue F, Cai X X . Journal of Neuroscience Methods, 2018,304:83. https://www.ncbi.nlm.nih.gov/pubmed/29698630

doi: 10.1016/j.jneumeth.2018.04.015     URL     pmid: 29698630
[26]
Richa P, Orian T S, Silvia S, Avni A, Shancham Y . Biosensors and Bioelectronics, 2018,117:493. https://www.ncbi.nlm.nih.gov/pubmed/29982119

doi: 10.1016/j.bios.2018.06.045     URL     pmid: 29982119
[27]
Yu Y, Chen J, Zhou J . Nanotechnology. IEEE, 2013,1067.
[28]
Li Y, Catherine S, Frederic L, Guille M, Amatore C, Thouin L . Analytical Chemistry, 2018,90(15):9386. https://www.ncbi.nlm.nih.gov/pubmed/29979582

doi: 10.1021/acs.analchem.8b02039     URL     pmid: 29979582
[29]
Flamm H, Kieninger J, Weltin A, Urban G A . Biosensors & Bioelectronics, 2015,65(65C):354.
[30]
刘军山(Liu J S), 肖庆龙(Xiao Q L), 葛丹(Ge D), 张洋洋(Zhang Y Y), 张文珠(Zhang W Z), 徐征(Xu Z), 刘冲(Liu C), 王立鼎(Wang L D) . 分析化学( Chinese Journal of Analytical Chemistry), 2015,( 7):977.
[31]
Martinez A W, Phillips S T, Butte M J, Whitesides G M . Angew. Chem. Int. Ed., 2007,46, 1318. https://www.ncbi.nlm.nih.gov/pubmed/17211899

doi: 10.1002/anie.200603817     URL     pmid: 17211899
[32]
蒋艳(Jiang Y), 马翠翠(Ma C C), 胡贤巧(Hu X Q), 何巧红(He Q H) . 化学进展( Progress in Chemistry), 2014,26(1):167.
[33]
Uliana C V, Peverari C R, Afonso A S, Cominetti M R, Faria R C . Biosensors & Bioelectronics, 2017,99(4):156.
[34]
Wang H, Zhou C X, Sun X L, Jian Y N, Kong Q K, Cui K, Ge S G, Yu J H . Biosensors and Bioelectronics, 2018,117:651. https://www.ncbi.nlm.nih.gov/pubmed/30005386

doi: 10.1016/j.bios.2018.07.004     URL     pmid: 30005386
[35]
Xia Y, Si J, Li Z . Biosensors & Bioelectronics, 2016,77:774. https://www.ncbi.nlm.nih.gov/pubmed/26513284

doi: 10.1016/j.bios.2015.10.032     URL     pmid: 26513284
[36]
Wang S, Chinnasamy T, Lifson M A, Inci F, Demirci U . Trends in Biotechnology, 2016,34(11):909. https://www.ncbi.nlm.nih.gov/pubmed/27344425

doi: 10.1016/j.tibtech.2016.05.009     URL     pmid: 27344425
[37]
Lee S M, Hang J B, Kim B H, Lee J Y, Jeong J Y, Lee J H, Moon J H, Park C, Choi H, Lee S H, Lee K H . Biochip Journal, 2017,11(2):1.
[38]
Liao C, Mak C, Zhang M, Chan H L, Yan F . Advanced Materials, 2015,27(4):676. https://www.ncbi.nlm.nih.gov/pubmed/25469658

doi: 10.1002/adma.201404378     URL     pmid: 25469658
[39]
Lin P, Yan F . Advanced Materials, 2012,24(1):34. https://www.ncbi.nlm.nih.gov/pubmed/22102447

doi: 10.1002/adma.201103334     URL     pmid: 22102447
[40]
Pang C, Lee G Y, Kim T I, Kim S M, Kim H N, Ahn S H, Suh K Y . Nature Materials, 2012,11(9):795. https://www.ncbi.nlm.nih.gov/pubmed/22842511

doi: 10.1038/nmat3380     URL     pmid: 22842511
[1] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[2] 漆晨阳, 涂晶. 无抗生素纳米抗菌剂:现状、挑战与展望[J]. 化学进展, 2022, 34(11): 2540-2560.
[3] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[4] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[5] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[6] 赵旭, 王克青, 李博, 李长青, 林雨青*. 微电极制备、表面修饰及活体/单细胞电分析应用[J]. 化学进展, 2017, 29(10): 1173-1183.
[7] 李海东, 樊江莉, 彭孝军. 识别次氯酸的荧光探针[J]. 化学进展, 2017, 29(1): 17-35.
[8] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[9] 张金超*, 胡毅*, 余四旺, 高愈希, 张海松. 转化医学研究中的生物无机化学问题探讨[J]. 化学进展, 2013, 25(04): 469-478.
[10] 陈平, 姜亮, 刘琼*, 杨思林, 宋云, 倪嘉缵. 硒蛋白M及其与重大疾病的关系[J]. 化学进展, 2013, 25(04): 479-487.
[11] 周军, 白兆帅, 徐辉碧, 黄开勋*. 硒蛋白与糖尿病——硒的两面性[J]. 化学进展, 2013, 25(04): 488-494.
[12] 王兆慧, 宋文静, 马万红, 赵进才. 铁配合物的环境光化学及其参与的环境化学过程[J]. 化学进展, 2012, 24(0203): 423-432.
[13] 李竹赟,王敏. 农药残留的安培检测法*[J]. 化学进展, 2007, 19(10): 1585-1592.
[14] 徐辉碧,杨祥良,刘琼,王海涛,甘璐. 硒化合物诱导细胞凋亡的信号转导机制[J]. 化学进展, 2002, 14(04): 305-.